organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(4-Nitrophenyl)(1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin-3-yl)methanol monohydrate

Burkhon Zh. Elmuradov, Charoskhon E. Makhmadiyarova,* Kambarali K. Turgunov, Bakhodir Tashkhodjaev and Khusnutdin M. Shakhidoyatov

S.Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str., 77, Tashkent 100170, Uzbekistan Correspondence e-mail: ch_mahmadiyorova@rambler.ru

Received 27 May 2011; accepted 6 June 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.124; data-to-parameter ratio = 12.0.

In the crystal structure of the title compound, C₁₈H₁₇N₃O₃. H₂O, the molecules are linked by $O-H \cdots O$ and $O-H \cdots N$ hydrogen bonds, resulting in a chain along the a axis. The crystal structure is stabilized by weak intermolecular C-H··· π (ring) hydrogen bonds and aromatic π ··· π stacking interactions [centroid–centroid distance = 3.902(1) Å] between the pyrimidino rings of the quinazoline system. The tricyclic quinazoline fragment is almost planar (rms deviation = 0.0139 Å) with the two methylene C atoms of the pyrrolo ring deviating by 0.148 (2) and -0.081 (3) Å from the plane through the other atoms. The 4-nitrophenyl ring makes a dihedral angle of $12.55 (7)^{\circ}$ with the tricyclic ring system.

Related literature

For general background to tricyclic quinazoline alkaloids, see: Shakhidoyatov et al. (1988). For the synthesis of 1,2,3,9tetrahydro-pyrrolo[2,1-b]quinazoline, see: Jahng et al. (2008). For the physiological activity of quinazoline derivatives, see: Al-Shamma et al. (1981); Yunusov et al. (1978).

Triclinic, $P\overline{1}$

a = 6.2459 (7) Å

Experimental

Crystal data C18H17N3O3·H2O $M_r = 341.36$

b = 11.4629 (11) Åc = 11.8400 (13) Å $\alpha = 91.932 \ (8)^{\circ}$ $\beta = 95.589(9)^{\circ}$ $\gamma = 104.747 \ (9)^{\circ}$ V = 814.37 (15) Å³

Data collection

Oxford Diffraction Xcalibur Ruby diffractometer Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) $T_{\min} = 0.793, \ T_{\max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	H atoms treated by a mixture of
$wR(F^2) = 0.124$	independent and constrained
S = 1.03	refinement
2867 reflections	$\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$
238 parameters	$\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the N1,C2,N3,C4,C4A,C8A and C4A,C5-C8,C8A rings, respectively.

Z = 2

Cu $K\alpha$ radiation

 $0.50 \times 0.35 \times 0.15 \text{ mm}$

4649 measured reflections

2867 independent reflections

2076 reflections with $I > 2\sigma(I)$

 $\mu = 0.83 \text{ mm}^-$

T = 295 K

 $R_{\rm int} = 0.022$

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W - H1W \cdots N1$	0.86 (2)	1.89 (3)	2.751 (2)	174 (2)
$O1W - H2W \cdots O1^{i}$	0.89 (3)	1.97 (3)	2.835 (2)	162 (2)
$O1 - H1 \cdots O1W^{ii}$	0.95 (4)	1.71 (3)	2.660 (2)	173 (3)
$C4 - H4B \cdots Cg1^{iii}$	0.97	2.92	3.634 (2)	131
$C11 - H11A \cdots Cg2^{iii}$	0.97	2.94	3.681 (2)	134
Symmetry codes:	(i) $x - 1, y,$	z; (ii)	-x + 1, -y + 1, -	-z + 2; (iii)

-x + 1, -y + 1, -z + 1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008): molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank the Academy of Sciences of the Republic of Uzbekistan for supporting this study (grant FA-F3-T047).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2278).

References

- Al-Shamma, A., Drake, S., Flynn, D. L., Mitscher, L. A., Park, Y. H., Rao, G. S. R., Simpson, A., Swayze, J. K., Veysoglu, T. & Wu, S. T. S. (1981). J. Nat. Prod. 44, 745-747.
- Jahng, K. C., Kim, S. I., Kim, D. H., Seo, C. S., Son, J.-K., Lee, S. H., Lee, E. S. & Jahng, Y. (2008). Chem. Pharm. Bull. 56, 607-609.
- Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Shakhidoyatov, Kh. M. (1988). Quinazol-4-ones and Their Biological Activity, pp. 99-104. Tashkent: Fan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yunusov, S. Yu., Tulyaganov, N., Telezhenetskaya, M. V., Sadritdinov, F. & Khashimov, Kh. (1978). USSR Patent No. 605614; 'Anticholinesterase agent', Byull. Izobret. No.17.

supporting information

Acta Cryst. (2011). E67, o1680 [doi:10.1107/S1600536811021775]

(4-Nitrophenyl)(1,2,3,9-tetrahydropyrrolo[2,1-*b*]quinazolin-3-yl)methanol monohydrate

Burkhon Zh. Elmuradov, Charoskhon E. Makhmadiyarova, Kambarali K. Turgunov, Bakhodir Tashkhodjaev and Khusnutdin M. Shakhidoyatov

S1. Comment

Tricyclic quinazoline alkaloids are a large group of heterocyclic compounds (Shakhidoyatov *et al.*, 1988; Jahng *et al.*, 2008). These compounds and their derivatives possess difference pharmacological activities (Al-Shamma *et al.*, 1981; Yunusov *et al.*, 1978). Reaction of 1,2,3,9-tetrahydro-pyrrolo[2,1-*b*]quinazoline with *p*-nitrobenzaldehyde in ethanol at present of sodium hydroxide leads to the formation of 3-(*p*-nitrophenyl)-hydroxymethyl-1,2,3,9-tetrahydro-pyrrolo[2,1-*b*]quinazoline (Fig. 1). The title molecule has two asymmetric centre. The crystal is a racemate of two optical antipodes. The asymmetric unit contains one molecule of 3-(*p*-nitrophenyl)-hydroxymethyl-1,2,3,9-tetrahydro-pyrrolo[2,1-*b*]quinazoline and one water molecule (Fig. 2). In the molecule tryciclic quinazoline fragment almost planar with of slightly twisting of atoms C9 and C10. Deviations of last atoms from plane of rest atoms (rms deviation = 0.0139Å) in the tricycle are 0.148 (2)Å and -0.081 (3)Å, respectively.

Hydroxyl groups of two centrosymmetrical related molecules of title compound and two water molecules form a Hbond regtangles (nearly). In addition the water molecules are hydrogen bonded to the title compound molecules through N1 atom (Table 1). In the result are formed H-bond chains along the *a* axis of the cell (Fig. 3). The observed structure is stabilized by weak C—H··· π (Table 1) and aromatic π ··· π stacking interactions. A centrosymmetric π ··· π stacking interactions are observed between pyrimidino (N1/C2/N3/C4/C4A/C8A) rings of centrosymmetrically related molecules (*Cg*1···*Cg*1ⁱ separation is 3.902 (1)Å, where symmetry code: (i) 1-*x*, 1-*y*, 1-*z*).

S2. Experimental

Sodium hydroxide (0.1 g, 2.5 mmol) was dissolved in 40 ml ethanol (80%), and 1,2,3,9-tetrahydro-pyrrolo[2,1*b*]quinazoline hydrochloride (0.448 g, 2 mmol) and *p*-nitrobenzaldehyde (0.604 g, 4 mmol) were added (Fig. 1). Reaction mixture was left at 278 (1) K for 5 weeks. Light yellow crystals (m.p. 473–474 K) suitable for X-ray diffraction were isolated in 72% yield (0.44 g).

¹**H NMR (400 MHz, C₅H₅N):** 8.1 (2*H*, d, J = 8.8, H-3',5'), 7.9 (1*H*, s, OH), 7.67 (1*H*, d, J = 8.6, H-8), 7.67 (2*H*, d, J = 8.6, H-2',6'), 7.14 (2*H*, t, J = 8.6, H-6), 6.9 (1*H*, td, J = 8.6, J = 2.0, H-7), 6.8 (1*H*, d, J = 7.6, H-5), 5.06 (1*H*, d, J = 8.4, CH), 4.17 (1*H*, s, 9-H), 2.94 (1*H*, q, J = 8.6, H-1a), 2.78 (1*H*, q, J = 9.4, H-1b), 2.65 (2*H*, td, J = 8.6, J = 3.3, 3-H), 1.52 (2*H*, m, 2-H).

Mass (m/z, %): 323 ([*M*]⁺, 5.6), 305 ([*M*-H₂O]⁺, 6.3), 201 ([*M*-C₆H₄NO₂]⁺, 2.8), 171 ([*M*-(HO)CHC₆H₄NO₂]⁺, 100), 151 (51), 76 (55).

S3. Refinement

Carbon-bound H atoms were positioned geometrically and treated as riding on their C atoms, with C—H distances of 0.93Å (aromatic) and 0.97Å (methylene) and were refined with $U_{iso}(H) = 1.2U_{eq}(C)$]. The H atoms of hydroxyl group [O —H = 0.95 (3)Å] and the water molecule [O—H = 0.86 (3)Å and 0.89 (3)Å] involved in the intermolecular hydrogen bonds were located by difference Fourier map and refined freely.

Figure 1

The reaction scheme.

Figure 2

The molecular structure of title compound with atom labels. The displacement ellipsoids and are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

Figure 3

Packing diagramm, showing the formation of H-bonded (dashed lines) chains along [1 0 0]. H atoms are omitted for clarity.

(4-Nitrophenyl)(1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin-3-yl)methanol monohydrate

Crystal data	
$C_{18}H_{17}N_3O_3$ · H_2O	Z = 2
$M_r = 341.36$	F(000) = 360
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.392 {\rm Mg} {\rm m}^{-3}$
Hall symbol: -P 1	Melting point = $473(2)-474(2)$ K
a = 6.2459 (7) Å	Cu <i>K</i> α radiation, $\lambda = 1.54180$ Å
b = 11.4629 (11) Å	Cell parameters from 1912 reflections
c = 11.8400 (13) Å	$\theta = 3.8 - 66.8^{\circ}$
$\alpha = 91.932 \ (8)^{\circ}$	$\mu = 0.83 \text{ mm}^{-1}$
$\beta = 95.589(9)^{\circ}$	T = 295 K
$\gamma = 104.747 \ (9)^{\circ}$	Prism, light-yellow
$V = 814.37 (15) \text{ Å}^3$	$0.50 \times 0.35 \times 0.15 \text{ mm}$

Data collection

Oxford Diffraction Xcalibur Ruby diffractometer Radiation source: Enhance (Cu) X-ray Source Graphite monochromator Detector resolution: 10.2576 pixels mm ⁻¹ ω -scans Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2009) $T_{\min} = 0.793, T_{\max} = 1.000$	4649 measured reflections 2867 independent reflections 2076 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 66.9^{\circ}, \theta_{min} = 3.8^{\circ}$ $h = -7 \rightarrow 7$ $k = -13 \rightarrow 13$ $l = -11 \rightarrow 14$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.124$ S = 1.03 2867 reflections 238 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0752P)^2 + 0.0389P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.20 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.8540 (2)	0.61715 (12)	0.92847 (12)	0.0555 (4)	
O2	0.6598 (3)	1.09493 (15)	1.24380 (17)	0.0991 (6)	
03	0.3240 (3)	0.99048 (18)	1.24831 (17)	0.1005 (6)	
N1	0.3825 (2)	0.45278 (13)	0.71834 (12)	0.0471 (4)	
C2	0.5561 (3)	0.54174 (16)	0.71298 (14)	0.0427 (4)	
N3	0.7234 (2)	0.54380 (13)	0.65065 (13)	0.0487 (4)	
C4	0.7416 (3)	0.44111 (18)	0.58074 (16)	0.0537 (5)	
H4A	0.8783	0.4197	0.6060	0.064*	
H4B	0.7473	0.4624	0.5023	0.064*	
C4A	0.5454 (3)	0.33484 (17)	0.58861 (15)	0.0475 (4)	
C5	0.5291 (4)	0.22532 (19)	0.53039 (18)	0.0636 (6)	
H5A	0.6415	0.2178	0.4868	0.076*	
C6	0.3493 (4)	0.1273 (2)	0.5359(2)	0.0700 (6)	
H6A	0.3414	0.0545	0.4964	0.084*	
C7	0.1821 (4)	0.13746 (18)	0.59957 (19)	0.0643 (6)	

H7A	0.0599	0.0719	0.6028	0.077*
C8	0.1959 (3)	0.24550 (17)	0.65902 (17)	0.0558 (5)
H8A	0.0828	0.2518	0.7027	0.067*
C8A	0.3761 (3)	0.34467 (16)	0.65443 (14)	0.0451 (4)
C9	0.5996 (3)	0.65999 (15)	0.78287 (15)	0.0457 (4)
H9A	0.4710	0.6940	0.7698	0.055*
C10	0.8016 (4)	0.74163 (18)	0.73443 (18)	0.0609 (5)
H10A	0.7562	0.8017	0.6888	0.073*
H10B	0.9129	0.7828	0.7955	0.073*
C11	0.8949 (3)	0.65817 (18)	0.66131 (18)	0.0575 (5)
H11A	0.9194	0.6898	0.5874	0.069*
H11B	1.0345	0.6483	0.6980	0.069*
C12	0.6388 (3)	0.63750 (15)	0.90930 (14)	0.0433 (4)
H12A	0.5295	0.5631	0.9240	0.052*
C13	0.6112 (3)	0.73811 (15)	0.98840 (14)	0.0425 (4)
C14	0.7810 (3)	0.83964 (17)	1.02340 (17)	0.0563 (5)
H14A	0.9196	0.8485	0.9973	0.068*
C15	0.7481 (3)	0.92825 (17)	1.09669 (18)	0.0611 (5)
H15A	0.8630	0.9967	1.1193	0.073*
C16	0.5446 (3)	0.91394 (16)	1.13547 (16)	0.0510 (5)
C17	0.3738 (3)	0.8124 (2)	1.10522 (19)	0.0652 (6)
H17A	0.2373	0.8026	1.1340	0.078*
C18	0.4091 (3)	0.72560 (19)	1.03133 (19)	0.0619 (6)
H18A	0.2942	0.6568	1.0098	0.074*
N19	0.5065 (4)	1.00649 (17)	1.21455 (16)	0.0689 (5)
H1	0.878 (4)	0.600 (3)	1.006 (3)	0.113 (10)*
O1W	0.0490 (2)	0.43285 (14)	0.85779 (12)	0.0573 (4)
H1W	0.151 (4)	0.444 (2)	0.812 (2)	0.081 (8)*
H2W	-0.024 (4)	0.490 (3)	0.864 (2)	0.107 (10)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0543 (8)	0.0736 (9)	0.0481 (8)	0.0331 (7)	0.0083 (6)	0.0005 (7)
O2	0.1175 (15)	0.0596 (10)	0.1127 (15)	0.0132 (10)	0.0153 (11)	-0.0336 (10)
O3	0.0964 (13)	0.1053 (13)	0.1106 (15)	0.0431 (11)	0.0318 (11)	-0.0328 (11)
N1	0.0458 (8)	0.0505 (9)	0.0447 (8)	0.0111 (7)	0.0108 (7)	-0.0062 (7)
C2	0.0426 (9)	0.0493 (10)	0.0379 (9)	0.0156 (8)	0.0039 (7)	0.0014 (7)
N3	0.0474 (8)	0.0537 (9)	0.0458 (9)	0.0118 (7)	0.0136 (7)	-0.0008 (7)
C4	0.0515 (11)	0.0680 (12)	0.0460 (11)	0.0219 (9)	0.0116 (8)	-0.0019 (9)
C4A	0.0520 (10)	0.0563 (11)	0.0376 (9)	0.0212 (9)	0.0036 (8)	-0.0013 (8)
C5	0.0705 (14)	0.0696 (14)	0.0563 (12)	0.0293 (11)	0.0087 (10)	-0.0112 (10)
C6	0.0858 (16)	0.0566 (12)	0.0676 (14)	0.0239 (12)	0.0001 (12)	-0.0163 (11)
C7	0.0711 (14)	0.0504 (11)	0.0652 (13)	0.0071 (10)	0.0025 (11)	-0.0043 (10)
C8	0.0588 (12)	0.0556 (11)	0.0521 (12)	0.0125 (9)	0.0103 (9)	-0.0020 (9)
C8A	0.0498 (10)	0.0481 (10)	0.0381 (9)	0.0147 (8)	0.0038 (8)	0.0000 (7)
C9	0.0472 (10)	0.0466 (9)	0.0443 (10)	0.0153 (8)	0.0032 (8)	-0.0012 (8)
C10	0.0749 (14)	0.0518 (11)	0.0520 (12)	0.0069 (10)	0.0126 (10)	0.0050 (9)

supporting information

C11	0.0522 (11)	0.0611 (12)	0.0553 (12)	0.0051 (9)	0.0111 (9)	0.0072 (9)
C12	0.0404 (9)	0.0465 (9)	0.0447 (10)	0.0130 (8)	0.0097 (7)	-0.0007 (8)
C13	0.0394 (9)	0.0471 (9)	0.0412 (9)	0.0121 (8)	0.0042 (7)	0.0001 (7)
C14	0.0465 (10)	0.0555 (11)	0.0630 (13)	0.0028 (9)	0.0182 (9)	-0.0053 (9)
C15	0.0610 (12)	0.0463 (10)	0.0670 (13)	-0.0034 (9)	0.0132 (10)	-0.0087 (9)
C16	0.0609 (12)	0.0478 (10)	0.0474 (10)	0.0211 (9)	0.0050 (9)	-0.0035 (8)
C17	0.0436 (11)	0.0751 (14)	0.0766 (14)	0.0156 (10)	0.0139 (10)	-0.0211 (11)
C18	0.0382 (10)	0.0673 (12)	0.0728 (14)	0.0025 (9)	0.0107 (9)	-0.0252 (10)
N19	0.0874 (14)	0.0598 (11)	0.0644 (12)	0.0304 (11)	0.0071 (10)	-0.0099 (9)
O1W	0.0554 (9)	0.0704 (9)	0.0539 (8)	0.0256 (7)	0.0187 (7)	0.0049 (7)

Geometric parameters (Å, °)

01—C12	1.420 (2)	C9—C12	1.534 (2)	
01—H1	0.95 (3)	C9—C10	1.540 (3)	
O2—N19	1.217 (2)	С9—Н9А	0.9800	
O3—N19	1.216 (2)	C10—C11	1.527 (3)	
N1—C2	1.294 (2)	C10—H10A	0.9700	
N1—C8A	1.420 (2)	C10—H10B	0.9700	
C2—N3	1.333 (2)	C11—H11A	0.9700	
С2—С9	1.513 (2)	C11—H11B	0.9700	
N3—C4	1.451 (2)	C12—C13	1.515 (2)	
N3—C11	1.459 (2)	C12—H12A	0.9800	
C4—C4A	1.505 (3)	C13—C14	1.380 (2)	
C4—H4A	0.9700	C13—C18	1.382 (2)	
C4—H4B	0.9700	C14—C15	1.381 (3)	
C4A—C5	1.387 (3)	C14—H14A	0.9300	
C4A—C8A	1.398 (2)	C15—C16	1.366 (3)	
С5—С6	1.380 (3)	C15—H15A	0.9300	
С5—Н5А	0.9300	C16—C17	1.374 (3)	
С6—С7	1.372 (3)	C16—N19	1.471 (2)	
С6—Н6А	0.9300	C17—C18	1.377 (3)	
С7—С8	1.383 (3)	C17—H17A	0.9300	
С7—Н7А	0.9300	C18—H18A	0.9300	
C8—C8A	1.388 (3)	O1W—H1W	0.86 (3)	
С8—Н8А	0.9300	O1W—H2W	0.89 (3)	
C12—O1—H1	108.1 (17)	C11—C10—H10A	110.5	
C2—N1—C8A	115.94 (14)	C9—C10—H10A	110.5	
N1—C2—N3	126.93 (16)	C11—C10—H10B	110.5	
N1—C2—C9	123.07 (15)	C9—C10—H10B	110.5	
N3—C2—C9	109.97 (15)	H10A—C10—H10B	108.7	
C2—N3—C4	123.89 (15)	N3—C11—C10	104.22 (14)	
C2—N3—C11	114.25 (15)	N3—C11—H11A	110.9	
C4—N3—C11	121.82 (14)	C10-C11-H11A	110.9	
N3-C4-C4A	110.24 (14)	N3—C11—H11B	110.9	
N3—C4—H4A	109.6	C10-C11-H11B	110.9	
C4A—C4—H4A	109.6	H11A—C11—H11B	108.9	

N3—C4—H4B	109.6	O1—C12—C13	112.19 (14)
C4A—C4—H4B	109.6	O1—C12—C9	107.19 (13)
H4A—C4—H4B	108.1	C13—C12—C9	113.63 (14)
C5—C4A—C8A	118.79 (18)	O1—C12—H12A	107.9
C5—C4A—C4	120.53 (17)	C13—C12—H12A	107.9
C8A—C4A—C4	120.68 (16)	C9—C12—H12A	107.9
C6—C5—C4A	121.3 (2)	C14—C13—C18	118.21 (17)
С6—С5—Н5А	119.4	C14—C13—C12	123.21 (15)
С4А—С5—Н5А	119.4	C18—C13—C12	118.53 (16)
C7—C6—C5	119.88 (19)	C13—C14—C15	120.99 (17)
С7—С6—Н6А	120.1	C13—C14—H14A	119.5
С5—С6—Н6А	120.1	C15—C14—H14A	119.5
C6—C7—C8	119.8 (2)	C16—C15—C14	119.12 (18)
С6—С7—Н7А	120.1	C16—C15—H15A	120.4
С8—С7—Н7А	120.1	C14—C15—H15A	120.4
C7—C8—C8A	120.87 (19)	C15—C16—C17	121.54 (17)
С7—С8—Н8А	119.6	C15—C16—N19	120.08 (18)
C8A—C8—H8A	119.6	C17—C16—N19	118.35 (18)
C8—C8A—C4A	119.37 (17)	C16—C17—C18	118.45 (18)
C8—C8A—N1	118.37 (16)	С16—С17—Н17А	120.8
C4A—C8A—N1	122.25 (16)	C18—C17—H17A	120.8
C2—C9—C12	109.34 (14)	C17—C18—C13	121.65 (18)
C2—C9—C10	103.65 (14)	C17—C18—H18A	119.2
C12—C9—C10	114.74 (15)	C13—C18—H18A	119.2
С2—С9—Н9А	109.6	O3—N19—O2	123.18 (19)
С12—С9—Н9А	109.6	O3—N19—C16	118.45 (19)
С10—С9—Н9А	109.6	O2—N19—C16	118.4 (2)
C11—C10—C9	106.12 (15)	H1W—O1W—H2W	118 (3)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1,C2,N3,C4,C4A,C8A and C4A,C5-C8,C8A rings, respectively.

····A
(2)
(2)
(3)

Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+2; (iii) -x+1, -y+1, -z+1.