

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetraaquabis{2-[4-(4-pyridyl)pyrimidin-2-ylsulfanyl]acetato}zinc

Hai-Bin Zhu* and Xin Lu

School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: zhuhaibin@seu.edu.cn

Received 13 July 2011; accepted 25 July 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.033; wR factor = 0.086; data-to-parameter ratio = 13.0.

In the title compound, $[Zn(C_{11}H_8N_3O_2S)_2(H_2O)_4]$, the Zn^{II} ion lies on an inversion centre and is coordinated by four water molecules and two N atoms from two 2-[4-(4-pyridyl)-pyrimidin-2-ylsulfanyl]acetate (*L*) ligands in a distorted octahedral geometry. In *L*, the pyridine and pyrimidine rings are twisted at an angle of 11.2 (1)°. The coordinated water molecules and the acetate groups are involved in the formation of a three-dimensional hydrogen-bonded network, which consolidates the crystal packing.

Related literature

For a related structure, see: Zhu et al. (2009).

Experimental

Crystal data $[Zn(C_{11}H_8N_3O_2S)_2(H_2O)_4]$ $M_r = 630.00$ Orthorhombic, Pbca

a = 7.199 (7) Å b = 11.792 (11) Å c = 28.77 (3) Å

metal-organic compounds

 $V = 2442 (4) \text{ Å}^3$ Z = 4Mo *K*\alpha radiation

Data collection

Bruker APEXII CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\min} = 0.780, T_{\max} = 0.830$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.086$ S = 1.022465 reflections 190 parameters 4 restraints $\mu = 1.24 \text{ mm}^{-1}$ T = 298 K $0.20 \times 0.20 \times 0.15 \text{ mm}$

16776 measured reflections
2465 independent reflections
1836 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.051$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.23 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.45 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O4-H4WB\cdots O2^{i}$	0.81 (2)	1.96 (2)	2.759 (3)	170 (3)
$O4-H4WA\cdots O1^{ii}$	0.82 (2)	1.82 (2)	2.632 (3)	172 (2)
$O3-H3WB\cdots O2^{iii}$	0.84 (2)	1.89 (2)	2.728 (3)	176 (3)
$O3-H3WA\cdots O2^{iv}$	0.82 (2)	2.24 (2)	3.060 (3)	172 (3)
		. 1 (11) . 1	. 1 (***)	1 . 1

Symmetry codes: (i) $-x + \frac{1}{2}, -y + 1, z + \frac{1}{2}$; (ii) $x + \frac{1}{2}, y, -z + \frac{1}{2}$; (iii) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (iv) $-x - \frac{1}{2}, -y + 1, z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT-Plus* (Bruker, 2007); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge the Teaching and Research Programme for Excellent Young Teachers of Southeast University (grant No. 3207041202).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5136).

References

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zhu, H.-B., Xu, G. & Sun, Y.-Y. (2009). Acta Cryst. E65, m1126.

supporting information

Acta Cryst. (2011). E67, m1169 [doi:10.1107/S160053681102993X]

Tetraaquabis{2-[4-(4-pyridyl)pyrimidin-2-ylsulfanyl]acetato}zinc

Hai-Bin Zhu and Xin Lu

S1. Comment

In our previous work, we have reported the crystal structure of mononuclear Mn(II) complex with the ligand of 2-(4-(pyridine-3-yl)pyrimidin-2-ylthio)acetic acid (Zhu *et al.*, 2009). Herein, we present a Zn(II) complex with the ligand of 2-(4-(pyridine-4-yl)pyrimidin-2-ylthio)acetic acid.

Similar to the reported Mn(II) coordination compound (Zhu *et al.*, 2009), the Zn(II) center in the title compound also adopts an octahedral coordination geometry defined by four water O atoms in equatorial positions and two N atoms in apical positions (Fig. 1). The Zn—O bond lengths vary from 2.070 (2) to 2.137 (2)Å, and the Zn—N bond length is 2.176 (2) Å. Intermolecular O—H···O hydrogen bonds (Table 1) consolidate the crystal packing.

S2. Experimental

The mixture of $Zn(NO_3)_2$ (0.1 mmol), L (0.2 mmol) and NaOH (0.2 mmol) in 10 ml of H₂O was stirred for 30 min at room temperature. After filtration, the mother liquid was stood for three weeks to give yellow crystals suitable for X-ray diffraction analysis.

S3. Refinement

C-bound H atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms, with $U_{iso}(H) = 1.2 U_{eq}(C)$. The positions of the water H atoms were found from a difference Fourier map and refined with restraint O —H = 0.82 (2) Å using a riding model, with $U_{iso}(H) = 1.2 U_{eq}(O)$.

Figure 1

The coordination environment around Zn(II) in the title complex with the atom-labeling scheme [symmetry code: (A) -*x*, -*y* + 1, -*z* + 1]. Displacement ellipsoids for non-hydrogen atoms are drawn at the 50% probability level.

Tetraaquabis{2-[4-(4-pyridyl)pyrimidin-2-ylsulfanyl]acetato}zinc

Crystal data

 $\begin{bmatrix} Zn(C_{11}H_8N_3O_2S)_2(H_2O)_4 \end{bmatrix}$ $M_r = 630.00$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 7.199 (7) Å b = 11.792 (11) Å c = 28.77 (3) Å V = 2442 (4) Å³ Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\min} = 0.780, T_{\max} = 0.830$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: inferred from
$wR(F^2) = 0.086$	neighbouring sites
S = 1.02	H atoms treated by a mixture of independent
2465 reflections	and constrained refinement
190 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0432P)^2 + 0.3573P]$
4 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.23 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.45 \text{ e} \text{ Å}^{-3}$

F(000) = 1296

 $\theta = 2.3 - 25.5^{\circ}$

 $\mu = 1.24 \text{ mm}^{-1}$

Block, yellow

 $0.20 \times 0.20 \times 0.15 \text{ mm}$

 $\theta_{\text{max}} = 27.1^{\circ}, \ \theta_{\text{min}} = 1.4^{\circ}$

16776 measured reflections 2465 independent reflections

1836 reflections with $I > 2\sigma(I)$

T = 298 K

 $R_{\rm int} = 0.051$

 $h = -8 \rightarrow 9$

 $k = -14 \rightarrow 14$

 $l = -34 \rightarrow 32$

 $D_{\rm x} = 1.714 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2465 reflections

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Zn1	0.0000	0.5000	0.5000	0.02474 (14)	
S1	0.01224 (8)	0.60147 (5)	0.17445 (2)	0.02955 (17)	
N2	0.1353 (3)	0.80094 (16)	0.20795 (6)	0.0297 (5)	
N1	0.0402 (3)	0.65524 (16)	0.26077 (6)	0.0264 (5)	

O4	0.2360 (2)	0.41441 (14)	0.47861 (5)	0.0314 (4)
H4WB	0.307 (3)	0.396 (2)	0.4993 (7)	0.038*
H4WA	0.302 (3)	0.450 (2)	0.4603 (7)	0.038*
C1	0.0700 (3)	0.6981 (2)	0.21845 (8)	0.0256 (5)
C10	0.0382 (3)	0.6859 (2)	0.12255 (8)	0.0283 (5)
H10A	-0.0412	0.7522	0.1244	0.034*
H10B	0.1658	0.7114	0.1198	0.034*
O1	-0.0740 (3)	0.51902 (14)	0.08678 (6)	0.0396 (5)
C5	0.0435 (3)	0.67551 (18)	0.34366 (8)	0.0236 (5)
C4	0.0801 (3)	0.72292 (19)	0.29679 (7)	0.0241 (5)
C11	-0.0136 (3)	0.6163 (2)	0.08050 (8)	0.0269 (5)
N3	-0.0130 (2)	0.58138 (16)	0.43217 (6)	0.0255 (4)
O2	0.0038 (2)	0.66402 (14)	0.04128 (6)	0.0339 (4)
O3	-0.1746 (3)	0.36656 (14)	0.47517 (6)	0.0342 (4)
H3WB	-0.118 (3)	0.3056 (17)	0.4696 (9)	0.041*
H3WA	-0.269 (3)	0.355 (2)	0.4908 (8)	0.041*
C7	0.0205 (3)	0.6920(2)	0.42625 (8)	0.0287 (6)
H7A	0.0259	0.7377	0.4525	0.034*
C3	0.1516 (3)	0.83095 (19)	0.28983 (8)	0.0295 (5)
H3B	0.1814	0.8781	0.3147	0.035*
C9	0.0026 (3)	0.5610(2)	0.34959 (8)	0.0301 (6)
H9A	-0.0059	0.5135	0.3239	0.036*
C8	-0.0249 (3)	0.5184 (2)	0.39326 (8)	0.0309 (6)
H8A	-0.0534	0.4418	0.3962	0.037*
C2	0.1763 (4)	0.86515 (19)	0.24447 (8)	0.0311 (6)
H2B	0.2245	0.9372	0.2391	0.037*
C6	0.0476 (3)	0.7421 (2)	0.38362 (8)	0.0294 (5)
H6A	0.0685	0.8197	0.3815	0.035*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Znl	0.0297 (2)	0.0257 (2)	0.0188 (2)	0.00061 (16)	0.00071 (16)	-0.00053 (15)
S 1	0.0392 (4)	0.0303 (3)	0.0191 (3)	-0.0049 (3)	-0.0001(3)	0.0019 (2)
N2	0.0318 (11)	0.0314 (11)	0.0259 (10)	-0.0026 (9)	-0.0017 (9)	0.0039 (9)
N1	0.0317 (12)	0.0287 (11)	0.0187 (10)	0.0006 (8)	-0.0007 (8)	0.0016 (8)
O4	0.0326 (10)	0.0363 (10)	0.0255 (9)	0.0049 (8)	0.0041 (8)	0.0036 (8)
C1	0.0233 (12)	0.0312 (13)	0.0222 (12)	0.0020 (10)	-0.0017 (9)	-0.0006 (10)
C10	0.0328 (14)	0.0304 (13)	0.0216 (12)	-0.0034 (10)	0.0017 (10)	0.0032 (10)
01	0.0562 (12)	0.0353 (10)	0.0274 (10)	-0.0098 (9)	-0.0089 (9)	0.0006 (8)
C5	0.0238 (12)	0.0261 (12)	0.0210 (12)	0.0020 (9)	-0.0029 (9)	0.0013 (10)
C4	0.0218 (12)	0.0287 (12)	0.0217 (12)	0.0019 (10)	-0.0018 (10)	0.0008 (10)
C11	0.0275 (13)	0.0307 (13)	0.0226 (12)	0.0033 (10)	0.0000 (10)	0.0015 (10)
N3	0.0291 (11)	0.0275 (11)	0.0200 (10)	0.0010 (8)	-0.0004 (8)	-0.0019 (8)
O2	0.0474 (11)	0.0340 (10)	0.0203 (9)	0.0031 (8)	0.0014 (7)	0.0017 (7)
O3	0.0373 (11)	0.0329 (10)	0.0325 (10)	-0.0045 (8)	-0.0010 (8)	-0.0016 (8)
C7	0.0347 (14)	0.0288 (13)	0.0225 (12)	0.0031 (10)	-0.0018 (10)	-0.0062 (10)
C3	0.0339 (14)	0.0271 (13)	0.0276 (13)	-0.0002 (10)	-0.0047 (11)	-0.0022 (10)

supporting information

C9	0.0393 (15)	0.0289 (13)	0.0220 (12)	-0.0023 (11)	-0.0014 (10)	-0.0066 (10)
C8	0.0436 (16)	0.0257 (12)	0.0233 (13)	-0.0046 (11)	-0.0005 (11)	-0.0001 (10)
C2	0.0328 (14)	0.0267 (13)	0.0339 (14)	-0.0042 (11)	-0.0028 (11)	0.0045 (11)
C6	0.0358 (14)	0.0247 (12)	0.0277 (13)	0.0001 (10)	-0.0036 (11)	-0.0015 (10)

Geometric parameters (Å, °)

Zn1—O4	2.070 (2)	С5—С9	1.393 (3)
Zn1—O4 ⁱ	2.070 (2)	C5—C6	1.392 (3)
Zn1—O3 ⁱ	2.137 (2)	C5—C4	1.483 (3)
Zn1—O3	2.137 (2)	C4—C3	1.388 (3)
Zn1—N3 ⁱ	2.176 (2)	C11—O2	1.267 (3)
Zn1—N3	2.176 (2)	N3—C7	1.337 (3)
S1—C1	1.753 (3)	N3—C8	1.346 (3)
S1—C10	1.804 (3)	O3—H3WB	0.843 (16)
N2—C2	1.328 (3)	O3—H3WA	0.822 (17)
N2	1.335 (3)	C7—C6	1.375 (3)
N1—C1	1.336 (3)	С7—Н7А	0.9300
N1—C4	1.339 (3)	C3—C2	1.377 (3)
O4—H4WB	0.810 (16)	С3—Н3В	0.9300
O4—H4WA	0.821 (16)	C9—C8	1.367 (4)
C10—C11	1.508 (3)	С9—Н9А	0.9300
C10—H10A	0.9700	C8—H8A	0.9300
C10—H10B	0.9700	C2—H2B	0.9300
O1—C11	1.240 (3)	C6—H6A	0.9300
O4—Zn1—O4 ⁱ	180.00 (8)	C6—C5—C4	122.3 (2)
O4—Zn1—O3 ⁱ	88.60 (9)	N1—C4—C3	121.0 (2)
$O4^{i}$ —Zn1—O3 ⁱ	91.40 (9)	N1—C4—C5	116.1 (2)
O4—Zn1—O3	91.40 (9)	C3—C4—C5	122.9 (2)
O4 ⁱ —Zn1—O3	88.60 (9)	O1—C11—O2	125.1 (2)
O3 ⁱ —Zn1—O3	180.0	O1-C11-C10	118.2 (2)
O4—Zn1—N3 ⁱ	90.94 (7)	O2-C11-C10	116.6 (2)
$O4^{i}$ —Zn1—N3 ⁱ	89.06 (7)	C7—N3—C8	116.3 (2)
$O3^{i}$ —Zn1—N3 ⁱ	89.99 (8)	C7—N3—Zn1	122.44 (15)
O3—Zn1—N3 ⁱ	90.01 (8)	C8—N3—Zn1	120.33 (17)
O4—Zn1—N3	89.06 (7)	Zn1—O3—H3WB	113.9 (19)
O4 ⁱ —Zn1—N3	90.94 (7)	Zn1—O3—H3WA	114.9 (19)
O3 ⁱ —Zn1—N3	90.01 (8)	H3WB—O3—H3WA	111 (3)
O3—Zn1—N3	89.99 (8)	N3—C7—C6	123.9 (2)
N3 ⁱ —Zn1—N3	180.0	N3—C7—H7A	118.0
C1—S1—C10	102.37 (13)	С6—С7—Н7А	118.0
C2—N2—C1	114.66 (19)	C2—C3—C4	116.9 (2)
C1—N1—C4	116.4 (2)	С2—С3—Н3В	121.5
Zn1—O4—H4WB	115.2 (19)	C4—C3—H3B	121.5
Zn1—O4—H4WA	114.8 (18)	C8—C9—C5	119.9 (2)
H4WB—O4—H4WA	104 (3)	С8—С9—Н9А	120.0
N2-C1-N1	127.3 (2)	С5—С9—Н9А	120.0

N2—C1—S1	120.71 (17)	N3—C8—C9	123.5 (2)	
N1—C1—S1	111.96 (18)	N3—C8—H8A	118.2	
C11—C10—S1	109.75 (17)	C9—C8—H8A	118.2	
C11-C10-H10A	109.7	N2—C2—C3	123.6 (2)	
S1-C10-H10A	109.7	N2—C2—H2B	118.2	
C11—C10—H10B	109.7	C3—C2—H2B	118.2	
S1-C10-H10B	109.7	C7—C6—C5	119.4 (2)	
H10A—C10—H10B	108.2	С7—С6—Н6А	120.3	
C9—C5—C6	116.8 (2)	С5—С6—Н6А	120.3	
C9—C5—C4	121.0 (2)			

Symmetry code: (i) -x, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D^{\dots}A$	D—H··· A
O4—H4 <i>WB</i> ···O2 ⁱⁱ	0.81 (2)	1.96 (2)	2.759 (3)	170 (3)
O4—H4 <i>WA</i> ···O1 ⁱⁱⁱ	0.82 (2)	1.82 (2)	2.632 (3)	172 (2)
O3—H3 <i>WB</i> ···O2 ^{iv}	0.84 (2)	1.89 (2)	2.728 (3)	176 (3)
O3—H3 <i>WA</i> ···O2 ^v	0.82 (2)	2.24 (2)	3.060 (3)	172 (3)

Symmetry codes: (ii) -*x*+1/2, -*y*+1, *z*+1/2; (iii) *x*+1/2, *y*, -*z*+1/2; (iv) -*x*, *y*-1/2, -*z*+1/2; (v) -*x*-1/2, -*y*+1, *z*+1/2.