Structure Reports

Online
ISSN 1600-5368

Bis(3-methylpyridine- κN)bis(thio-cyanato- κN)zinc

Jan Boeckmann* and Christian Näther

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Strasse 2, D-24098 Kiel, Germany
Correspondence e-mail: jboeckmann@ac.uni-kiel.de

Received 15 June 2011; accepted 22 June 2011
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.050 ; w R$ factor $=0.122$; data-to-parameter ratio $=22.1$.

The asymmetric unit of the title compound, $\left[\mathrm{Zn}(\mathrm{NCS})_{2^{-}}\right.$ $\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{2}$], consists of one Zn^{2+} cation and two thiocyanate anions, all situated on special positions with site symmetry.m., and one 3-methylpyridine ligand. The zinc cation is coordinated by four N atoms of two terminal N -bonded thiocyanate anions and of two symmetry-related 3-methylpyridine coligands, defining a slightly distorted tetrahedral coordination polyhedron.

Related literature

For background to the magnetic properties of $\mathrm{Co}(\mathrm{II})$ thio- or selenocyanate coordination polymers, see: Boeckmann \& Näther (2010, 2011); Wöhlert et al. (2011). For isostructural and related compounds with different N -donor co-ligands and thio- or selenocyanate ligands, see: Bhosekar et al. (2010); Boeckmann et al. (2011a,b,c); Taniguchi et al. (1987); Wu (2004); Zhu et al. (2008).

Experimental

Crystal data

$\left[\mathrm{Zn}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$
$M_{r}=367.78$
$b=13.7382(5) \AA$
$c=15.011(6) \AA$
$V=1680.94(12) \AA^{3}$
$Z=4$

Data collection
Stoe IPDS-2 diffractometer Absorption correction: numerical (X-SHAPE and X-RED32; Stoe \& Cie, 2008)
$T_{\text {min }}=0.789, T_{\text {max }}=0.863$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.122$
$S=1.14$
2366 reflections

Mo $K \alpha$ radiation
$\mu=1.71 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.13 \times 0.11 \times 0.08 \mathrm{~mm}$

23123 measured reflections
2366 independent reflections
1918 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.048$

107 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.66 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.39 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

$\mathrm{Zn} 1-\mathrm{N} 1$	$1.928(4)$	$\mathrm{Zn} 1-\mathrm{N} 11$	$2.026(2)$
$\mathrm{Zn} 1-\mathrm{N} 2$	$1.942(4)$		
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 2$	$119.51(18)$	$\mathrm{N} 2-\mathrm{Zn} 1-\mathrm{N} 11$	$106.32(9)$
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 11$	$108.39(8)$	$\mathrm{N} 11^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{N} 11$	$107.34(12)$

Symmetry code: (i) $x,-y+\frac{3}{2}, z$.
Data collection: $X-A R E A$ (Stoe \& Cie, 2008); cell refinement: X $A R E A$; data reduction: X - $A R E A$; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011); software used to prepare material for publication: SHELXL97.

We gratefully acknowledge financial support by the DFG (project number NA 720/3-1) and the State of SchleswigHolstein. We thank Professor Dr Wolfgang Bensch for the opportunity to use his experimental facilities. Special thanks go to Inke Jess for her support in single-crystal measurements.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2500).

References

Bhosekar, G., Boeckmann, J., Jess, I. \& Näther, C. (2010). Z. Anorg. Allg. Chem. 636, 2595-2601.
Boeckmann, J., Jess, I., Reinert, T. \& Näther, C. (2011c). Inorg. Chem. Submitted.
Boeckmann, J. \& Näther, C. (2010). Dalton Trans. pp. 11019-11026.
Boeckmann, J. \& Näther, C. (2011). Chem. Commun. 47, 7104-7106.
Boeckmann, J., Reinert, T., Jess, I. \& Näther, C. (2011b). Z. Anorg. Allg. Chem. doi:10.1002/zaac. 201100111.
Boeckmann, J., Reinert, T. \& Näther, C. (2011a). Z. Anorg. Allg. Chem. doi:10.1002/zaac. 201100043.
Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stoe \& Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe \& Cie, Darmstadt, Germany.
Taniguchi, M., Sugita, Y. \& Ouchi, A. (1987). Bull. Chem. Soc. Jpn, 60, 13211326.

Wöhlert, S., Boeckmann, J., Wriedt, M. \& Näther, C. (2011). Angew. Chem. doi:10.1002/ange. 201007899.
Wu, C.-B. (2004). Acta Cryst. E60, m1490-m1491.
Zhu, L., Xu, D., Wang, X. \& Yu, G. (2008). J. Chem. Crystallogr. 38, 609-612.

supporting information

Acta Cryst. (2011). E67, m994 [doi:10.1107/S1600536811024561]

Bis(3-methylpyridine- κN)bis(thiocyanato- κN)zinc

Jan Boeckmann and Christian Näther

S1. Comment

Recently, we have reported about the directed synthesis of one-dimensional and two-dimensional transition metal(II) thio- and selenocyanate coordination polymers with neutral N -donor co-ligands that were obtained by thermal decomposition reactions. The compounds with $\mathrm{Co}(\mathrm{II})$ are of special interest because several of them show a slow relaxation of the magnetization which is a rare and very interesting magnetic phenomenon (Boeckmann \& Näther, 2010; Boeckmann \& Näther, 2011; Wöhlert et al., 2011)). Following this synthetic procedure, powders of low crystallinity are frequently obtained and therefore their structures are difficult to elucidate. Structure determinations of these compounds are of special importance because in the case of coordination polymers containing cobalt(II), both octahedral and tetrahedral coordination polyhedra can occur in these structures. In this context we found out that diamagnetic zinc and cadmium compounds can easily be crystallized in solution and are very often isotypic to their paramagnetic analogues (Bhosekar et al., 2010; Boeckmann et al., 2011a; Boeckmann et al., 2011b; Boeckmann et al., 2011c; Taniguchi et al., 1987; Wu, 2004; Zhu, 2008). The structures of the paramagnetic counterparts can then simply be refined applying the Rietveld method. This is the reason why we have determined the crystal structure of the diamagnetic title compound, [bis(thiocyanato- $\kappa \mathrm{N}$)-bis(3-methylpyridine- $\kappa \mathrm{N}$)zinc].
In the crystal structure the zinc cations (site symmetry .m.) are bonded to four nitrogen atoms of two terminal thiocyanate anions (site symmetry .m.) and to two symmetry-related terminal 3-methylpyridine co-ligands within a slightly distorted tetrahedral coordination polyhedron (Fig. 1 and Tab.1). The discrete complexes are oppositely oriented into columns which spread along the crystallographic b axis (Fig. 2). These columns are further arranged in parallel along the crystallographic a and c axes into a three-dimensional packing.

S2. Experimental

The title compound was prepared by the reaction of $90.0 \mathrm{mg} \mathrm{Zn}(\mathrm{NCS})_{2}(0.50 \mathrm{mmol})$ and $97.3 \mu L$ 3-methylpyridine (1.00 mmol) in 1.50 ml water at RT in a closed 3 ml snap cap vial. After three days colourless block like crystals of the title compound were obtained.

S3. Refinement

All H atoms were discernible in difference maps but were positioned with idealized geometry and were refined isotropically with $U_{\text {eq }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ for aromatic H atoms and with $U_{\mathrm{eq}}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C})$ for aliphatic H atoms of the parent atom using a riding model with $\mathrm{C}-\mathrm{H}=0.93 \AA$ (aromatic) and with $\mathrm{C}-\mathrm{H}=0.96 \AA$ (aliphatic).

Figure 1
Molecular structure of the title compound, showing the coordination around Zn^{2+}, with labelling and displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: $i=x,-y+1 / 2$, z.]

Figure 2
Packing diagram of the title compound with view along the crystallographic a axis (aqua $=$ zinc; yellow $=$ sulfur; blue $=$ nitrogen; grey = carbon; light-grey = hydrogen).

$\operatorname{Bis}(3-m e t h y l p y r i d i n e-\kappa N)$ bis(thiocyanato- κN)zinc

Crystal data

$\left[\mathrm{Zn}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$
$M_{r}=367.78$
Orthorhombic, Pnma
Hall symbol: -P 2ac 2n
$a=8.1510$ (4) \AA
$b=13.7382$ (5) \AA
$c=15.0111$ (6) \AA
$V=1680.94(12) \AA^{3}$
$Z=4$
$F(000)=752$
$D_{\mathrm{x}}=1.453 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 16444 reflections
$\theta=2.0-29.3^{\circ}$
$\mu=1.71 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colourless
$0.13 \times 0.11 \times 0.08 \mathrm{~mm}$

Data collection

Stoe IPDS-2
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe \& Cie, 2008)
$T_{\min }=0.789, T_{\text {max }}=0.863$

23123 measured reflections
2366 independent reflections
1918 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.048$
$\theta_{\text {max }}=29.3^{\circ}, \theta_{\text {min }}=2.0^{\circ}$
$h=-11 \rightarrow 11$
$k=-16 \rightarrow 18$
$l=-20 \rightarrow 20$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.122$
$S=1.14$
2366 reflections
107 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier \quad map
> Hydrogen site location: inferred from \quad neighbouring sites
> H-atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0581 P)^{2}+0.3791 P\right]$ \quad where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.66$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.39 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Zn1	$0.48061(6)$	0.7500	$0.49255(3)$	$0.05827(17)$
N1	$0.4523(5)$	0.7500	$0.3651(2)$	$0.0754(10)$
C1	$0.4513(5)$	0.7500	$0.2879(3)$	$0.0606(9)$
S1	$0.44866(18)$	0.7500	$0.18058(7)$	$0.0784(3)$
N2	$0.2888(5)$	0.7500	$0.5693(3)$	$0.0792(10)$
C2	$0.1682(5)$	0.7500	$0.6084(3)$	$0.0663(10)$
S2	$-0.00054(18)$	0.7500	$0.66536(11)$	$0.1021(5)$
N11	$0.6137(3)$	$0.63122(14)$	$0.52674(13)$	$0.0549(5)$
C11	$0.6306(3)$	$0.60498(19)$	$0.61208(16)$	$0.0608(6)$
H11	0.5791	0.6426	0.6554	0.073^{*}
C12	$0.7202(4)$	$0.5254(2)$	$0.63937(19)$	$0.0662(7)$
C13	$0.7916(4)$	$0.4695(2)$	$0.5739(2)$	$0.0737(8)$
H13	0.8499	0.4138	0.5892	0.088^{*}
C14	$0.7771(5)$	$0.4958(2)$	$0.4859(2)$	$0.0760(9)$
H14	0.8267	0.4588	0.4415	0.091^{*}
C15	$0.6884(4)$	$0.57729(19)$	$0.46463(17)$	$0.0642(7)$
H15	0.6800	0.5957	0.4052	0.077^{*}
C16	$0.7368(5)$	$0.5021(3)$	$0.7369(2)$	$0.0953(12)$
H16A	0.7898	0.5553	0.7668	0.143^{*}
H16B	0.8014	0.4441	0.143^{*}	
H16C	0.6300	0.4920	0.7620	0.143^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn 1	$0.0690(3)$	$0.0527(2)$	$0.0531(2)$	0.000	$-0.00324(18)$	0.000
N 1	$0.089(3)$	$0.078(2)$	$0.0592(18)$	0.000	$-0.0136(17)$	0.000
C 1	$0.066(2)$	$0.0520(18)$	$0.064(2)$	0.000	$-0.0087(16)$	0.000
S 1	$0.1032(9)$	$0.0745(7)$	$0.0574(5)$	0.000	$-0.0054(5)$	0.000
N 2	$0.082(3)$	$0.063(2)$	$0.092(2)$	0.000	$0.019(2)$	0.000
C 2	$0.076(3)$	$0.0442(17)$	$0.078(2)$	0.000	$-0.001(2)$	0.000
S 2	$0.0739(8)$	$0.1173(12)$	$0.1150(12)$	0.000	$0.0199(7)$	0.000
N 11	$0.0666(12)$	$0.0479(10)$	$0.0501(10)$	$-0.0036(9)$	$-0.0028(8)$	$0.0000(8)$
C 11	$0.0740(16)$	$0.0564(14)$	$0.0519(12)$	$-0.0030(13)$	$-0.0015(11)$	$0.0003(10)$
C 12	$0.0725(17)$	$0.0607(14)$	$0.0655(14)$	$-0.0130(14)$	$-0.0139(13)$	$0.0114(12)$
C 13	$0.0741(19)$	$0.0554(14)$	$0.092(2)$	$0.0031(14)$	$-0.0095(16)$	$0.0072(14)$
C 14	$0.090(2)$	$0.0624(16)$	$0.075(2)$	$0.0102(15)$	$0.0062(15)$	$-0.0107(13)$
C 15	$0.0795(18)$	$0.0575(14)$	$0.0557(13)$	$-0.0010(13)$	$0.0019(12)$	$-0.0029(11)$
C 16	$0.113(3)$	$0.099(3)$	$0.074(2)$	$-0.004(2)$	$-0.020(2)$	$0.0275(17)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Zn} 1-\mathrm{N} 1$	1.928 (4)	C11-H11	0.9300
$\mathrm{Zn} 1-\mathrm{N} 2$	1.942 (4)	C12-C13	1.377 (5)
$\mathrm{Zn} 1-\mathrm{N} 11^{\text {i }}$	2.026 (2)	C12-C16	1.505 (4)
Zn1-N11	2.026 (2)	C13-C14	1.374 (4)
N1-C1	1.158 (5)	C13-H13	0.9300
C1-S1	1.611 (4)	C14-C15	1.371 (4)
N2-C2	1.145 (5)	C14-H14	0.9300
C2-S2	1.619 (5)	C15-H15	0.9300
N11-C15	1.338 (3)	C16-H16A	0.9600
N11-C11	1.338 (3)	C16-H16B	0.9600
C11-C12	1.377 (4)	C16-H16C	0.9600
N1-Zn1-N2	119.51 (18)	C13-C12-C16	122.6 (3)
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 11^{\text {i }}$	108.39 (9)	C11-C12-C16	120.4 (3)
N2-Zn1-N11 ${ }^{\text {i }}$	106.32 (9)	C14-C13-C12	120.2 (3)
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 11$	108.39 (8)	C14-C13-H13	119.9
N2-Zn1-N11	106.32 (9)	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{H} 13$	119.9
N11-ZZn1-N11	107.34 (12)	C15-C14-C13	118.9 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Zn} 1$	173.6 (4)	C15-C14-H14	120.5
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	179.7 (4)	C13-C14-H14	120.5
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{Zn} 1$	174.5 (4)	N11-C15-C14	122.0 (3)
N2-C2-S2	179.0 (4)	N11-C15-H15	119.0
C15-N11-C11	118.1 (2)	C14-C15-H15	119.0
C15-N11-Zn1	120.90 (17)	C12-C16-H16A	109.5
C11-N11-Zn1	120.99 (17)	C12-C16-H16B	109.5
N11-C11-C12	123.6 (3)	H16A-C16-H16B	109.5
N11-C11-H11	118.2	C12-C16-H16C	109.5

supporting information

$\mathrm{C} 12-\mathrm{C} 11-\mathrm{H} 11$	118.2	$\mathrm{H} 16 \mathrm{~A}-\mathrm{C} 16-\mathrm{H} 16 \mathrm{C}$	109.5
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 11$	$117.0(3)$	$\mathrm{H} 16 \mathrm{~B}-\mathrm{C} 16-\mathrm{H} 16 \mathrm{C}$	109.5

Symmetry code: (i) $x,-y+3 / 2, z$.

