organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,2-Bis[5-(9-ethyl-9*H*-carbazol-3-yl)-2methylthiophen-3-yl]-3,3,4,4,5,5-hexafluorocyclopentene

Koji Kubono,^a* Teruo Synmyouzu,^b Kenta Goto,^b Tsuyoshi Tsujioka^a and Keita Tani^a

^aDivision of Natural Sciences, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan, and ^bInstitute for Materials Chemistry and Engineering, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan Correspondence e-mail: kubono@cc.osaka-kyoiku.ac.jp

Received 6 July 2011; accepted 21 July 2011

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.003 Å; R factor = 0.049; wR factor = 0.139; data-to-parameter ratio = 13.3.

The title compound, $C_{43}H_{32}F_6N_2S_2$, is a new symmetrical photochromic diarylethene derivative with 9-ethylcarbazol-3yl substituents. The molecule adopts a photoactive antiparallel conformation [Irie (2000). *Chem. Rev.* **100**, 1685–1716; Kobatake *et al.* (2002). *Chem. Commun.* pp. 2804–2805], with a dihedral angle between the mean planes of the two thiophene rings of 56.23 (6)°. The distance between the two reactive C atoms is 3.497 (3) Å. In the crystal, two molecules are associated through a pair of C–H···F intermolecular hydrogen bonds, forming a centrosymmetric dimer. Dimers are linked by weak π - π interactions [centroid–centroid distance = 3.8872 (13) Å], forming chains along the *c* axis.

Related literature

For a review of diarylethenes, see: Irie (2000). For related structures, see: Irie *et al.* (1995, 2001); Kobatake *et al.* (2002); Takami & Irie *et al.* (2004). For a review of carbazole, see: Grigalevicius (2006). For hydrogen-bond motifs, see: Bernstein *et al.* (1995).

Experimental

Crystal data	
$C_{43}H_{32}F_6N_2S_2$	a = 14.6687 (7)
$M_r = 754.85$	b = 17.0977 (8)
Monoclinic, $P2_1/c$	c = 14.0017 (7)

$\beta = 95.798 \ (3)^{\circ}$
V = 3493.7 (3) Å ³
Z = 4
Cu Ka radiation

Data collection

Rigaku R-AXIS RAPID
diffractometer
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\min} = 0.687, \ T_{\max} = 0.806$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ 479 parameters $wR(F^2) = 0.139$ H-atom parameters constrainedS = 1.00 $\Delta \rho_{max} = 0.90$ e Å⁻³6393 reflections $\Delta \rho_{min} = -0.50$ e Å⁻³

 $\mu = 1.97 \text{ mm}^{-1}$ T = 123 K

 $R_{\rm int} = 0.045$

 $0.34 \times 0.18 \times 0.11 \text{ mm}$

40777 measured reflections

6393 independent reflections 5482 reflections with $F^2 > 2\sigma(F^2)$

Table 1		
Hydrogen-bond geometry	(Å, °	°).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$		
$C26-H26\cdots F2^i$	0.95	2.44	3.290 (2)	149 (1)		
Symmetry code: (i) $-x + 1, -y + 2, -z + 1.$						

Data collection: *PROCESS-AUTO* (Rigaku, 2006); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2006); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *CrystalStructure*.

This work was supported by a Grant-in-Aid for Science Research on Priority Area "New Frontiers in Photochromism (No. 471)" and Science Research(C) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, and was performed under the Cooperative Research Program of "Network Joint Research Center for Materials and Devices".

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2188).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Grigalevicius, S. (2006). Synth. Met. 156, 1-12.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Irie, M. (2000). Chem. Rev. 100, 1685-1716.
- Irie, M., Kobatake, S. & Horiuchi, M. (2001). Science, 291, 1769-1772.
- Irie, M., Sakemura, K., Okinaka, M. & Uchida, K. (1995). J. Org. Chem. 60, 8305–8309.
- Kobatake, S., Uchida, K., Tsuchida, E. & Irie, M. (2002). Chem. Commun. pp. 2804–2805.
- Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Takami, S. & Irie, M. (2004). Tetrahedron, 60, 6155-6161.

supporting information

Acta Cryst. (2011). E67, o2194 [doi:10.1107/S1600536811029539]

1,2-Bis[5-(9-ethyl-9*H*-carbazol-3-yl)-2-methylthiophen-3-yl]-3,3,4,4,5,5-hexa-fluorocyclopentene

Koji Kubono, Teruo Synmyouzu, Kenta Goto, Tsuyoshi Tsujioka and Keita Tani

S1. Comment

Diarylethenes are well known photochromic compounds both in solution and in solid state (Irie, 2000), and have attracted much attention because of their potential application to optical memory, photoswitches (Irie, *et al.* 2001), and display devices (Takami & Irie, 2004). It was reported that diarylethenes can undergo a photochemical ring-closure reaction in the crystalline phase when the ring-opening forms are in the anti-parallel conformation and where the distance between two reactive C atoms is shorter than 4.2 Å (Irie, *et al.* 1995; Kobatake, *et al.* 2002). Therefore, X-ray analysis of diaryl-ethenes will give valuable information for their photochromism in solid state. We have prepared the title compound, (I), a symmetrical diarylethene derivative containing carbazole moiety as hole transport material (Grigalevicius, 2006) to study not only its photochromism but also its electrical properties. In this paper, the molecular and crystal structure of (I) is presented.

In the molecular structure of (I), the thiophene rings are located in a photoactive anti-parallel conformation which can effectively undergo photocyclization reactions; with the dihedral angle between the mean planes of two thiophene rings, S1/C6–C9 and S2/C26–C28, of 56.23 (6) ° (Fig. 1). The dihedral angles between the thiophene rings and adjacent carbazole moieties are 23.49 (5) ° for S1/C6–C9 and N1/C11–C22, and 23.19 (5) ° for S2/C26–C28 and N2/C30–C41. The distance between two reactive C atoms in ring-closure reaction, C7···C28, is 3.497 (3) Å. This distance is shorter than 4.2 Å, suggesting that (I) can undergo the ring-closure reaction and photochromism in the crystalline phase by UV irradiation.

In the crystal structure of (I), there are intermolecular C—H···F hydrogen bonds (Fig. 2 and Table 1). Two molecules are associated through a pair of C—H···F intermolecular hydrogen bonds, forming a centrosymmetric dimer with a $R_2^2(14)$ ring motif (Bernstein *et al.*, 1995). In the crystal, intermolecular C···C distances between carbazole moieties for C30···C36ⁱⁱ and C34···C34ⁱⁱ [symmetry code: (ii) 1 - *x*, 2 - *y*, 2 - *z*] are 3.657 (3) and 3.659 (3) Å, respectively. Dimers are linked by weak π - π interactions between carbazole moieties to give one-dimensional supramolecular chains propagating along the *c* axis.

S2. Experimental

The title compound, (I), was prepared by the treatment of 3-bromo-5-(9-ethylcarbazolyl)-2-methylthiophene with butyl lithium, then with octafluorocyclopentene. The product was recrystallized from benzene-hexane to give plate crystals, m.p. 458–460 K; ¹H NMR (CDCl₃, p.p.m. 400 MHz): 1.45 (t, J = 7.2 Hz, 6H, Et), 2.05 (s, 6H, CH₃), 4.38 (q, J = 7.2 Hz, 4H, Et), 7.20–7.24 (m, 2H, carbazole), 7.32 (s, 2H, thiophene). 7.39–7.43 (m, 2H, carbazole), 7.47–7.52 (m, 2H, carbazole), 7.67 (dd, J = 7.8 Hz, J' = 1.6 Hz, 2H, carbazole), 8.11 (d, J = 7.8 Hz, 2H, carbazole), 8.25 (d, J = 1.6 Hz, 2H, carbazole); HRMS(FAB): calculated for C₄₃H₃₂F₆N₂S₂: 754.1911, found(M^+): 754.1908.

S3. Refinement

All H atoms bound to C atoms were placed at idealized positions and refined as a riding atoms, with C—H = 0.93-0.97Å and $U_{iso}(H) = 1.2 U_{eq}(C) [1.5U_{eq}(C) \text{ for methyl H atoms}]$. Structure was refined with unique reflections and with a cut-off sigma = 2.00.

Figure 1

The molecular structure of (I) with the atom-labelling scheme and displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.

Figure 2

A packing diagram of (I), viewed down the b axis. The C—H…F hydrogen bonds are shown as dashed lines.

1,2-Bis[5-(9-ethyl-9H-carbazol-3-yl)-2-methylthiophen-3-yl]- 3,3,4,4,5,5-hexafluorocyclopentene

Crystal data	
$C_{43}H_{32}F_6N_2S_2$	$V = 3493.7 (3) \text{ Å}^3$
$M_r = 754.85$	Z = 4
Monoclinic, $P2_1/c$	F(000) = 1560.00
Hall symbol: -P 2ybc	$D_{\rm x} = 1.435 {\rm ~Mg} {\rm ~m}^{-3}$
a = 14.6687 (7) Å	Cu K α radiation, $\lambda = 1.54187$ Å
b = 17.0977 (8) Å	Cell parameters from 36134 reflections
c = 14.0017 (7) Å	$\theta = 3.0-68.3^{\circ}$
$\beta = 95.798 \ (3)^{\circ}$	$\mu = 1.97 \text{ mm}^{-1}$

T = 123 KPlate, blue

Data collection

Dura concerión	
Rigaku R-AXIS RAPID diffractometer Detector resolution: 5.00 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995) $T_{\min} = 0.687, T_{\max} = 0.806$ 40777 measured reflections	6393 independent reflections 5482 reflections with $F^2 > 2\sigma(F^2)$ $R_{int} = 0.045$ $\theta_{max} = 68.3^{\circ}$ $h = -17 \rightarrow 17$ $k = -20 \rightarrow 20$ $l = -16 \rightarrow 16$
Refinement Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.139$ S = 1.00 6393 reflections 479 parameters	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0796P)^2 + 3.7293P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.90$ e Å ⁻³ $\Delta\rho_{min} = -0.50$ e Å ⁻³
Special details	

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are

 $0.34 \times 0.18 \times 0.11 \text{ mm}$

based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.22266 (5)	0.77807 (4)	0.34058 (5)	0.03204 (16)
S2	0.20529 (4)	0.90769 (4)	0.72247 (4)	0.02856 (16)
F1	0.28611 (10)	1.07557 (9)	0.27753 (10)	0.0337 (3)
F2	0.42244 (10)	1.03335 (9)	0.32305 (11)	0.0381 (3)
F3	0.28436 (11)	1.17289 (9)	0.41361 (11)	0.0392 (3)
F4	0.43102 (11)	1.17032 (10)	0.40307 (11)	0.0428 (4)
F5	0.33901 (11)	1.13896 (8)	0.58847 (10)	0.0342 (3)
F6	0.46135 (10)	1.07923 (9)	0.55108 (10)	0.0326 (3)
N1	-0.06405 (14)	0.78041 (12)	-0.06739 (15)	0.0268 (4)
N2	0.50050 (14)	0.87561 (12)	1.12292 (14)	0.0252 (4)
C1	0.30629 (15)	0.99316 (13)	0.41816 (16)	0.0217 (4)
C2	0.34231 (16)	1.05578 (14)	0.35643 (17)	0.0243 (4)
C3	0.35960 (17)	1.12687 (14)	0.42239 (17)	0.0263 (5)
C4	0.37050 (16)	1.09033 (14)	0.52264 (17)	0.0243 (5)
C5	0.31915 (15)	1.01445 (13)	0.51163 (16)	0.0214 (4)
C6	0.26821 (16)	0.92071 (14)	0.37434 (17)	0.0236 (4)
C7	0.28281 (17)	0.84660 (14)	0.41198 (18)	0.0281 (5)
C8	0.17827 (16)	0.84749 (14)	0.25868 (17)	0.0260 (5)
C9	0.21055 (16)	0.91970 (14)	0.28574 (17)	0.0241 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C10	0.34286 (19)	0.81983 (15)	0.49802 (19)	0.0335 (5)
C11	0.11541 (16)	0.82652 (14)	0.17425 (17)	0.0249 (5)
C12	0.06121 (16)	0.75866 (14)	0.17428 (17)	0.0268 (5)
C13	-0.00007 (16)	0.73789 (14)	0.09707 (18)	0.0274 (5)
C14	-0.00796 (16)	0.78690 (14)	0.01743 (18)	0.0254 (5)
C15	0.04468 (16)	0.85586 (14)	0.01595 (17)	0.0236 (4)
C16	0.10621 (16)	0.87512 (14)	0.09387(17)	0.0246 (5)
C17	-0.04857(16)	0.84348 (14)	-0.12509(17)	0.0262 (5)
C18	0.01812 (16)	0.89281 (14)	-0.07567(17)	0.0254(5)
C19	0.04274(17)	0.09201(11) 0.96190(15)	-0.11862(18)	0.0291(5)
C20	0.00271(19)	0.97990 (16)	-0.20982(19)	0.0290(5) 0.0341(5)
C21	-0.06116(18)	0.02065 (16)	-0.25817(19)	0.0341(5)
C21	-0.08871(18)	0.92903(10)	-0.21681(19)	0.0339(0)
C22	-0.08871(18) -0.12082(18)	0.30108(10) 0.71826(16)	-0.21081(18) -0.0010(2)	0.0321(3)
C23	-0.13082(18)	0.71050(10)	-0.0910(2)	0.0331(3)
C24	-0.0899(2)	0.04855(10)	-0.1303(2)	0.0391(0)
C25	0.29322 (16)	0.97565 (13)	0.59806 (16)	0.0217 (4)
C26	0.35396 (16)	0.96925 (13)	0.68333 (16)	0.0233 (4)
C27	0.31788 (16)	0.93281 (13)	0.75725 (17)	0.0229 (4)
C28	0.20/81 (16)	0.94502 (14)	0.60858 (17)	0.0261 (5)
C29	0.12464 (17)	0.94189 (17)	0.53832 (18)	0.0318 (5)
C30	0.36117 (16)	0.91630 (13)	0.85442 (17)	0.0234 (4)
C31	0.30891 (17)	0.90623 (14)	0.93247 (17)	0.0255 (5)
C32	0.34847 (17)	0.89227 (14)	1.02435 (17)	0.0254 (5)
C33	0.44370 (17)	0.88832 (13)	1.03932 (16)	0.0232 (4)
C34	0.49780 (16)	0.89756 (13)	0.96205 (16)	0.0228 (4)
C35	0.45622 (17)	0.91139 (13)	0.87016 (17)	0.0237 (4)
C36	0.59047 (17)	0.87628 (13)	1.10144 (17)	0.0254 (5)
C37	0.59257 (16)	0.88950 (13)	1.00191 (17)	0.0238 (4)
C38	0.67583 (17)	0.89345 (15)	0.96312 (18)	0.0285 (5)
C39	0.75581 (17)	0.88401 (15)	1.02312 (19)	0.0315 (5)
C40	0.75293 (18)	0.87091 (16)	1.12114 (19)	0.0341 (5)
C41	0.67171 (18)	0.86625 (15)	1.16179 (18)	0.0305 (5)
C42	0.47018 (19)	0.86212 (15)	1.21760 (17)	0.0290 (5)
C43	0.4644 (2)	0.77700 (17)	1.2437 (2)	0.0450 (7)
Н9	0.1960	0.9655	0.2489	0.029*
H10A	0.3375	0.7630	0.5046	0.040*
H10B	0.3240	0.8454	0.5555	0.040*
H10C	0.4066	0.8335	0.4906	0.040*
H12	0.0670	0.7259	0 2294	0.032*
H13	-0.0357	0.6916	0.0983	0.033*
H16	0 1421	0.9213	0.0926	0.030*
H19	0.0863	0.9962	-0.0860	0.036*
H20	0.0189	1 0270	-0 2398	0.041*
H21	-0.0863	0.9427	-0.3214	0.041*
H22	-0 1334	0.2727	-0.2496	0.030*
1122 ЦЭЗ Л	-0.1817	0.0203	-0 1356	0.039
1123A U22D	-0.1567	0.7375	-0.0317	0.040*
11230	0.1307	0.7013	0.0317	0.040
П24A	-0.13/4	0.0000	-0.1311	0.04/**

H24B	-0.0405	0.6268	-0.0921	0.047*
H24C	-0.0653	0.6647	-0.1960	0.047*
H26	0.4149	0.9888	0.6884	0.028*
H29A	0.0748	0.9162	0.5679	0.038*
H29B	0.1383	0.9123	0.4815	0.038*
H29C	0.1061	0.9952	0.5193	0.038*
H31	0.2440	0.9092	0.9214	0.031*
H32	0.3119	0.8855	1.0760	0.030*
H35	0.4925	0.9175	0.8182	0.028*
H38	0.6778	0.9025	0.8964	0.034*
H39	0.8133	0.8865	0.9974	0.038*
H40	0.8089	0.8650	1.1610	0.041*
H41	0.6707	0.8566	1.2285	0.037*
H42A	0.4091	0.8862	1.2198	0.035*
H42B	0.5132	0.8886	1.2663	0.035*
H43A	0.4440	0.7722	1.3079	0.054*
H43B	0.5249	0.7528	1.2431	0.054*
H43C	0.4206	0.7506	1.1970	0.054*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0406 (3)	0.0251 (3)	0.0276 (3)	-0.0005 (2)	-0.0101 (2)	-0.0004 (2)
S2	0.0251 (3)	0.0382 (3)	0.0217 (3)	-0.0050(2)	-0.0011 (2)	0.0071 (2)
F1	0.0398 (8)	0.0397 (8)	0.0191 (7)	-0.0037 (6)	-0.0086 (6)	0.0084 (6)
F2	0.0342 (8)	0.0433 (8)	0.0394 (9)	0.0045 (6)	0.0168 (7)	0.0049 (6)
F3	0.0533 (9)	0.0322 (8)	0.0310 (8)	0.0156 (7)	-0.0006 (7)	0.0054 (6)
F4	0.0499 (9)	0.0477 (9)	0.0298 (8)	-0.0243 (7)	-0.0007 (7)	0.0087 (6)
F5	0.0527 (9)	0.0269 (7)	0.0232 (7)	-0.0022 (6)	0.0045 (6)	-0.0030 (5)
F6	0.0269 (7)	0.0406 (8)	0.0281 (7)	-0.0080 (6)	-0.0077 (6)	0.0069 (6)
N1	0.0246 (10)	0.0311 (10)	0.0234 (10)	-0.0023 (8)	-0.0044 (8)	-0.0039 (8)
N2	0.0310 (10)	0.0295 (10)	0.0144 (9)	0.0024 (8)	-0.0012 (8)	0.0004 (7)
C1	0.0197 (10)	0.0258 (11)	0.0189 (11)	0.0023 (8)	-0.0020 (8)	0.0019 (9)
C2	0.0209 (11)	0.0331 (12)	0.0183 (11)	0.0031 (9)	-0.0010 (9)	0.0026 (9)
C3	0.0283 (12)	0.0272 (12)	0.0229 (12)	-0.0027 (9)	-0.0004 (9)	0.0062 (9)
C4	0.0251 (11)	0.0289 (12)	0.0177 (11)	-0.0002 (9)	-0.0027 (9)	-0.0001 (9)
C5	0.0196 (10)	0.0249 (11)	0.0189 (11)	0.0020 (8)	-0.0019 (8)	0.0022 (8)
C6	0.0245 (11)	0.0272 (11)	0.0185 (11)	0.0015 (9)	-0.0013 (9)	0.0004 (9)
C7	0.0322 (13)	0.0266 (12)	0.0239 (12)	0.0009 (9)	-0.0054 (10)	-0.0012 (9)
C8	0.0258 (11)	0.0295 (12)	0.0218 (12)	0.0016 (9)	-0.0026 (9)	0.0010 (9)
C9	0.0269 (12)	0.0267 (11)	0.0180 (11)	0.0015 (9)	-0.0011 (9)	0.0003 (9)
C10	0.0382 (14)	0.0282 (12)	0.0312 (14)	0.0046 (10)	-0.0108 (11)	-0.0018 (10)
C11	0.0234 (11)	0.0282 (12)	0.0224 (12)	0.0017 (9)	-0.0014 (9)	-0.0013 (9)
C12	0.0291 (12)	0.0281 (12)	0.0225 (12)	0.0006 (9)	-0.0002 (10)	0.0017 (9)
C13	0.0270 (12)	0.0280 (12)	0.0270 (13)	-0.0037 (9)	0.0011 (10)	-0.0016 (9)
C14	0.0228 (11)	0.0280 (12)	0.0251 (12)	0.0006 (9)	0.0007 (9)	-0.0053 (9)
C15	0.0229 (11)	0.0260 (11)	0.0221 (12)	0.0001 (8)	0.0031 (9)	-0.0018 (9)
C16	0.0237 (11)	0.0248 (11)	0.0250 (12)	-0.0013 (9)	0.0002 (9)	-0.0017 (9)

C17	0.0251 (11)	0.0294 (12)	0.0240 (12)	0.0044 (9)	0.0010 (9)	-0.0041 (9)
C18	0.0249 (11)	0.0293 (12)	0.0219 (12)	0.0037 (9)	0.0026 (9)	-0.0016 (9)
C19	0.0300 (12)	0.0308 (12)	0.0282 (13)	0.0006 (10)	0.0032 (10)	-0.0015 (10)
C20	0.0386 (14)	0.0347 (13)	0.0290 (14)	0.0076 (11)	0.0040 (11)	0.0061 (10)
C21	0.0364 (14)	0.0424 (14)	0.0221 (13)	0.0139 (11)	-0.0007 (11)	0.0024 (11)
C22	0.0291 (12)	0.0405 (14)	0.0255 (13)	0.0076 (10)	-0.0032 (10)	-0.0055 (11)
C23	0.0278 (12)	0.0384 (14)	0.0317 (14)	-0.0070 (10)	-0.0043 (10)	-0.0019 (11)
C24	0.0435 (16)	0.0335 (14)	0.0381 (16)	-0.0071 (11)	-0.0072 (12)	-0.0054 (11)
C25	0.0240 (11)	0.0217 (10)	0.0184 (11)	0.0009 (8)	-0.0028 (9)	0.0007 (8)
C26	0.0247 (11)	0.0261 (11)	0.0182 (11)	-0.0027 (9)	-0.0024 (9)	0.0007 (9)
C27	0.0240 (11)	0.0229 (11)	0.0214 (11)	-0.0013 (8)	-0.0000 (9)	0.0011 (9)
C28	0.0261 (12)	0.0300 (12)	0.0212 (12)	-0.0021 (9)	-0.0017 (9)	0.0025 (9)
C29	0.0244 (12)	0.0454 (15)	0.0245 (13)	-0.0013 (10)	-0.0038 (10)	0.0073 (11)
C30	0.0273 (12)	0.0228 (11)	0.0192 (11)	-0.0004 (9)	-0.0014 (9)	0.0011 (8)
C31	0.0255 (12)	0.0268 (12)	0.0238 (12)	0.0008 (9)	0.0006 (9)	0.0018 (9)
C32	0.0292 (12)	0.0271 (11)	0.0202 (12)	0.0004 (9)	0.0041 (9)	0.0028 (9)
C33	0.0310 (12)	0.0216 (11)	0.0167 (11)	-0.0001 (9)	0.0010 (9)	-0.0002 (8)
C34	0.0275 (12)	0.0225 (10)	0.0179 (11)	0.0001 (8)	-0.0009 (9)	0.0004 (8)
C35	0.0279 (12)	0.0251 (11)	0.0181 (11)	-0.0015 (9)	0.0017 (9)	0.0006 (9)
C36	0.0317 (12)	0.0229 (11)	0.0210 (12)	0.0023 (9)	-0.0004 (10)	-0.0017 (9)
C37	0.0273 (12)	0.0233 (11)	0.0199 (11)	0.0014 (9)	-0.0025 (9)	-0.0012 (9)
C38	0.0322 (13)	0.0329 (12)	0.0198 (12)	0.0025 (10)	-0.0008 (10)	-0.0008 (10)
C39	0.0264 (12)	0.0365 (13)	0.0309 (14)	0.0039 (10)	-0.0008 (10)	-0.0051 (10)
C40	0.0324 (13)	0.0362 (14)	0.0311 (14)	0.0075 (10)	-0.0089 (11)	-0.0053 (11)
C41	0.0361 (13)	0.0337 (13)	0.0195 (12)	0.0049 (10)	-0.0075 (10)	-0.0026 (10)
C42	0.0388 (14)	0.0341 (13)	0.0141 (11)	0.0055 (10)	0.0023 (10)	-0.0026 (9)
C43	0.069 (2)	0.0389 (15)	0.0292 (14)	-0.0049 (14)	0.0183 (14)	0.0001 (11)

Geometric parameters (Å, °)

S1—C7	1.724 (2)	C30—C31	1.407 (3)
S1—C8	1.731 (2)	C30—C35	1.392 (3)
S2—C27	1.728 (2)	C31—C32	1.378 (3)
S2—C28	1.722 (2)	C32—C33	1.393 (3)
F1—C2	1.353 (2)	C33—C34	1.414 (3)
F2—C2	1.363 (2)	C34—C35	1.387 (3)
F3—C3	1.351 (2)	C34—C37	1.451 (3)
F4—C3	1.334 (3)	C36—C37	1.415 (3)
F5—C4	1.357 (2)	C36—C41	1.400 (3)
F6—C4	1.365 (2)	C37—C38	1.388 (3)
N1-C14	1.379 (3)	C38—C39	1.382 (3)
N1—C17	1.380 (3)	C39—C40	1.395 (3)
N1—C23	1.459 (3)	C40—C41	1.374 (3)
N2—C33	1.384 (2)	C42—C43	1.505 (3)
N2—C36	1.383 (3)	С9—Н9	0.950
N2-C42	1.459 (3)	C10—H10A	0.980
C1—C2	1.505 (3)	C10—H10B	0.980
C1—C5	1.353 (3)	C10—H10C	0.980

C1—C6	1.468 (3)	C12—H12	0.950
C2—C3	1.532 (3)	C13—H13	0.950
C3—C4	1.530 (3)	C16—H16	0.950
C4—C5	1.500 (3)	C19—H19	0.950
C5—C25	1.464 (3)	C20—H20	0.950
С6—С7	1.381 (3)	C21—H21	0.950
С6—С9	1.429 (3)	C22—H22	0.950
C7—C10	1.491 (3)	C23—H23A	0.990
C8—C9	1 362 (3)	C23—H23B	0.990
C8-C11	1.562(3) 1 468(3)	C24—H24A	0.980
C11-C12	1.100(3) 1.407(3)	C24—H24B	0.980
	1.407(3) 1 305(3)	C_{24} H24C	0.980
C_{12} C_{13}	1.393(3)	$C_{24} = H_{24}C$	0.980
C12 - C13	1.301(3)	C20—H20 C20—H20A	0.930
C13 - C14	1.390(3)	C29—H29A C20_H20B	0.980
	1.411 (3)	C29—H29B	0.980
	1.384 (3)	C29—H29C	0.980
C15—C18	1.448 (3)	C31—H31	0.950
C17—C18	1.418 (3)	C32—H32	0.950
C17—C22	1.393 (3)	C35—H35	0.950
C18—C19	1.390 (3)	C38—H38	0.950
C19—C20	1.385 (3)	С39—Н39	0.950
C20—C21	1.395 (3)	C40—H40	0.950
C21—C22	1.377 (3)	C41—H41	0.950
C23—C24	1.506 (3)	C42—H42A	0.990
C25—C26	1.420 (3)	C42—H42B	0.990
C25—C28	1.379 (3)	C43—H43A	0.980
C26—C27	1.360 (3)	C43—H43B	0.980
C27—C30	1.470 (3)	C43—H43C	0.980
C28—C29	1.489 (3)		
C7—S1—C8	93.12 (11)	C32—C33—C34	120.7 (2)
C27—S2—C28	93.41 (11)	C33—C34—C35	120.0 (2)
C14—N1—C17	108.79 (19)	C33—C34—C37	106.56 (19)
C14—N1—C23	125.6 (2)	C35—C34—C37	133.4 (2)
C17—N1—C23	125.6 (2)	C30—C35—C34	119.8 (2)
C33—N2—C36	108.73 (19)	N2—C36—C37	109.37 (19)
C_{33} N2 C_{42}	125 5 (2)	$N_2 - C_3 - C_4 I$	129.8 (2)
$C_{36} N_{2} C_{42}$	125.5(2) 125.75(19)	$C_{37} - C_{36} - C_{41}$	129.8(2) 120.8(2)
$C_{2}-C_{1}-C_{5}$	109.96 (19)	C_{34} C_{37} C_{36}	126.0(2) 106.2(2)
$C_2 - C_1 - C_6$	120.08 (19)	$C_{34} - C_{37} - C_{38}$	133.8(2)
$C_2 = C_1 = C_0$	120.00(1)) 120.0(2)	$C_{36} = C_{37} = C_{38}$	135.8(2) 120.1(2)
$E_{1} = C_{2} = E_{2}$	129.9(2) 105 41 (19)	$C_{30} = C_{30} = C_{30}$	120.1(2)
F1 = C2 = F2	105.41(10) $115.25(10)$	$C_{3} = C_{30} = C_{40}$	110.9(2)
F1 = C2 = C1	113.23(10) 110.11(10)	$C_{30} = C_{39} = C_{40}$	120.0(2)
F1 - C2 - C3	110.11(18)	$C_{39} - C_{40} - C_{41}$	122.0(2)
$\Gamma_2 - C_2 - C_1$	111.20 (18)	C_{30} C_{41} C_{40}	117.6 (2)
$F_2 - C_2 - C_3$	109.51 (18)	N2 - C42 - C43	113.8 (2)
C1 - C2 - C3	105.34 (19)	C6—C9—H9	122.9
F3—C3—F4	107.96 (19)	C8—C9—H9	122.9

F3—C3—C2	108.86 (18)	C7—C10—H10A	109.5
F3—C3—C4	109.3 (2)	C7—C10—H10B	109.5
F4—C3—C2	113.9 (2)	C7—C10—H10C	109.5
F4—C3—C4	113.70 (19)	H10A-C10-H10B	109.5
C2—C3—C4	102.98 (18)	H10A-C10-H10C	109.5
F5—C4—F6	106.05 (17)	H10B-C10-H10C	109.5
F5—C4—C3	111.22 (18)	C11—C12—H12	118.8
F5—C4—C5	113.45 (19)	C13—C12—H12	118.8
F6—C4—C3	109.44 (19)	С12—С13—Н13	121.1
F6—C4—C5	112.02 (18)	C14—C13—H13	121.0
C3—C4—C5	104.71 (18)	C11—C16—H16	120.1
C1—C5—C4	110.6 (2)	C15—C16—H16	120.1
C1—C5—C25	130.9 (2)	С18—С19—Н19	120.6
C4—C5—C25	118.47 (19)	С20—С19—Н19	120.5
C1—C6—C7	125.3 (2)	C19—C20—H20	119.6
C1—C6—C9	122.7 (2)	C21—C20—H20	119.6
С7—С6—С9	112.1 (2)	C20—C21—H21	119.1
S1—C7—C6	110.60 (17)	C22—C21—H21	119.1
S1—C7—C10	119.07 (17)	С17—С22—Н22	121.3
C6—C7—C10	130.3 (2)	C21—C22—H22	121.3
S1—C8—C9	109.89 (17)	N1—C23—H23A	109.1
S1—C8—C11	121.97 (17)	N1—C23—H23B	109.1
C9—C8—C11	128.1 (2)	C24—C23—H23A	109.1
C6—C9—C8	114.3 (2)	С24—С23—Н23В	109.1
C8—C11—C12	120.7 (2)	H23A—C23—H23B	107.8
C8—C11—C16	120.4 (2)	C23—C24—H24A	109.5
C12—C11—C16	118.9 (2)	C23—C24—H24B	109.5
C11—C12—C13	122.4 (2)	C23—C24—H24C	109.5
C12—C13—C14	117.9 (2)	H24A—C24—H24B	109.5
N1—C14—C13	129.5 (2)	H24A—C24—H24C	109.5
N1-C14-C15	109.5 (2)	H24B—C24—H24C	109.5
C13—C14—C15	120.9 (2)	С25—С26—Н26	122.7
C14—C15—C16	120.1 (2)	С27—С26—Н26	122.7
C14—C15—C18	106.20 (19)	С28—С29—Н29А	109.5
C16—C15—C18	133.7 (2)	С28—С29—Н29В	109.5
C11—C16—C15	119.8 (2)	С28—С29—Н29С	109.5
N1-C17-C18	108.99 (19)	H29A—C29—H29B	109.5
N1—C17—C22	129.4 (2)	H29A—C29—H29C	109.5
C18—C17—C22	121.6 (2)	H29B—C29—H29C	109.5
C15—C18—C17	106.5 (2)	С30—С31—Н31	118.8
C15—C18—C19	134.1 (2)	С32—С31—Н31	118.8
C17—C18—C19	119.4 (2)	С31—С32—Н32	121.0
C18—C19—C20	118.9 (2)	С33—С32—Н32	121.0
C19—C20—C21	120.8 (2)	С30—С35—Н35	120.1
C20—C21—C22	121.8 (2)	С34—С35—Н35	120.1
C17—C22—C21	117.5 (2)	С37—С38—Н38	120.6
N1—C23—C24	112.7 (2)	С39—С38—Н38	120.6
C5—C25—C26	122.5 (2)	С38—С39—Н39	119.7

C5—C25—C28	125.1 (2)	С40—С39—Н39	119.7
C26—C25—C28	112.4 (2)	C39—C40—H40	119.0
C25—C26—C27	114.6 (2)	C41—C40—H40	119.0
S2—C27—C26	109.49 (16)	C36—C41—H41	121.2
S2—C27—C30	121.63 (18)	C40—C41—H41	121.2
C26—C27—C30	128.9 (2)	N2—C42—H42A	108.8
S2—C28—C25	110.14 (16)	N2—C42—H42B	108.8
S2—C28—C29	120.39 (18)	C43—C42—H42A	108.8
C25—C28—C29	129.5 (2)	C43—C42—H42B	108.8
C27—C30—C31	121.6 (2)	H42A—C42—H42B	107.7
C27—C30—C35	119.4 (2)	C42—C43—H43A	109.5
C31—C30—C35	119.0 (2)	C42—C43—H43B	109.5
C30—C31—C32	122.4 (2)	C42—C43—H43C	109.5
C31—C32—C33	118.1 (2)	H43A—C43—H43B	109.5
N2—C33—C32	130.1 (2)	H43A—C43—H43C	109.5
N2-C33-C34	109.2 (2)	H43B—C43—H43C	109.5
	10)12 (2)		10,10
C7—S1—C8—C9	1.0(2)	C9—C6—C7—C10	175.1 (2)
C7—S1—C8—C11	-179.0(2)	S1-C8-C9-C6	-2.4(2)
C8—S1—C7—C6	0.7 (2)	S1-C8-C11-C12	25.0 (3)
C8—S1—C7—C10	-176.9(2)	S1—C8—C11—C16	-157.19(19)
C27—S2—C28—C25	0.17 (19)	C9—C8—C11—C12	-155.0(2)
C27—S2—C28—C29	-179.2 (2)	C9—C8—C11—C16	22.8 (3)
C28—S2—C27—C26	0.76 (18)	C11—C8—C9—C6	177.6 (2)
C28—S2—C27—C30	179.51 (19)	C8-C11-C12-C13	178.6 (2)
C14—N1—C17—C18	-1.0 (2)	C8—C11—C16—C15	-178.0(2)
C14—N1—C17—C22	179.7 (2)	C12—C11—C16—C15	-0.2 (3)
C17—N1—C14—C13	179.4 (2)	C16—C11—C12—C13	0.8 (3)
C17—N1—C14—C15	0.6 (2)	C11—C12—C13—C14	-0.5 (3)
C14—N1—C23—C24	-88.1 (3)	C12—C13—C14—N1	-179.0(2)
C23—N1—C14—C13	1.2 (4)	C12—C13—C14—C15	-0.3 (3)
C23—N1—C14—C15	-177.6 (2)	N1—C14—C15—C16	179.8 (2)
C17—N1—C23—C24	93.9 (2)	N1—C14—C15—C18	0.0 (2)
C23—N1—C17—C18	177.2 (2)	C13—C14—C15—C16	0.9 (3)
C23—N1—C17—C22	-2.0(4)	C13—C14—C15—C18	-178.9 (2)
C33—N2—C36—C37	-0.1 (2)	C14—C15—C16—C11	-0.6 (3)
C33—N2—C36—C41	179.9 (2)	C14—C15—C18—C17	-0.7(2)
C36—N2—C33—C32	179.6 (2)	C14—C15—C18—C19	178.0 (2)
C36—N2—C33—C34	-0.1 (2)	C16—C15—C18—C17	179.6 (2)
C33—N2—C42—C43	96.1 (2)	C16—C15—C18—C19	-1.7 (5)
C42—N2—C33—C32	0.8 (3)	C18—C15—C16—C11	179.1 (2)
C42—N2—C33—C34	-178.9 (2)	N1—C17—C18—C15	1.0 (2)
C36—N2—C42—C43	-82.5 (3)	N1—C17—C18—C19	-177.9 (2)
C42—N2—C36—C37	178.7 (2)	N1—C17—C22—C21	179.2 (2)
C42—N2—C36—C41	-1.3 (3)	C18—C17—C22—C21	0.1 (2)
C2—C1—C5—C4	-3.9 (2)	C22—C17—C18—C15	-179.6 (2)
C2—C1—C5—C25	177.4 (2)	C22—C17—C18—C19	1.5 (3)
C5—C1—C2—F1	-134.0 (2)	C15—C18—C19—C20	-179.9 (2)

C5-C1-C2-F2	106.1 (2)	C17—C18—C19—C20	-1.4 (3)
C5—C1—C2—C3	-12.4 (2)	C18—C19—C20—C21	-0.1 (3)
C2-C1-C6-C7	138.9 (2)	C19—C20—C21—C22	1.7 (4)
C2-C1-C6-C9	-41.0 (3)	C20—C21—C22—C17	-1.6 (4)
C6—C1—C2—F1	48.5 (2)	C5—C25—C26—C27	178.7 (2)
C6—C1—C2—F2	-71.4 (2)	C5—C25—C28—S2	-177.96 (18)
C6—C1—C2—C3	170.05 (19)	C5—C25—C28—C29	1.4 (4)
C5-C1-C6-C7	-38.0 (4)	C26—C25—C28—S2	-1.0(2)
C5-C1-C6-C9	142.0 (2)	C26—C25—C28—C29	178.3 (2)
C6-C1-C5-C4	173.3 (2)	C28—C25—C26—C27	1.7 (2)
C6-C1-C5-C25	-5.4 (4)	C25—C26—C27—S2	-1.5 (2)
F1—C2—C3—F3	31.7 (2)	C25—C26—C27—C30	179.9 (2)
F1—C2—C3—F4	-88.8 (2)	S2—C27—C30—C31	-23.2 (3)
F1—C2—C3—C4	147.60 (19)	S2—C27—C30—C35	157.56 (18)
F2—C2—C3—F3	147.18 (18)	C26—C27—C30—C31	155.3 (2)
F2—C2—C3—F4	26.7 (2)	C26—C27—C30—C35	-23.9 (3)
F2—C2—C3—C4	-96.9 (2)	C27—C30—C31—C32	-178.7 (2)
C1—C2—C3—F3	-93.1 (2)	C27—C30—C35—C34	178.6 (2)
C1—C2—C3—F4	146.34 (19)	C31—C30—C35—C34	-0.7 (3)
C1—C2—C3—C4	22.7 (2)	C35—C30—C31—C32	0.5 (3)
F3—C3—C4—F5	-32.1 (2)	C30—C31—C32—C33	0.1 (2)
F3—C3—C4—F6	-148.90 (18)	C31—C32—C33—N2	179.6 (2)
F3—C3—C4—C5	90.8 (2)	C31—C32—C33—C34	-0.7 (3)
F4—C3—C4—F5	88.6 (2)	N2-C33-C34-C35	-179.7 (2)
F4—C3—C4—F6	-28.2 (2)	N2-C33-C34-C37	0.3 (2)
F4—C3—C4—C5	-148.48 (19)	C32—C33—C34—C35	0.5 (3)
C2—C3—C4—F5	-147.66 (19)	C32—C33—C34—C37	-179.5 (2)
C2—C3—C4—F6	95.5 (2)	C33—C34—C35—C30	0.1 (2)
C2—C3—C4—C5	-24.8 (2)	C33—C34—C37—C36	-0.4 (2)
F5—C4—C5—C1	140.05 (19)	C33—C34—C37—C38	-179.2 (2)
F5—C4—C5—C25	-41.0 (2)	C35—C34—C37—C36	179.6 (2)
F6—C4—C5—C1	-99.9 (2)	C35—C34—C37—C38	0.8 (4)
F6—C4—C5—C25	79.0 (2)	C37—C34—C35—C30	-179.9 (2)
C3—C4—C5—C1	18.6 (2)	N2-C36-C37-C34	0.3 (2)
C3—C4—C5—C25	-162.5 (2)	N2-C36-C37-C38	179.3 (2)
C1C5C25C26	135.6 (2)	N2-C36-C41-C40	-179.0 (2)
C1C5C25C28	-47.8 (3)	C37—C36—C41—C40	1.0 (3)
C4—C5—C25—C26	-43.1 (3)	C41—C36—C37—C34	-179.7 (2)
C4—C5—C25—C28	133.5 (2)	C41—C36—C37—C38	-0.7 (3)
C1—C6—C7—S1	177.90 (19)	C34—C37—C38—C39	179.0 (2)
C1—C6—C7—C10	-4.9 (4)	C36—C37—C38—C39	0.2 (3)
C1—C6—C9—C8	-177.0 (2)	C37—C38—C39—C40	-0.2 (3)
С7—С6—С9—С8	3.0 (3)	C38—C39—C40—C41	0.5 (4)
C9—C6—C7—S1	-2.1 (2)	C39—C40—C41—C36	-0.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
C26—H26…F2 ⁱ	0.95	2.44	3.290 (2)	149 (1)

Symmetry code: (i) -x+1, -y+2, -z+1.