Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[(μ_{5}-2,6-dimethylpyridine-3,5dicarboxylato)zinc]

Ming-Xing Zhang, ${ }^{\text {a }}$ (Xin Chen ${ }^{\text {a }}$ and Yi Zhu ${ }^{\text {b }}$
${ }^{\text {a }}$ College of Chemistry, Chongqing Normal University, Chongqing 400047, People's Republic of China, and ${ }^{\mathbf{b}}$ College of Life Science, Chongqing Normal University, Chongqing 400047, People's Republic of China
Correspondence e-mail: zmx0102@hotmail.com

Received 18 June 2011; accepted 20 June 2011
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.023 ; w R$ factor $=0.067$; data-to-parameter ratio $=10.3$.

In the polymeric title complex, $\left[\mathrm{Zn}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NO}_{4}\right)\right]_{n}$, the $\mathrm{Zn}^{\text {II }}$ cation is located on a twofold rotation axis and is coordinated by five 2,6-dimethylpyridine-3,5-dicarboxylate (mpdc) anions in a distorted ZnNO_{4} trigonal-bipyramidal geometry. The mpdc anion is also located on the twofold rotation axis and bridges five $\mathrm{Zn}^{\mathrm{II}}$ cations, forming the three-dimensional polymeric complex. Weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are present in the crystal structure.

Related literature

For a related structure, see: Huang et al. (2007). For background to metal-organic frameworks (MOFs), see: Long \& Yaghi (2009); Zhao et al. (2003).

Experimental

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NO}_{4}\right)\right.$]
$M_{r}=258.53$
Monoclinic, $C 2 / c$
$a=8.578$ (7) £
$b=14.016$ (11) \AA
$c=7.382$ (7) A
$\beta=112.176(17)^{\circ}$
$V=821.9$ (12) \AA^{3}
$Z=4$
Mo $K \alpha$ radiation
$\mu=2.98 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.30 \times 0.25 \times 0.16 \mathrm{~mm}$

Data collection

Rigaku Mercury2 diffractometer
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)
$T_{\min }=0.469, T_{\max }=0.647$
2615 measured reflections 732 independent reflections 709 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.022$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023 \quad 1$ restraint
$w R\left(F^{2}\right)=0.067$
$S=1.00$
H -atom parameters constrained
732 reflections
71 parameters
$\Delta \rho_{\text {max }}=0.50$ e \AA^{-3}
$\Delta \rho_{\min }=-0.59 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{Zn} 1-\mathrm{O} 1$	$2.207(3)$	$\mathrm{Zn} 1-\mathrm{N} 1^{\mathrm{ii}}$	$2.089(3)$
$\mathrm{Zn} 1-\mathrm{O} 2^{\mathrm{i}}$	$1.977(2)$		
Symmetry codes: (i) $x,-y, z-\frac{1}{2} ;$ (ii) $-x+\frac{1}{2},-y+\frac{1}{2},-z+1$.			

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
$C g$ is the centroid of the pyridine ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C5-H5C $\cdots C g^{\mathrm{ii}}$	0.96	2.67	$3.573(4)$	158
Symmetry code: (ii) $-x+\frac{1}{2},-y+\frac{1}{2},-z+1$.				

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

This work was supported by Science and Technology Projects of Chongqing Municipal Education Commission (KJ100602) and Chongqing Normal University Scientific Research Foundation Project (10XLZ005).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5247).

References

Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Huang, K.-L., He, Y.-T., Wang, D.-Q., Pan, W.-L. \& Hu, C.-W. (2007). J. Mol. Struct. 832, 146-149.
Long, J. R. \& Yaghi, O. M. (2009). Chem. Soc. Rev. 38, 1213-1214.
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Zhao, B., Cheng, P., Dai, Y., Cheng, C., Liao, D.-Z., Yan, S.-P., Jiang, Z.-H. \& Wang, G.-L. (2003). Angew. Chem. Int. Ed. 42, 934-936.

supporting information

Acta Cryst. (2011). E67, m977 [doi:10.1107/S1600536811024172]

Poly[(μ_{5}-2,6-dimethylpyridine-3,5-dicarboxylato)zinc]

Ming-Xing Zhang, Xin Chen and Yi Zhu

S1. Comment

Recently, research on metal-organic frameworks (MOFs) has become of increasing interest (Long \& Yaghi, 2009). However, it is still a great challenge to assemble a predicted structure because there are numerous influences that can play decisive roles on the structure and crystal packing. Fortunately, these uncertainties can be reduced by the use of well selected spacers that have the ability to aggregate metal ions into different secondary building units (Zhao et al., 2003). Herein we reports an interesting five-connected zeolite-like coordination polymer based on highly-substituted pyridinedicarboxylates.
The title compound is a three-dimensional framework built from Zn cations that are linked by mpdc anions. From this arrangement cavities are formed. Zn 1 is coordinated by four oxygen atoms from four different $\mathrm{CO}_{2}{ }^{-}$groups of mpdc ligands and one pyridyl nitrogen atom from another mpde ligand. The mpdc ligand bridges five different Zn atoms and favors the construction of the structure with zeolite-like topology. The topology of the title compound is identical with the reported $[\mathrm{Cd}(\mathrm{mpdc})]_{\mathrm{n}}$ (Huang et al., 2007), but the coordination sphere of cation, the binding mode of the carboxylate group and the synthesis condition are different.
The combination of the dramatic twists between two carboxylate groups in mpdc ligands results in the formation of the intersecting double-stranded helical chain comprised of $\left[\mathrm{Zn}\left(\mathrm{CO}_{2}\right)_{2}\right]_{\mathrm{n}}$ (Zn atoms as nodes).

S2. Experimental

All chemicals were of reagent grade and used as purchased without further purification. A mixture of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ($450 \mathrm{mg}, 1.5 \mathrm{mmol}$), $\mathrm{H}_{2} \mathrm{mpdc}(97.5 \mathrm{mg}, 0.5 \mathrm{mmol}),(\mathrm{Et})_{3} \mathrm{~N} 0.07 \mathrm{~mL}$ and $\mathrm{H}_{2} \mathrm{O} 10 \mathrm{~mL}$ was sealed in a 25 ml stainless steel reactor with Teflon liner and directly heated to $180^{\circ} \mathrm{C}$ for 3 days, and then cooled to room temperature. The crystal samples were washed with methanol to give the title compound in about 35% yield (based on H_{2} mpdc ligand).

S3. Refinement

Constraint instruction 'delu 0.001 Zn 1 O 1 ' was used in the refinement. All H atoms were placed in geometrically idealized positions $(\mathrm{C}-\mathrm{H}=0.93 \AA)$ and treated as riding on their parent atoms, with $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.5 \mathrm{U}_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$ for aromatic H atom.

Figure 1
The coordination environments of Zinc ions, showing 30% probability displacement ellipsoids and hydrogen atoms have been removed for clarity. Symmetry codes: (i) $-x,-y,-z+1$; (ii) $-x+1 / 2,-y+1 / 2,-z+1$; (iii) $-x, y,-z+1 / 2$; (iv) $x,-y, z-$ $1 / 2$; (v) $-x+1,+y,-z+3 / 2$.

Figure 2
The presentation of the 3-D zeolite-like architecture. Methyl groups and hydrogen atoms have been removed for clarity. Polyhedra represent the ZnNO_{4} groups.

Poly[(μ_{5}-2,6-dimethylpyridine-3,5-dicarboxylato)zinc]

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NO}_{4}\right)\right]$
$M_{r}=258.53$

Monoclinic, C2/c
Hall symbol: -C 2yc
$a=8.578$ (7) \AA
$b=14.016$ (11) \AA
$c=7.382(7) \AA$
$\beta=112.176(17)^{\circ}$
$V=821.9(12) \AA^{3}$
$Z=4$

Data collection

Rigaku Mercury2
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
$T_{\text {min }}=0.469, T_{\text {max }}=0.647$

$$
\begin{aligned}
& F(000)=520 \\
& D_{\mathrm{x}}=2.089 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 535 \text { reflections } \\
& \theta=2.9-27.5^{\circ} \\
& \mu=2.98 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& \text { Prism, colorless } \\
& 0.30 \times 0.25 \times 0.16 \mathrm{~mm}
\end{aligned}
$$

2615 measured reflections

732 independent reflections
709 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-10 \rightarrow 10$
$k=-14 \rightarrow 16$
$l=-8 \rightarrow 8$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.067$
$S=1.00$
732 reflections
71 parameters
1 restraint
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Zn1	0.0000	$0.08158(2)$	0.2500	$0.01616(18)$
N1	0.5000	$0.26938(18)$	0.7500	$0.0137(5)$
O1	$0.0625(2)$	$0.09690(11)$	$0.5672(2)$	$0.0189(4)$
O2	$0.20746(19)$	$-0.00679(11)$	$0.7999(2)$	$0.0192(4)$

C1	$0.1949(3)$	$0.06763(15)$	$0.6979(3)$	$0.0147(5)$
C2	$0.3560(3)$	$0.12188(16)$	$0.7360(3)$	$0.0147(5)$
C3	0.5000	$0.0730(2)$	0.7500	$0.0168(7)$
H3	0.5000	0.0066	0.7500	0.020^{*}
C4	$0.3618(3)$	$0.22210(15)$	$0.7464(3)$	$0.0137(5)$
C5	$0.2202(3)$	$0.28064(16)$	$0.7589(4)$	$0.0195(5)$
H5A	0.2644	0.3278	0.8596	0.029^{*}
H5B	0.1434	0.2399	0.7893	0.029^{*}
H5C	0.1621	0.3117	0.6358	0.029^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	$0.0108(2)$	$0.0106(3)$	$0.0269(3)$	0.000	$0.00690(17)$	0.000
N1	$0.0128(13)$	$0.0115(13)$	$0.0166(12)$	0.000	$0.0054(10)$	0.000
O1	$0.0143(8)$	$0.0178(8)$	$0.0228(7)$	$0.0007(7)$	$0.0050(7)$	$0.0013(6)$
O2	$0.0146(8)$	$0.0135(8)$	$0.0277(8)$	$-0.0012(6)$	$0.0061(6)$	$0.0048(6)$
C1	$0.0143(12)$	$0.0124(11)$	$0.0202(11)$	$-0.0012(9)$	$0.0095(9)$	$-0.0039(8)$
C2	$0.0145(11)$	$0.0121(12)$	$0.0175(10)$	$-0.0004(9)$	$0.0058(9)$	$0.0007(8)$
C3	$0.0161(17)$	$0.0107(16)$	$0.0226(17)$	0.000	$0.0064(14)$	0.000
C4	$0.0111(11)$	$0.0133(11)$	$0.0165(10)$	$-0.0011(8)$	$0.0049(8)$	$-0.0001(8)$
C5	$0.0160(11)$	$0.0150(12)$	$0.0302(12)$	$0.0005(9)$	$0.0118(10)$	$-0.0021(9)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Zn} 1-\mathrm{O} 1$	2.207 (3)	$\mathrm{O} 2-\mathrm{Zn} 1^{\text {iii }}$	1.977 (2)
$\mathrm{Zn} 1-\mathrm{Ol}^{\text {i }}$	2.207 (3)	C1-C2	1.507 (3)
$\mathrm{Zn} 1-\mathrm{O} 2{ }^{\text {ii }}$	1.977 (2)	C2-C3	1.382 (3)
$\mathrm{Zn} 1-\mathrm{O} 2^{\text {iii }}$	1.977 (2)	C2-C4	1.407 (3)
$\mathrm{Zn} 1-\mathrm{N} 1^{\text {iv }}$	2.089 (3)	C3-C2v	1.382 (3)
N1-C4	1.349 (3)	C3-H3	0.9300
N1-C4 ${ }^{\text {v }}$	1.349 (3)	C4-C5	1.497 (3)
N1-Zn1 ${ }^{\text {iv }}$	2.089 (3)	C5-H5A	0.9600
$\mathrm{O} 1-\mathrm{C} 1$	1.250 (3)	C5-H5B	0.9600
$\mathrm{O} 2-\mathrm{C} 1$	1.267 (3)	C5-H5C	0.9600
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Zn} 1-\mathrm{O} 2^{\text {ii }}$	115.94 (11)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	116.0 (2)
$\mathrm{O} 2{ }^{\text {iii- }} \mathrm{Zn} 1-\mathrm{N} 1^{\text {iv }}$	122.03 (5)	C3-C2-C4	118.6 (2)
$\mathrm{O} 2 \mathrm{ii}-\mathrm{Zn} 1-\mathrm{N} 1^{\text {iv }}$	122.03 (5)	C3-C2-C1	119.6 (2)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Zn} 1-\mathrm{O} 1$	95.17 (6)	C4-C2-C1	121.69 (19)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Zn} 1-\mathrm{O} 1$	90.75 (6)	$\mathrm{C} 2{ }^{\text {v }}-\mathrm{C} 3-\mathrm{C} 2$	120.5 (3)
$\mathrm{N} 1{ }^{\text {iv }}-\mathrm{Zn} 1-\mathrm{O} 1$	84.42 (4)	$\mathrm{C} 2{ }^{\text {v }}-\mathrm{C} 3-\mathrm{H} 3$	119.7
$\mathrm{O} 2{ }^{\text {iii- }} \mathrm{Zn} 1-\mathrm{Ol}^{\text {i }}$	90.75 (6)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.7
$\mathrm{O} 2^{\text {ii }}-\mathrm{Zn} 1-\mathrm{Ol}^{\text {i }}$	95.17 (6)	N1-C4-C2	120.30 (19)
$\mathrm{N} 1^{\mathrm{iv}}-\mathrm{Zn} 1-\mathrm{O} 1^{\text {i }}$	84.42 (4)	N1-C4-C5	117.2 (2)
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O} 1^{\text {i }}$	168.83 (9)	C2-C4-C5	122.51 (19)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 4{ }^{\text {v }}$	121.2 (3)	C4-C5-H5A	109.5
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{Zn} 1{ }^{\text {iv }}$	119.41 (13)	C4-C5-H5B	109.5

supporting information

$\mathrm{C} 4{ }^{\text {v }}-\mathrm{N} 1-\mathrm{Zn} 1^{\text {iv }}$	119.41 (13)	H5A-C5-H5B	109.5
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Zn} 1$	124.94 (16)	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{C}$	109.5
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Zn} 1^{\text {iii }}$	117.23 (15)	H5A-C5-H5C	109.5
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	125.3 (2)	H5B-C5-H5C	109.5
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	118.7 (2)		
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Zn} 1-\mathrm{O} 1-\mathrm{C} 1$	120.17 (19)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 4$	-137.8 (2)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Zn} 1-\mathrm{O} 1-\mathrm{C} 1$	4.03 (18)	$\mathrm{C} 4-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 2^{\text {v }}$	-3.21 (13)
$\mathrm{N} 1{ }^{\text {iv }}-\mathrm{Zn} 1-\mathrm{O} 1-\mathrm{C} 1$	-118.08 (18)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 2{ }^{\text {v }}$	173.1 (2)
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O} 1-\mathrm{C} 1$	-118.08 (18)	$\mathrm{C} 4{ }^{\text {v }}-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 2$	-3.33 (14)
$\mathrm{Zn} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	-103.1 (2)	$\mathrm{Zn} 1^{\text {iv }}-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 2$	176.67 (14)
$\mathrm{Zn} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	74.7 (2)	$\mathrm{C} 4{ }^{v}-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	175.2 (2)
$\mathrm{Zn} 1 \mathrm{iii}-\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	-0.8 (3)	$\mathrm{Zn} 1{ }^{\text {iv }}-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	-4.8(2)
$\mathrm{Zn} 1 \mathrm{iii}-\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	-178.63 (14)	C3-C2-C4-N1	6.6 (3)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-131.9 (2)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 4-\mathrm{N} 1$	-169.61 (17)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	46.1 (3)	C3-C2-C4-C5	-171.85 (17)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 4$	44.2 (3)	C1-C2-C4-C5	11.9 (3)

Symmetry codes: (i) $-x, y,-z+1 / 2$; (ii) $x,-y, z-1 / 2$; (iii) $-x,-y,-z+1$; (iv) $-x+1 / 2,-y+1 / 2,-z+1$; (v) $-x+1, y,-z+3 / 2$.

Hydrogen-bond geometry ($\hat{A},{ }^{\circ}$)
Cg is the centroid of the pyridine ring.

$D — \mathrm{H} \cdots A$	$D — \mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H}^{\prime} A$
$\mathrm{C} 5 — \mathrm{H} 5 C \cdots C g^{\text {iv }}$	0.96	2.67	$3.573(4)$	158

Symmetry code: (iv) $-x+1 / 2,-y+1 / 2,-z+1$.

