organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(4-Methylphenylsulfonyl)-5-phenyl-4,5-dihydro-1*H*-pyrazole

Jie Li* and Wei Zhao

Medical College, Zhejiang University City College, Hangzhou 310015, Zhejiang, People's Republic of China Correspondence e-mail: liji@zucc.edu.cn

Received 9 May 2011; accepted 25 June 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.034; wR factor = 0.081; data-to-parameter ratio = 11.4.

The title compound, $C_{16}H_{16}N_2O_2S$, was synthesized by the reaction of 5-phenyl-4,5-dihydro-1*H*-pyrazole and 4-methylbenzene-1-sulfonyl chloride. The five-membered pyrazoline ring is nearly planar, with a miximum deviation of 0.078 (2) Å.

Related literature

For the pharmacological properties of pyrazoline derivatives, see: Goodell *et al.* (2006); Park *et al.* (2005); Shaharyar *et al.* (2006); Suresh *et al.* (2009).

Experimental

Crystal data

 $\begin{array}{l} C_{16}H_{16}N_2O_2S\\ M_r = 300.37\\ Orthorhombic, Pca2_1\\ a = 19.2938 \ (7) \ \mathring{A}\\ b = 6.0438 \ (2) \ \mathring{A}\\ c = 12.9812 \ (5) \ \mathring{A} \end{array}$

 $V = 1513.71 (10) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.22 \text{ mm}^{-1}$ T = 293 K $0.32 \times 0.28 \times 0.25 \text{ mm}$

Data collection

Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2010) $T_{\rm min} = 0.933, T_{\rm max} = 0.947$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.081$ S = 1.052168 reflections 191 parameters 1 restraint 5286 measured reflections 2168 independent reflections 1870 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$

H-atom parameters constrained $\Delta \rho_{max} = 0.15 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.26 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), 711 Friedel pairs Flack parameter: 0.00 (8)

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2*.

The authors thank Mr Ji-Yong Liu of Zhejiang University for the X-ray data collection. This paper was supported by the Research Fund for teachers of Zhejiang University City College.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2186).

References

- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Goodell, J. R., Puig-Basagoiti, F., Forshey, B. M., Shi, P. Y. & Ferguson, D. M. (2006). J. Med. Chem. 49, 2127–2137.
- Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Park, H. J., Lee, K., Park, S. J., Ahn, B., Lee, J. C., Cho, H. Y. & Lee, K. I. (2005). Bioorg. Med. Chem. Lett. 15, 3307–3312.
- Shaharyar, M., Siddiqui, A. A. & Ali, M. A. (2006). *Bioorg. Med. Chem. Lett.* 16, C4571–C4574.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Suresh, K., Sandhya, B., Sushma, D., Rajiv, K. & Himanshu, G. (2009). Recent Patents Anti-Infect. Drug Disc. 4, 154–163.

supporting information

Acta Cryst. (2011). E67, o1898 [doi:10.1107/S1600536811025001]

1-(4-Methylphenylsulfonyl)-5-phenyl-4,5-dihydro-1*H*-pyrazole

Jie Li and Wei Zhao

S1. Comment

5-Phenyl-1-tosyl-4,5-dihydro-1*H*-pyrazoles are a key intermediates which can be used to synthesize pyrazoline derivatives, which are well known for their versatile pharmacological activities such as antitumor (Park *et al.*, 2005), antibacterial (Shaharyar *et al.*, 2006), antifungal (Goodell *et al.*, 2006), antiviral, antiparasitic, anti-tubercular and insecticidal agents (Suresh *et al.*, 2009). The title compound is one of these compounds and its structure is reported here.

S2. Experimental

A CH₂Cl2 solution of 5-phenyl-4,5-dihydro-1*H*-pyrazole (1.46 g, 0.01 mol)with 4-methylbenzene-1-sulfonyl chloride (2.15 g, 0.011 mol) was stired at room temperature for 4 h, then saturated aqueous sodium hydrogen carbonate (50 ml) was added into the solution. The mixture was extract with CH_2Cl_2 . Then the solvent was removed and to give a white powder. Single crystals were obtained from the powder in methanol after 5 days.

S3. Refinement

H atoms were positioned geometrically (C-H = 0.93-0.98 Å) and refined using a riding model, with $U_{eq}(H) = 1.5U_{eq}(C)$ for methyl group and $U_{eq}(H) = 1.2U_{eq}(C)$ for others.

Figure 1

The molecular structure of title compound

1-(4-Methylphenylsulfonyl)-5-phenyl-4,5-dihydro-1*H*-pyrazole

Crystal data

C₁₆H₁₆N₂O₂S $M_r = 300.37$ Orthorhombic, $Pca2_1$ Hall symbol: P 2c -2ac a = 19.2938 (7) Å b = 6.0438 (2) Å c = 12.9812 (5) Å V = 1513.71 (10) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibur Atlas Gemini ultra	5286 measured reflections
diffractometer	2168 independent reflections
Radiation source: fine-focus sealed tube	1870 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.028$
Detector resolution: 10.3592 pixels mm ⁻¹	$\theta_{\text{max}} = 25.4^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
ω scans	$h = -17 \rightarrow 23$
Absorption correction: multi-scan	$k = -6 \rightarrow 7$
(CrysAlis PRO; Oxford Diffraction, 2010)	$l = -15 \rightarrow 10$
$T_{\min} = 0.933, T_{\max} = 0.947$	

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.034$	H-atom parameters constrained
$wR(F^2) = 0.081$	$w = 1/[\sigma^2(F_o^2) + (0.0441P)^2 + 0.0462P]$
S = 1.05	where $P = (F_o^2 + 2F_c^2)/3$
2168 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
191 parameters	$\Delta \rho_{\rm max} = 0.15 \text{ e} \text{ Å}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 711 Friedel pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: 0.00 (8)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 632

 $\theta = 3.1 - 29.4^{\circ}$

 $\mu = 0.22 \text{ mm}^{-1}$

Block, colorless

 $0.32 \times 0.28 \times 0.25 \text{ mm}$

T = 293 K

 $D_{\rm x} = 1.318 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2341 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.36119 (3)	0.55535 (9)	0.53950 (5)	0.0517 (2)	
01	0.37103 (10)	0.7881 (3)	0.5338 (2)	0.0737 (6)	
O2	0.34854 (11)	0.4301 (3)	0.44842 (16)	0.0680 (6)	

N1	0.29819 (12)	0.6172 (4)	0.7097 (2)	0.0680 (7)
N2	0.29200 (10)	0.5148 (3)	0.61190 (18)	0.0511 (6)
C1	0.43222 (13)	0.4394 (4)	0.6042 (2)	0.0452 (6)
C2	0.45625 (14)	0.2327 (4)	0.5752 (2)	0.0555 (7)
H2	0.4349	0.1557	0.5218	0.067*
C3	0.51202 (15)	0.1425 (4)	0.6261 (3)	0.0581 (7)
Н3	0.5285	0.0046	0.6058	0.070*
C4	0.54427 (13)	0.2507 (4)	0.7066 (2)	0.0547 (7)
C5	0.60491 (17)	0.1474 (5)	0.7611 (3)	0.0828 (10)
H5C	0.6114	0.2183	0.8266	0.124*
H5B	0.6459	0.1653	0.7201	0.124*
H5A	0.5961	-0.0073	0.7715	0.124*
C6	0.51950 (14)	0.4589 (4)	0.7345 (2)	0.0530 (7)
H6	0.5409	0.5358	0.7878	0.064*
C7	0.46389 (13)	0.5524 (4)	0.6845 (2)	0.0500 (7)
H7	0.4476	0.6908	0.7044	0.060*
C8	0.26877 (16)	0.4944 (7)	0.7745 (3)	0.0833 (11)
H8	0.2666	0.5317	0.8440	0.100*
C9	0.23803 (18)	0.2892 (6)	0.7349 (3)	0.0839 (11)
H9A	0.1878	0.2940	0.7383	0.101*
H9B	0.2545	0.1614	0.7729	0.101*
C10	0.26345 (13)	0.2845 (4)	0.6227 (2)	0.0523 (7)
H10	0.3006	0.1753	0.6148	0.063*
C11	0.20658 (11)	0.2411 (3)	0.5454 (2)	0.0428 (5)
C12	0.15381 (12)	0.3928 (4)	0.5298 (3)	0.0516 (6)
H12	0.1543	0.5262	0.5654	0.062*
C13	0.10086 (14)	0.3487 (5)	0.4626 (2)	0.0619 (8)
H13	0.0661	0.4530	0.4525	0.074*
C14	0.09883 (16)	0.1535 (5)	0.4104 (3)	0.0705 (9)
H14	0.0627	0.1240	0.3651	0.085*
C15	0.15027 (17)	0.0006 (5)	0.4250 (3)	0.0694 (9)
H15	0.1490	-0.1331	0.3895	0.083*
C16	0.20389 (14)	0.0445 (4)	0.4922 (2)	0.0576 (7)
H16	0.2387	-0.0601	0.5017	0.069*

monne aspracement parameters (m	Atomic	displacement	parameters	$(Å^2)$
---------------------------------	--------	--------------	------------	---------

	- 11			- 10	- 12	
	U^{II}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
S1	0.0487 (4)	0.0551 (3)	0.0513 (4)	-0.0086 (3)	-0.0036 (4)	0.0102 (4)
01	0.0702 (12)	0.0549 (9)	0.0961 (16)	-0.0138 (8)	-0.0086 (14)	0.0230 (14)
02	0.0698 (14)	0.0891 (13)	0.0451 (12)	-0.0115 (10)	-0.0081 (10)	0.0042 (11)
N1	0.0476 (14)	0.0842 (16)	0.072 (2)	-0.0022 (12)	0.0035 (14)	-0.0205 (16)
N2	0.0439 (12)	0.0530 (10)	0.0564 (15)	-0.0063 (9)	-0.0051 (11)	0.0041 (11)
C1	0.0434 (14)	0.0462 (12)	0.0460 (16)	-0.0091 (10)	0.0061 (12)	-0.0001 (12)
C2	0.0560 (17)	0.0538 (13)	0.0567 (18)	-0.0112 (12)	0.0010 (14)	-0.0077 (14)
C3	0.0597 (17)	0.0482 (13)	0.0663 (19)	0.0048 (12)	0.0084 (16)	-0.0035 (15)
C4	0.0438 (15)	0.0616 (15)	0.0585 (18)	0.0016 (13)	0.0070 (14)	-0.0004 (16)
C5	0.068 (2)	0.091 (2)	0.089(3)	0.0186 (18)	-0.0106 (19)	-0.003(2)

C6	0.0498 (16)	0.0601 (15)	0.0491 (16)	-0.0071 (12)	-0.0003 (14)	-0.0072 (15)
C7	0.0482 (15)	0.0467 (12)	0.0551 (18)	-0.0020 (11)	0.0042 (13)	-0.0080 (13)
C8	0.051 (2)	0.143 (3)	0.056 (2)	-0.020 (2)	-0.0031 (17)	-0.010 (2)
C9	0.076 (2)	0.123 (3)	0.0524 (19)	-0.037 (2)	-0.0169 (18)	0.029 (2)
C10	0.0441 (14)	0.0538 (13)	0.0589 (18)	-0.0075 (11)	-0.0118 (15)	0.0135 (14)
C11	0.0375 (12)	0.0484 (11)	0.0424 (14)	-0.0041 (9)	0.0018 (14)	0.0101 (13)
C12	0.0450 (14)	0.0557 (12)	0.0540 (17)	0.0044 (10)	-0.0020 (16)	-0.0027 (15)
C13	0.0484 (16)	0.0702 (16)	0.067 (2)	0.0055 (14)	-0.0098 (16)	0.0054 (16)
C14	0.063 (2)	0.085 (2)	0.064 (2)	-0.0111 (16)	-0.0217 (16)	0.0068 (18)
C15	0.083 (2)	0.0592 (15)	0.066 (2)	-0.0050 (15)	-0.0100 (19)	-0.0082 (17)
C16	0.0557 (17)	0.0519 (14)	0.0653 (19)	0.0081 (12)	-0.0054 (15)	0.0044 (14)

Geometric parameters (Å, °)

S1—01	1.4213 (16)	С7—Н7	0.9300	-
S1—O2	1.425 (2)	C8—C9	1.468 (5)	
S1—N2	1.651 (2)	С8—Н8	0.9300	
S1—C1	1.754 (3)	C9—C10	1.537 (5)	
N1-C8	1.257 (4)	С9—Н9А	0.9700	
N1—N2	1.417 (3)	С9—Н9В	0.9700	
N2-C10	1.504 (3)	C10-C11	1.510 (4)	
C1—C2	1.385 (3)	C10—H10	0.9800	
C1—C7	1.387 (4)	C11—C16	1.375 (4)	
C2—C3	1.376 (4)	C11—C12	1.385 (3)	
С2—Н2	0.9300	C12—C13	1.370 (4)	
C3—C4	1.380 (4)	C12—H12	0.9300	
С3—Н3	0.9300	C13—C14	1.361 (4)	
C4—C6	1.394 (3)	C13—H13	0.9300	
C4—C5	1.503 (4)	C14—C15	1.369 (4)	
C5—H5C	0.9600	C14—H14	0.9300	
C5—H5B	0.9600	C15—C16	1.379 (4)	
C5—H5A	0.9600	C15—H15	0.9300	
С6—С7	1.376 (4)	C16—H16	0.9300	
С6—Н6	0.9300			
01—S1—O2	120.35 (16)	N1	116.5 (3)	
01—S1—N2	106.53 (13)	N1—C8—H8	121.7	
O2—S1—N2	104.77 (12)	С9—С8—Н8	121.7	
01—S1—C1	108.43 (12)	C8—C9—C10	102.6 (3)	
O2—S1—C1	108.62 (12)	С8—С9—Н9А	111.2	
N2—S1—C1	107.45 (11)	С10—С9—Н9А	111.2	
C8—N1—N2	107.7 (3)	С8—С9—Н9В	111.2	
N1-N2-C10	110.6 (2)	С10—С9—Н9В	111.2	
N1—N2—S1	112.15 (17)	H9A—C9—H9B	109.2	
C10—N2—S1	119.12 (17)	N2-C10-C11	111.4 (2)	
C2—C1—C7	120.1 (2)	N2-C10-C9	100.8 (2)	
C2-C1-S1	119.4 (2)	C11—C10—C9	113.7 (2)	
C7—C1—S1	120.48 (18)	N2-C10-H10	110.2	

C3—C2—C1	119.2 (3)	С11—С10—Н10	110.2
С3—С2—Н2	120.4	C9—C10—H10	110.2
С1—С2—Н2	120.4	C16—C11—C12	118.1 (2)
C2—C3—C4	121.9 (2)	C16—C11—C10	120.7 (2)
С2—С3—Н3	119.0	C12—C11—C10	121.1 (2)
С4—С3—Н3	119.0	C13—C12—C11	120.9 (2)
C3—C4—C6	118.0 (3)	C13—C12—H12	119.6
C3—C4—C5	120.7 (2)	C11—C12—H12	119.6
C6—C4—C5	121.3 (3)	C14—C13—C12	120.4 (3)
С4—С5—Н5С	109.5	C14—C13—H13	119.8
C4—C5—H5B	109.5	С12—С13—Н13	119.8
Н5С—С5—Н5В	109.5	C13—C14—C15	119.7 (3)
С4—С5—Н5А	109.5	C13—C14—H14	120.1
Н5С—С5—Н5А	109.5	C15—C14—H14	120.1
H5B—C5—H5A	109.5	C14—C15—C16	120.1 (3)
C7—C6—C4	121.0 (3)	C14—C15—H15	120.0
С7—С6—Н6	119.5	C16—C15—H15	120.0
С4—С6—Н6	119.5	C11—C16—C15	120.8 (3)
C6—C7—C1	119.7 (2)	C11—C16—H16	119.6
С6—С7—Н7	120.1	C15—C16—H16	119.6
С1—С7—Н7	120.1		