

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,5-Bis(4-methoxybenzylidene)thiocarbonohydrazide methanol monosolvate

Xinyu Zhao

School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, People's Republic of China Correspondence e-mail: xyzhaosut@163.com

Received 27 June 2011; accepted 19 July 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.047; wR factor = 0.137; data-to-parameter ratio = 13.8.

In the title compound, C₁₇H₁₈N₄O₂S·CH₃OH, the two benzene rings in the thiocarbonohydrazide molecule form a dihedral angle of 22.42 (18)°. Pairs of $N-H \cdots S$ hydrogen bonds link thiocarbonohydrazide molecules into centrosymmetric dimers. Methanol solvent molecules serve as donors $(O-H\cdots S \text{ and } O-H\cdots N)$ and acceptors $(N-H\cdots O \text{ and }$ $C-H \cdots O$) of weak intermolecular hydrogen bonds, which link further these dimers into double ribbons along the *b* axis.

Related literature

For related Schiff base derivatives of thiocarbohydrazide, see: Loncle et al. (2004); Camp et al. (2010); Opstal & Verpoort (2003). For a related structure, see: Affan et al. (2010).

Experimental

Crystal data

 $C_{17}H_{18}N_4O_2S{\cdot}CH_4O$ $M_r = 374.46$ Triclinic, $P\overline{1}$ a = 8.8021 (6) Å b = 9.9949 (10) Åc = 11.5902 (13) Å

 $\alpha = 83.132 (1)^{\circ}$ $\beta = 84.179 \ (2)^{\circ}$ $\gamma = 70.505 \ (1)^{\circ}$ V = 952.24 (16) Å³ Z = 2Mo $K\alpha$ radiation

 $0.42 \times 0.39 \times 0.32 \text{ mm}$

4936 measured reflections

 $R_{\rm int} = 0.023$

1934 reflections with $I > 2\sigma(I)$

 $\mu = 0.20 \text{ mm}^{-1}$ T = 298 K

Data collection

Bruker SMART APEX CCD areadetector diffractometer 3302 independent reflections Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min}=0.923,\ T_{\rm max}=0.940$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ 239 parameters $wR(F^2) = 0.137$ H-atom parameters constrained S = 1.01 $\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$ 3302 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3−H3A···N1	0.82	2.55	3.171 (3)	134
$O3-H3A\cdots$ S1	0.82	2.58	3.346 (3)	156
$N2-H2 \cdot \cdot \cdot O3^{i}$	0.86	2.45	3.174 (3)	142
N3-H3···S1 ⁱⁱ	0.86	2.61	3.446 (3)	165
$C2-H2A\cdots O3^{i}$	0.93	2.51	3.300 (4)	143

Symmetry codes: (i) -x + 1, -y + 2, -z; (ii) -x + 1, -y + 1, -z.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The author acknowledges financial support by Shenyang University of Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5128).

References

- Affan, M. A., Chee, D. N. A., Ahmad, F. B. & Tiekink, E. R. T. (2010). Acta Cryst. E66, 0555
- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Camp, C., Mougel, V., Horeglad, P., Pcaut, J. & Mazzanti, M. (2010). J. Am. Chem. Soc. 132, 17374-17377.
- Loncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067-1071.
- Opstal, T. & Verpoort, F. (2003). Angew. Chem. Int. Ed. 42, 2876-2879.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, o2133 [doi:10.1107/S1600536811029035]

1,5-Bis(4-methoxybenzylidene)thiocarbonohydrazide methanol monosolvate

Xinyu Zhao

S1. Comment

In recent years, there has been considerable interest in the chemistry of thiocarbohydrazide Schiff base derivatives (Loncle *et al.*, 2004; Camp *et al.*, 2010), because these derivatives offer opportunities for tuning the metal centred electronic factor, enhancing the solubility and stability of either homogeneous or heterogeneous catalysts (Opstal *et al.*, 2003). Herein we present the title compound, (I).

In (I) (Fig. 1), the bond lengths and angles are normal and correspond to those observed in 1,5-bis[(*E*)-1-(2-hydroxy-phenyl)ethylidene] thiocarbonohydrazide monohydrate (Affan *et al.*, 2010). Four N atoms and the C=S are almost coplanar, the N1/N2/C2 plane and the benzene ring C3–C8 form a dihedral angle of 12.32 (3)°. The benzene rings C3–C8 and C11–C16 form a dihedral angle of 22.42 (18) °.

In the crystal structure, intermolecular N—H···S hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers. Solvent molecules serve as donors [O—H···S and O—H···N] and acceptors [N—H···O and C—H···O] of the weak intermolecular hydrogen bonds (Table 1), which link further these dimers into doubled ribbons along axis *b*.

S2. Experimental

4-Methoxybenzaldehyde (10.0 mmol), 30 ml e thanol and thiocarbohydrazide (5.0 mmol) were mixed in 50 ml flash After stirring 3 h at 373 K, the resulting mixture was cooled to room temperature, and recrystalized from ethanol, and afforded the title compound as a crystalline solid.

S3. Refinement

All H atoms were placed in geometrically idealized positions (N—H 0.86; O—H 0.82 and C—H 0.93–0.96 Å) and treated as riding on their parent atoms, with $U_{iso}(H) = 1.2-1.5U_{eq}$ of the parent atom.

Figure 1

View of (I) showing the atomic numbering and 30% probability displacement ellipsoids. Dashed lines denote hydrogen bonds.

1,5-Bis(4-methoxybenzylidene)thiocarbonohydrazide methanol monosolvate

Crystal data

 $C_{17}H_{18}N_4O_2S \cdot CH_4O$ $M_r = 374.46$ Triclinic, $P\overline{1}$ a = 8.8021 (6) Å b = 9.9949 (10) Å c = 11.5902 (13) Å $a = 83.132 (1)^{\circ}$ $\beta = 84.179 (2)^{\circ}$ $\gamma = 70.505 (1)^{\circ}$ $V = 952.24 (16) \text{ Å}^3$

Data collection

Bruker SMART APEX CCD area-detector	4936 measured reflections
diffractometer	3302 independent reflections
Radiation source: fine-focus sealed tube	1934 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.023$
phi and ω scans	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.7^\circ$
Absorption correction: multi-scan	$h = -7 \rightarrow 10$
(SADABS; Sheldrick, 1996)	$k = -11 \rightarrow 11$
$T_{\min} = 0.923, \ T_{\max} = 0.940$	$l = -13 \rightarrow 12$

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0585P)^2 + 0.1975P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Z = 2

F(000) = 396

 $\theta = 2.7 - 25.2^{\circ}$

 $\mu = 0.20 \text{ mm}^{-1}$

T = 298 K

Block, red

 $D_{\rm x} = 1.306 {\rm Mg} {\rm m}^{-3}$

 $0.42 \times 0.39 \times 0.32 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1379 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.63183 (11)	0.63686 (9)	-0.08592 (7)	0.0604 (3)
N1	0.6991 (3)	0.8790 (2)	-0.00620 (19)	0.0435 (6)
N2	0.6220 (3)	0.8089 (2)	0.07669 (19)	0.0445 (6)
H2	0.5951	0.8368	0.1454	0.053*

N3	0.5206 (3)	0.6273 (2)	0.1308 (2)	0.0487 (7)
H3	0.5021	0.5523	0.1154	0.058*
N4	0.4772 (3)	0.6718 (2)	0.2409 (2)	0.0458 (6)
01	1.0808 (3)	1.2665 (2)	-0.28491 (19)	0.0653 (7)
O2	0.1682 (3)	0.6793 (2)	0.76724 (19)	0.0688 (7)
C1	0.5902 (3)	0.6955 (3)	0.0468 (2)	0.0424 (7)
C2	0.7256 (3)	0.9876 (3)	0.0215 (2)	0.0412 (7)
H2A	0.6890	1.0203	0.0944	0.049*
C3	0.8135 (3)	1.0612 (3)	-0.0612 (2)	0.0388 (7)
C4	0.8918 (4)	1.0014 (3)	-0.1615 (2)	0.0471 (8)
H4A	0.8839	0.9150	-0.1773	0.057*
C5	0.9813 (4)	1.0662 (3)	-0.2389 (3)	0.0522 (8)
Н5	1.0332	1.0239	-0.3057	0.063*
C6	0.9927 (4)	1.1946 (3)	-0.2158 (3)	0.0463 (8)
C7	0.9135 (3)	1.2564 (3)	-0.1173 (3)	0.0473 (8)
H7	0.9189	1.3442	-0.1029	0.057*
C8	0.8264 (3)	1.1902 (3)	-0.0399(2)	0.0439 (7)
H8	0.7757	1.2323	0.0272	0.053*
С9	1.1754 (5)	1.1998 (4)	-0.3814 (3)	0.0838 (12)
H9A	1.1057	1.1927	-0.4373	0.126*
H9B	1.2437	1.1062	-0.3555	0.126*
H9C	1.2410	1.2554	-0.4168	0.126*
C10	0.3907 (4)	0.6071 (3)	0.3027 (3)	0.0501 (8)
H10	0.3638	0.5391	0.2686	0.060*
C11	0.3309 (4)	0.6312 (3)	0.4222 (2)	0.0458 (8)
C12	0.3712 (4)	0.7200 (3)	0.4869 (3)	0.0589 (9)
H12	0.4377	0.7710	0.4525	0.071*
C13	0.3152 (4)	0.7345 (3)	0.6009 (3)	0.0639 (10)
H13	0.3445	0.7943	0.6433	0.077*
C14	0.2149 (4)	0.6601 (3)	0.6531 (3)	0.0498 (8)
C15	0.1720 (4)	0.5731 (3)	0.5907 (3)	0.0540 (8)
H15	0.1037	0.5236	0.6248	0.065*
C16	0.2307 (4)	0.5589 (3)	0.4766 (3)	0.0573 (9)
H16	0.2017	0.4984	0.4347	0.069*
C17	0.0688 (5)	0.6007 (4)	0.8248 (3)	0.0738 (11)
H17A	0.1258	0.5005	0.8237	0.111*
H17B	-0.0289	0.6249	0.7854	0.111*
H17C	0.0429	0.6239	0.9040	0.111*
O3	0.5382 (3)	0.9498 (3)	-0.2485 (2)	0.0849 (8)
H3A	0.5673	0.8888	-0.1940	0.127*
C18	0.6365 (5)	0.9076 (5)	-0.3470 (3)	0.0884 (13)
H18A	0.5743	0.9401	-0.4144	0.133*
H18B	0.6812	0.8055	-0.3413	0.133*
H18C	0.7224	0.9477	-0.3540	0.133*

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0755 (7)	0.0533 (5)	0.0593 (5)	-0.0349 (5)	0.0242 (5)	-0.0148 (4)
N1	0.0458 (15)	0.0437 (14)	0.0427 (14)	-0.0205 (12)	0.0033 (12)	0.0020 (11)
N2	0.0531 (16)	0.0473 (14)	0.0359 (13)	-0.0236 (13)	0.0047 (12)	-0.0001 (11)
N3	0.0550 (16)	0.0413 (14)	0.0514 (15)	-0.0228 (13)	0.0114 (13)	-0.0019 (12)
N4	0.0468 (16)	0.0451 (14)	0.0437 (15)	-0.0162 (13)	0.0036 (12)	0.0016 (12)
01	0.0743 (16)	0.0593 (14)	0.0680 (15)	-0.0371 (13)	0.0204 (13)	-0.0045 (12)
O2	0.0862 (18)	0.0785 (16)	0.0553 (14)	-0.0468 (14)	0.0218 (13)	-0.0227 (12)
C1	0.0329 (17)	0.0382 (16)	0.0516 (18)	-0.0106 (14)	0.0059 (14)	0.0037 (14)
C2	0.0401 (18)	0.0455 (17)	0.0389 (16)	-0.0152 (14)	-0.0007 (14)	-0.0048 (13)
C3	0.0348 (16)	0.0412 (16)	0.0418 (16)	-0.0138 (13)	-0.0008 (13)	-0.0056 (13)
C4	0.0506 (19)	0.0429 (17)	0.0529 (19)	-0.0220 (15)	0.0043 (16)	-0.0104 (15)
C5	0.059 (2)	0.0518 (19)	0.0490 (18)	-0.0235 (17)	0.0127 (16)	-0.0134 (15)
C6	0.0450 (19)	0.0436 (18)	0.0522 (19)	-0.0202 (15)	-0.0008 (15)	0.0028 (15)
C7	0.0495 (19)	0.0382 (17)	0.0580 (19)	-0.0193 (15)	0.0007 (16)	-0.0082 (15)
C8	0.0434 (18)	0.0430 (17)	0.0474 (18)	-0.0158 (15)	0.0011 (15)	-0.0109 (14)
C9	0.087 (3)	0.075 (3)	0.084 (3)	-0.033(2)	0.040 (2)	-0.004 (2)
C10	0.056 (2)	0.0481 (18)	0.0496 (19)	-0.0248 (16)	-0.0010 (16)	0.0049 (15)
C11	0.0470 (19)	0.0447 (17)	0.0461 (18)	-0.0194 (15)	0.0039 (15)	0.0011 (14)
C12	0.067 (2)	0.054 (2)	0.065 (2)	-0.0360 (18)	0.0159 (19)	-0.0095 (17)
C13	0.077 (3)	0.060 (2)	0.068 (2)	-0.041 (2)	0.014 (2)	-0.0211 (17)
C14	0.053 (2)	0.0495 (18)	0.0498 (19)	-0.0210 (16)	0.0049 (16)	-0.0088 (15)
C15	0.060(2)	0.063 (2)	0.0486 (19)	-0.0372 (18)	0.0078 (16)	-0.0024 (16)
C16	0.074 (2)	0.063 (2)	0.049 (2)	-0.0430 (19)	0.0036 (18)	-0.0061 (16)
C17	0.089 (3)	0.092 (3)	0.052 (2)	-0.049 (2)	0.019 (2)	-0.0131 (19)
03	0.095 (2)	0.0784 (18)	0.0610 (16)	-0.0093 (15)	0.0104 (15)	0.0029 (13)
C18	0.091 (3)	0.115 (3)	0.062 (2)	-0.040 (3)	0.002 (2)	-0.003 (2)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

S1-C1	1.673 (3)	С8—Н8	0.9300
N1-C2	1.267 (3)	С9—Н9А	0.9600
N1—N2	1.377 (3)	C9—H9B	0.9600
N2-C1	1.346 (3)	С9—Н9С	0.9600
N2—H2	0.8600	C10—C11	1.449 (4)
N3—C1	1.337 (3)	C10—H10	0.9300
N3—N4	1.377 (3)	C11—C12	1.378 (4)
N3—H3	0.8600	C11—C16	1.379 (4)
N4—C10	1.272 (3)	C12—C13	1.369 (4)
O1—C6	1.367 (3)	C12—H12	0.9300
O1—C9	1.417 (4)	C13—C14	1.385 (4)
O2—C14	1.362 (3)	C13—H13	0.9300
O2—C17	1.429 (4)	C14—C15	1.359 (4)
C2—C3	1.455 (4)	C15—C16	1.376 (4)
C2—H2A	0.9300	C15—H15	0.9300
C3—C4	1.383 (4)	C16—H16	0.9300

C3—C8	1.384 (4)	С17—Н17А	0.9600
C4—C5	1.379 (4)	С17—Н17В	0.9600
C4—H4A	0.9300	С17—Н17С	0.9600
C5—C6	1.379 (4)	O3—C18	1.380 (4)
С5—Н5	0.9300	03—H3A	0.8200
C6—C7	1.375 (4)	C18—H18A	0.9600
C7—C8	1.374 (4)	C18—H18B	0.9600
С7—Н7	0.9300	C18—H18C	0.9600
C2—N1—N2	117.7 (2)	О1—С9—Н9С	109.5
C1—N2—N1	117.9 (2)	H9A—C9—H9C	109.5
C1—N2—H2	121.0	H9B—C9—H9C	109.5
N1—N2—H2	121.0	N4—C10—C11	125.0 (3)
C1—N3—N4	122.9 (2)	N4—C10—H10	117.5
C1—N3—H3	118.5	C11—C10—H10	117.5
N4—N3—H3	118.5	C12—C11—C16	117.2 (3)
C10—N4—N3	113.5 (3)	C12—C11—C10	124.0 (3)
C6—O1—C9	117.8 (2)	C16—C11—C10	118.7 (3)
C14—O2—C17	117.2 (2)	C13—C12—C11	121.2 (3)
N3—C1—N2	116.1 (3)	C13—C12—H12	119.4
N3—C1—S1	119.4 (2)	C11—C12—H12	119.4
N2—C1—S1	124.5 (2)	C12—C13—C14	120.1 (3)
N1—C2—C3	119.8 (3)	С12—С13—Н13	120.0
N1—C2—H2A	120.1	C14—C13—H13	120.0
C3—C2—H2A	120.1	C15—C14—O2	124.4 (3)
C4—C3—C8	118.0 (3)	C15—C14—C13	119.8 (3)
C4—C3—C2	120.8 (3)	O2—C14—C13	115.7 (3)
C8—C3—C2	121.2 (3)	C14—C15—C16	119.2 (3)
C5—C4—C3	121.9 (3)	C14—C15—H15	120.4
C5—C4—H4A	119.0	C16—C15—H15	120.4
C3—C4—H4A	119.0	C15—C16—C11	122.4 (3)
C6—C5—C4	119.1 (3)	C15—C16—H16	118.8
С6—С5—Н5	120.4	C11—C16—H16	118.8
С4—С5—Н5	120.4	O2—C17—H17A	109.5
O1—C6—C7	116.3 (3)	O2—C17—H17B	109.5
O1—C6—C5	124.1 (3)	H17A—C17—H17B	109.5
C7—C6—C5	119.6 (3)	O2—C17—H17C	109.5
C8—C7—C6	120.9 (3)	H17A—C17—H17C	109.5
С8—С7—Н7	119.6	H17B—C17—H17C	109.5
С6—С7—Н7	119.6	C18—O3—H3A	109.5
C7—C8—C3	120.5 (3)	O3—C18—H18A	109.5
С7—С8—Н8	119.8	O3—C18—H18B	109.5
С3—С8—Н8	119.8	H18A—C18—H18B	109.5
О1—С9—Н9А	109.5	O3—C18—H18C	109.5
O1—C9—H9B	109.5	H18A—C18—H18C	109.5
Н9А—С9—Н9В	109.5	H18B—C18—H18C	109.5

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A	
03—H3A…N1	0.82	2.55	3.171 (3)	134	
O3—H3A…S1	0.82	2.58	3.346 (3)	156	
N2—H2…O3 ⁱ	0.86	2.45	3.174 (3)	142	
N3—H3···S1 ⁱⁱ	0.86	2.61	3.446 (3)	165	
C2—H2 <i>A</i> ···O3 ⁱ	0.93	2.51	3.300 (4)	143	

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*; (ii) -*x*+1, -*y*+1, -*z*.