organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Chloro-*N*-(3,5-dimethylphenyl)benzenesulfonamide

K. Shakuntala,^a Sabine Foro^b and B. Thimme Gowda^a*

^aDepartment of Chemistry, Mangalore University, Mangalagangotri-574 199, Mangalore, India, and ^bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287, Darmstadt, Germany Correspondence e-mail: gowdabt@yahoo.com

Received 22 June 2011; accepted 17 July 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.014 Å; R factor = 0.128; wR factor = 0.345; data-to-parameter ratio = 15.3.

The asymmetric unit of the title compound, $C_{14}H_{14}CINO_2S$, contains two independent molecules, which are twisted at the S atoms with $C-SO_2-NH-C$ torsion angles of -69.4 (7)° and 66.0 (8)°. The sulfonyl and the anilino benzene rings are tilted relative to each other by 49.0 (4) and 61.7 (3)° in the two molecules. In the crystal, the molecules are linked into chains by $N-H\cdots O$ hydrogen bonds.

Related literature

For hydrogen-bonding modes of sulfonamides, see: Adsmond & Grant (2001). For our studies of the effect of substituents on the structures of N-(aryl)-amides, see: Gowda *et al.* (2006), on N-(aryl)arylsulfonamides, see: Nirmala *et al.* (2009); Shakuntala *et al.* (2011*a,b*) and on N-(aryl)methanesulfonamides, see: Gowda *et al.* (2007).

Experimental

Crystal data $C_{14}H_{14}CINO_2S$ $M_r = 295.77$ Orthorhombic, Pbca

a = 21.990 (2) Å b = 10.0470 (8) Å c = 26.408 (2) Å $V = 5834.4 (8) \text{ Å}^3$ Z = 16Mo *K*\alpha radiation

Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector Absorption correction: multi-scan (*CrysAlis RED*; Oxford

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.128$ $wR(F^2) = 0.345$ S = 1.075320 reflections 347 parameters $\mu = 0.40 \text{ mm}^{-1}$ T = 293 K $0.40 \times 0.20 \times 0.06 \text{ mm}$

Diffraction, 2009)
$T_{\min} = 0.856, T_{\max} = 0.976$
21403 measured reflections
5320 independent reflections
2694 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.106$

1 restraint H-atom parameters constrained $\Delta \rho_{max} = 1.06 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.41 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1A \cdots O2^{i}$ $N2 - H2A \cdots O1^{ii}$	0.86 0.86	2.49 2.39	3.001 (9) 3.006 (9)	119 130
Symmetry codes: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, z$; (ii) $-x + \frac{1}{2}, -y + 1, z - \frac{1}{2}$.				

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2009); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2123).

References

Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058-2077.

- Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2339.
- Gowda, B. T., Kozisek, J. & Fuess, H. (2006). Z. Naturforsch. Teil A, 55, 588– 594.
- Nirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3225.
- Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
- Shakuntala, K., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o1252.
- Shakuntala, K., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o1541.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2011). E67, o2102 [doi:10.1107/S1600536811028819]

4-Chloro-N-(3,5-dimethylphenyl)benzenesulfonamide

K. Shakuntala, Sabine Foro and B. Thimme Gowda

S1. Comment

The sulfonamide moieties are the constituents of many biologically important compounds. The hydrogen bonding preferences of sulfonamides have been investigated (Adsmond & Grant, 2001). As a part of our work on the substituent effects on the structures and other aspects of this class of compounds (Gowda *et al.*, 2006, 2007; Nirmala *et al.*, 2009; Shakuntala *et al.*, 2011*a,b*), in the present work, the crystal structure of 4-chloro-*N*-(3,5-dimethylphenyl)- benzene-sulfonamide (I) has been determined (Fig.1). The asymmetric unit of the structure contains two independent molecules. The molecules are twisted at the S atoms with the C—SO₂—NH—C torsion angles of -69.5 (7)° and 66.1 (8)° in the two molecules, compared to the values of 65.3 (2)° and 54.6 (2)° in the two independent molecules of 4-chloro-*N*-(2,5-dimethylphenyl)-benzenesulfonamide (II) (Shakuntala *et al.*, 2011*a*) and 67.9 (2)° in *N*-(3,5-dimethylphenyl)-benzenesulfonamide (III) (Shakuntala *et al.*, 2011*a*) and 67.9 (2)° in *N*-(3,5-dimethylphenyl)-benzenesulfonamide (III) (Nirmala *et al.*, 2009).

The sulfonyl and the anilino benzene rings in the two independent molecules of (I) are tilted relative to each other by 49.0 (4)° (molecule 1) and 61.7 (3)° (molecule 2), compared to the values of 59.3 (1)° (molecule 1) and 45.8 (1)° (molecule 2) in (II), -53.8 (3)° and -63.4 (3)° in the two independent molecules of (III), and 54.6 (1)° in (IV) In the title compound the molecules are linked into chains by N—H···O(S) hydrogen bonding (Table 1 and Fig.2).

S2. Experimental

The solution of chlorobenzene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 4-chlorobenzenesulfonylchloride was treated with 3,5-dimethylaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant 4-chloro-N-(3,5-dimethylphenyl)-benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from aqueous ethanol. The compound was characterized by recording its infrared and NMR spectra.

Prism like colourless single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

S3. Refinement

The H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å, methyl C —H = 0.96 Å, N—H = 0.86 Å and were refined with isotropic displacement parameters (set to 1.2 times of the U_{eq} of the parent atom).

The residual electron-density features are located in the region of H1A and S1. The highest peak is 1.31 Å from H1A and the deepest hole is 1.09 Å from S1. To improve considerably values of R1, wR2, and GOOF these bad four reflections (4 3 10 2 2 7 2 2 5 2 3 4) were omitted from the refinement.

The crystals available for X-ray studies were of rather poor quality and weak scatterers at high theta value resulting in relatively high R values.

Figure 1

Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Molecular packing of (I) with hydrogen bonding shown as dashed lines.

4-Chloro-N-(3,5-dimethylphenyl)benzenesulfonamide

Crystal	data
---------	------

$C_{14}H_{14}ClNO_2S$	F(000) = 2464
$M_r = 295.77$	$D_{\rm x} = 1.347 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, Pbca	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 2329 reflections
a = 21.990 (2) Å	$\theta = 2.5 - 27.8^{\circ}$
b = 10.0470 (8) Å	$\mu = 0.40 \text{ mm}^{-1}$
c = 26.408 (2) Å	T = 293 K
V = 5834.4 (8) Å ³	Prism, colourless
Z = 16	$0.40 \times 0.20 \times 0.06 \text{ mm}$
Data collection	
Oxford Diffraction Xcalibur	21403 measured reflections
diffractometer with Sapphire CCD detector	5320 independent reflections
Radiation source: fine-focus sealed tube	2694 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.106$
Rotation method data acquisition using ω scans.	$\theta_{\rm max} = 25.4^\circ, \ \theta_{\rm min} = 2.7^\circ$
Absorption correction: multi-scan	$h = -26 \rightarrow 26$
(CrysAlis RED; Oxford Diffraction, 2009)	$k = -9 \rightarrow 12$
$T_{\min} = 0.856, T_{\max} = 0.976$	$l = -25 \rightarrow 31$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.128$	Hydrogen site location: inferred from
$wR(F^2) = 0.345$	neighbouring sites
S = 1.07	H-atom parameters constrained
5320 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1148P)^2 + 41.4199P]$
347 parameters	where $P = (F_o^2 + 2F_c^2)/3$
1 restraint	$(\Delta/\sigma)_{\rm max} = 0.003$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.06 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C11	0.00034 (14)	0.0421 (4)	0.59314 (17)	0.1103 (14)
S1	0.26317 (10)	0.0246 (2)	0.50757 (9)	0.0454 (6)
O1	0.3036 (3)	0.0914 (6)	0.5418 (2)	0.0544 (17)
O2	0.2769 (3)	-0.1061 (6)	0.4911 (3)	0.0547 (17)
N1	0.2594 (3)	0.1192 (7)	0.4583 (3)	0.0456 (18)
H1A	0.2778	0.1947	0.4587	0.055*
C1	0.1902 (4)	0.0237 (9)	0.5340 (3)	0.047 (2)
C2	0.1472 (5)	-0.0646 (11)	0.5157 (5)	0.070 (3)
H2	0.1570	-0.1267	0.4910	0.084*
C3	0.0889 (5)	-0.0574 (12)	0.5355 (5)	0.082 (4)
Н3	0.0593	-0.1163	0.5242	0.098*
C4	0.0746 (5)	0.0348 (11)	0.5713 (5)	0.065 (3)
C5	0.1174 (5)	0.1204 (11)	0.5888 (4)	0.069 (3)
Н5	0.1075	0.1818	0.6138	0.083*
C6	0.1749 (4)	0.1166 (10)	0.5699 (4)	0.056 (3)
H6	0.2039	0.1770	0.5814	0.068*
C7	0.2264 (3)	0.0807 (8)	0.4140 (3)	0.037 (2)
C8	0.1732 (4)	0.1481 (9)	0.4019 (3)	0.044 (2)
H8	0.1583	0.2126	0.4239	0.053*
C9	0.1421 (4)	0.1212 (10)	0.3577 (4)	0.049 (2)
C10	0.1645 (4)	0.0205 (10)	0.3270 (4)	0.054 (2)
H10	0.1435	-0.0003	0.2974	0.065*
C11	0.2166 (5)	-0.0504 (10)	0.3383 (4)	0.057 (3)
C12	0.2471 (4)	-0.0189 (9)	0.3823 (3)	0.049 (2)
H12	0.2822	-0.0655	0.3907	0.058*

C13	0.0873 (4)	0.2025 (12)	0.3421 (4)	0.074 (3)
H13A	0.0989	0.2941	0.3383	0.088*
H13B	0.0563	0.1954	0.3676	0.088*
H13C	0.0717	0.1697	0.3105	0.088*
C14	0.2416 (5)	-0.1558 (11)	0.3035 (4)	0.070 (3)
H14A	0.2404	-0.1242	0.2693	0.084*
H14B	0.2174	-0.2350	0.3064	0.084*
H14C	0.2828	-0.1754	0.3128	0.084*
C12	0.09120 (19)	0.4163 (3)	0.22721 (16)	0.1050 (13)
S2	0.13516 (12)	1.0127 (3)	0.17349 (10)	0.0600 (8)
03	0.1989 (3)	1.0367 (8)	0.1698 (3)	0.085 (2)
O4	0.0976 (4)	1.0924 (8)	0.2066 (3)	0.081 (2)
N2	0.1092 (3)	1.0317 (8)	0.1159 (3)	0.0504 (19)
H2A	0.1342	1.0514	0.0920	0.061*
C15	0.1242 (4)	0.8416 (10)	0.1887 (3)	0.048 (2)
C16	0.1665 (5)	0.7509 (12)	0.1776 (4)	0.065 (3)
H16	0.2030	0.7759	0.1625	0.078*
C17	0.1549 (5)	0.6177 (11)	0.1893 (4)	0.069 (3)
H17	0.1832	0.5524	0.1809	0.083*
C18	0.1036 (5)	0.5848 (11)	0.2123 (4)	0.062 (3)
C19	0.0606 (5)	0.6750 (12)	0.2248 (4)	0.071 (3)
H19	0.0243	0.6488	0.2398	0.085*
C20	0.0720 (4)	0.8036 (11)	0.2150 (4)	0.058 (3)
H20	0.0447	0.8683	0.2258	0.070*
C21	0.0456 (4)	1.0162 (9)	0.1041 (3)	0.042 (2)
C22	0.0300 (4)	0.9218 (9)	0.0686 (3)	0.044 (2)
H22	0.0596	0.8654	0.0556	0.053*
C23	-0.0305 (4)	0.9104 (9)	0.0518 (3)	0.046 (2)
C24	-0.0726 (4)	0.9957 (9)	0.0725 (4)	0.052 (2)
H24	-0.1127	0.9909	0.0615	0.063*
C25	-0.0572 (4)	1.0907 (9)	0.1101 (4)	0.050 (2)
C26	0.0030 (4)	1.0975 (9)	0.1251 (3)	0.044 (2)
H26	0.0144	1.1584	0.1498	0.053*
C27	-0.0480 (4)	0.8106 (10)	0.0130 (4)	0.057 (3)
H27A	-0.0597	0.7292	0.0293	0.068*
H27B	-0.0141	0.7940	-0.0090	0.068*
H27C	-0.0815	0.8440	-0.0066	0.068*
C28	-0.1049 (5)	1.1804 (13)	0.1316 (5)	0.086 (4)
H28A	-0.1370	1.1277	0.1459	0.104*
H28B	-0.1210	1.2359	0.1052	0.104*
H28C	-0.0872	1.2352	0.1575	0.104*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Cl1	0.0679 (19)	0.107 (3)	0.156 (4)	-0.008 (2)	0.046 (2)	0.006 (3)
S1	0.0432 (12)	0.0429 (13)	0.0501 (13)	0.0036 (10)	-0.0105 (10)	-0.0032 (11)
01	0.046 (4)	0.060 (4)	0.057 (4)	0.001 (3)	-0.022 (3)	-0.009 (3)

O2	0.065 (4)	0.039 (4)	0.061 (4)	0.008 (3)	-0.010 (3)	-0.001 (3)
N1	0.047 (4)	0.053 (5)	0.037 (4)	-0.011 (3)	-0.007 (3)	-0.006 (4)
C1	0.049 (5)	0.041 (5)	0.051 (5)	-0.003 (4)	-0.013 (4)	0.000 (5)
C2	0.053 (6)	0.066 (7)	0.091 (8)	-0.006 (5)	-0.001 (6)	-0.022 (6)
C3	0.058 (7)	0.069 (8)	0.119 (11)	-0.021 (6)	-0.001 (7)	-0.015 (8)
C4	0.059 (6)	0.046 (6)	0.091 (8)	0.005 (5)	0.013 (6)	0.011 (6)
C5	0.076 (8)	0.064 (7)	0.067 (7)	-0.007 (6)	0.013 (6)	-0.013 (6)
C6	0.054 (6)	0.067 (7)	0.048 (6)	-0.004 (5)	0.002 (5)	-0.005 (5)
C7	0.031 (4)	0.036 (5)	0.044 (5)	-0.004 (4)	-0.008(4)	0.005 (4)
C8	0.043 (5)	0.046 (5)	0.043 (5)	0.001 (4)	-0.004 (4)	-0.005 (4)
C9	0.038 (5)	0.063 (6)	0.046 (5)	0.002 (4)	0.000 (4)	0.006 (5)
C10	0.053 (6)	0.065 (7)	0.044 (5)	-0.002 (5)	-0.014 (4)	0.004 (5)
C11	0.066 (6)	0.061 (6)	0.045 (6)	-0.003 (5)	0.000 (5)	-0.006 (5)
C12	0.049 (5)	0.053 (6)	0.044 (5)	0.008 (5)	-0.006 (4)	0.004 (5)
C13	0.049 (6)	0.094 (9)	0.079 (8)	0.009 (6)	-0.012 (5)	0.016 (7)
C14	0.080 (7)	0.075 (8)	0.054 (6)	0.009 (6)	-0.010 (6)	-0.021 (6)
Cl2	0.124 (3)	0.075 (2)	0.116 (3)	-0.007 (2)	-0.004(2)	0.035 (2)
S2	0.0554 (15)	0.0633 (17)	0.0614 (16)	-0.0026 (13)	-0.0178 (13)	-0.0092 (14)
O3	0.048 (4)	0.096 (6)	0.111 (6)	-0.020 (4)	-0.028 (4)	0.009 (5)
O4	0.103 (6)	0.087 (6)	0.052 (4)	0.022 (5)	-0.020 (4)	-0.028 (4)
N2	0.038 (4)	0.068 (5)	0.046 (4)	-0.007 (4)	-0.002 (3)	0.007 (4)
C15	0.049 (5)	0.053 (6)	0.041 (5)	0.004 (5)	-0.019 (4)	0.002 (5)
C16	0.061 (6)	0.072 (8)	0.063 (7)	-0.004 (6)	-0.001 (5)	-0.012 (6)
C17	0.075 (8)	0.063 (7)	0.070 (8)	0.021 (6)	0.010 (6)	-0.004 (6)
C18	0.069 (7)	0.069 (7)	0.049 (6)	0.004 (6)	0.001 (5)	0.008 (5)
C19	0.058 (6)	0.079 (6)	0.074 (8)	-0.003 (6)	0.003 (6)	0.017 (7)
C20	0.051 (6)	0.066 (5)	0.059 (6)	0.005 (5)	0.010 (5)	-0.012 (5)
C21	0.041 (5)	0.042 (5)	0.044 (5)	-0.002 (4)	0.004 (4)	0.007 (4)
C22	0.044 (5)	0.046 (5)	0.043 (5)	0.005 (4)	0.005 (4)	0.004 (4)
C23	0.037 (5)	0.052 (6)	0.048 (5)	0.000 (4)	0.001 (4)	0.002 (5)
C24	0.042 (5)	0.057 (6)	0.057 (6)	0.000 (4)	-0.002 (4)	0.004 (5)
C25	0.042 (5)	0.058 (6)	0.050 (6)	0.010 (4)	0.009 (4)	-0.005 (5)
C26	0.045 (5)	0.046 (6)	0.042 (5)	0.000 (4)	0.003 (4)	-0.009 (4)
C27	0.054 (6)	0.058 (6)	0.058 (6)	0.002 (5)	-0.008 (5)	-0.005 (5)
C28	0.065 (7)	0.093 (9)	0.102 (10)	0.019 (7)	-0.003 (7)	-0.021 (8)

Geometric parameters (Å, °)

Cl1—C4	1.732 (10)	Cl2—C18	1.760 (11)	
S1—O2	1.416 (6)	S2—O3	1.425 (7)	
S1—01	1.434 (6)	S2—O4	1.445 (8)	
S1—N1	1.613 (7)	S2—N2	1.636 (7)	
S1—C1	1.750 (9)	S2—C15	1.782 (10)	
N1—C7	1.429 (10)	N2—C21	1.442 (10)	
N1—H1A	0.8600	N2—H2A	0.8600	
C1—C6	1.374 (13)	C15—C16	1.335 (13)	
C1—C2	1.383 (13)	C15—C20	1.394 (13)	
C2—C3	1.384 (14)	C16—C17	1.396 (15)	

С2—Н2	0.9300	C16—H16	0.9300
C3—C4	1.361 (16)	C17—C18	1.323 (15)
С3—Н3	0.9300	C17—H17	0.9300
C4—C5	1.357 (15)	C18—C19	1.351 (15)
C5—C6	1.360 (13)	C19—C20	1.342 (14)
С5—Н5	0.9300	C19—H19	0.9300
С6—Н6	0.9300	C20—H20	0.9300
C7—C12	1.382 (12)	C21—C26	1.361 (11)
C7—C8	1.390 (11)	C21—C22	1.378 (12)
C8—C9	1.380 (12)	C22—C23	1.406 (12)
C8—H8	0.9300	C22—H22	0.9300
C9—C10	1.387 (13)	C23—C24	1.376 (12)
C9—C13	1.513 (12)	C23—C27	1.485 (12)
C10—C11	1.382 (13)	C24—C25	1.417 (13)
C10—H10	0.9300	C24—H24	0.9300
C11—C12	1 377 (12)	$C_{25} - C_{26}$	1.383(12)
C11—C14	1.577(12) 1 505 (13)	$C_{25} = C_{28}$	1.305(12) 1 495(13)
C12—H12	0.9300	C26—H26	0.9300
C13—H13A	0.9500	C27—H27A	0.9500
C13—H13B	0.9600	C27—H27B	0.9600
C13—H13C	0.9600	C27—H27C	0.9600
C14—H14A	0.9600	C28—H28A	0.9600
C14—H14B	0.9600	C28—H28B	0.9600
C14—H14C	0.9600	C28—H28C	0.9600
	0.9000	620 11200	0.9000
02-81-01	119.7 (4)	03-82-04	120.6 (5)
02 - 81 - N1	108.0(4)	03 - 82 - 81	120.0(5)
01 - 81 - N1	105.4 (4)	03 - 52 - 112 04 - 82 - 112	107.4(4)
02 - 81 - C1	103.1(1) 108.2(4)	03 - 82 - C15	107.1(1) 108.2(5)
01 - 81 - C1	108.2(1) 108.6(4)	04 - 82 - C15	108.2(5)
N1 = S1 = C1	106.1 (4)	$N^2 = S^2 = C_{15}$	106.0(4)
C7-N1-S1	121.8 (6)	$C_{21} = N_{2} = S_{2}$	121.8 (6)
C7—N1—H1A	119.1	$C_{21} = N_{2} = H_{2} = H_{2}$	119.1
S1_N1_H1A	119.1	S2H2A	119.1
C6-C1-C2	120.6 (9)	$C_{16} - C_{15} - C_{20}$	119.8 (10)
C6-C1-S1	120.0(9) 1197(7)	C16-C15-S2	120.9 (8)
$C_2 - C_1 - S_1$	119.7 (7)	$C_{20} - C_{15} - S_{2}$	119.2 (8)
$C_{2} = C_{1} = S_{1}$	117.9(0)	$C_{20} = C_{10} = S_2$	119.2(0) 118.6(10)
$C_3 = C_2 = C_1$	121.1	C15 C16 H16	120.7
C_{1} C_{2} H_{2}	121.1	C17-C16-H16	120.7
$C_1 = C_2 = H_2$	121.1 120.8(10)	C18 $C17$ $C16$	120.7 110.7(10)
$C_{4} = C_{3} = C_{2}$	120.8 (10)	C18 C17 H17	119.7 (10)
C2_C3_H3	119.0	$C_{10} - C_{17} - H_{17}$	120.1
$C_2 - C_3 - C_3$	119.0 120 A (10)	$C_{10} - C_{17} - I_{117}$	120.1 122.8(11)
$C_{3} - C_{4} - C_{3}$	120.4(10) 121.0(0)	$C_{17} = C_{10} = C_{19}$	122.0(11) 118.4(0)
$C_3 = C_4 = C_{11}$	121.0 (9)	C_{1} $-C_{10}$ $-C_{12}$ C_{10} C_{12} C_{12}	110.4 (9)
C_{4}	110.0(9) 120.3(11)	$C_{19} - C_{10} - C_{12}$	110./(9) 117.9(11)
C4 C5 U5	120.3 (11)	C_{20} C_{19} C_{10} U_{10}	117.8(11)
U4—U3—ПЗ	119.9	U20-U19-H19	121.1

С6—С5—Н5	119.9	С18—С19—Н19	121.1
C5-C6-C1	119 9 (10)	C19 - C20 - C15	120.9(10)
C5—C6—H6	120.0	C19—C20—H20	119.5
C1—C6—H6	120.0	С15—С20—Н20	119.5
C12—C7—C8	119.3 (8)	$C_{26} - C_{21} - C_{22}$	121.3 (8)
C12 - C7 - N1	121 7 (7)	$C_{26} = C_{21} = N_{2}$	121.0(8)
C8-C7-N1	119.0 (8)	$C_{22} = C_{21} = N_{2}$	127.6(8)
C9—C8—C7	121.2 (8)	$C_{21} - C_{22} - C_{23}$	120.4 (8)
C9—C8—H8	119.4	C21—C22—H22	119.8
C7—C8—H8	119.4	C_{23} C_{22} H_{22}	119.8
C8-C9-C10	117 4 (8)	C_{24} C_{23} C_{22}	117 3 (9)
C8-C9-C13	121 3 (9)	C_{24} C_{23} C_{27}	121 5 (8)
C10-C9-C13	121.2 (9)	C^{22} C^{23} C^{27}	121.2(8)
$C_{11} - C_{10} - C_{9}$	121.2(9) 122.9(9)	C_{23} C_{24} C_{25}	121.2(0) 122.6(8)
C11-C10-H10	118.5	C_{23} C_{24} H_{24}	118 7
C9-C10-H10	118.5	$C_{25} = C_{24} = H_{24}$	118.7
C_{12} C_{11} C_{10}	117.9 (9)	$C_{26} - C_{25} - C_{24}$	117.5 (8)
C12 - C11 - C14	1199(9)	$C_{26} = C_{25} = C_{28}$	122.2(9)
C10-C11-C14	122.2 (9)	C_{24} C_{25} C_{28}	120.3(9)
$C_{11} - C_{12} - C_{7}$	121.2(9)	$C_{21} = C_{26} = C_{25}$	120.8 (8)
C11-C12-H12	119.4	$C_{21} = C_{26} = H_{26}$	119.6
C7-C12-H12	119.4	C25—C26—H26	119.6
C9—C13—H13A	109.5	C23—C27—H27A	109.5
C9—C13—H13B	109.5	C23—C27—H27B	109.5
H13A—C13—H13B	109.5	H27A—C27—H27B	109.5
C9—C13—H13C	109.5	С23—С27—Н27С	109.5
H13A—C13—H13C	109.5	Н27А—С27—Н27С	109.5
H13B—C13—H13C	109.5	H27B—C27—H27C	109.5
C11—C14—H14A	109.5	C25—C28—H28A	109.5
C11—C14—H14B	109.5	C25—C28—H28B	109.5
H14A—C14—H14B	109.5	H28A—C28—H28B	109.5
C11—C14—H14C	109.5	С25—С28—Н28С	109.5
H14A—C14—H14C	109.5	H28A—C28—H28C	109.5
H14B—C14—H14C	109.5	H28B—C28—H28C	109.5
O2—S1—N1—C7	46.5 (7)	O3—S2—N2—C21	-179.5 (7)
O1—S1—N1—C7	175.5 (6)	O4—S2—N2—C21	-50.1 (8)
C1—S1—N1—C7	-69.4 (7)	C15—S2—N2—C21	66.0 (8)
O2—S1—C1—C6	153.8 (7)	O3—S2—C15—C16	-23.8(9)
01—S1—C1—C6	22.4 (9)	O4—S2—C15—C16	-156.4 (8)
N1—S1—C1—C6	-90.5 (8)	N2—S2—C15—C16	88.4 (8)
O2—S1—C1—C2	-30.9(9)	O3—S2—C15—C20	152.8 (8)
01—S1—C1—C2	-162.3 (8)	O4—S2—C15—C20	20.2 (9)
N1—S1—C1—C2	84.8 (9)	N2—S2—C15—C20	-95.0 (8)
C6—C1—C2—C3	-1.1 (16)	C20-C15-C16-C17	5.0 (15)
\$1—C1—C2—C3	-176.4 (9)	S2—C15—C16—C17	-178.4 (8)
C1—C2—C3—C4	0.8 (19)	C15—C16—C17—C18	-2.1 (17)
C2—C3—C4—C5	-0.9 (19)	C16—C17—C18—C19	0.9 (18)
-			

C2—C3—C4—Cl1	178.0 (10)	C16—C17—C18—Cl2	-179.0 (9)
C3—C4—C5—C6	1.3 (18)	C17—C18—C19—C20	-2.5 (18)
Cl1—C4—C5—C6	-177.5 (9)	Cl2—C18—C19—C20	177.3 (9)
C4—C5—C6—C1	-1.7 (17)	C18—C19—C20—C15	5.4 (17)
C2-C1-C6-C5	1.6 (15)	C16—C15—C20—C19	-6.8 (15)
S1—C1—C6—C5	176.9 (8)	S2-C15-C20-C19	176.5 (9)
S1—N1—C7—C12	-71.4 (10)	S2—N2—C21—C26	62.2 (11)
S1—N1—C7—C8	110.6 (8)	S2—N2—C21—C22	-121.8 (8)
C12—C7—C8—C9	-2.7 (13)	C26—C21—C22—C23	2.1 (13)
N1—C7—C8—C9	175.3 (8)	N2-C21-C22-C23	-173.9 (8)
C7—C8—C9—C10	2.7 (13)	C21—C22—C23—C24	-0.5 (13)
C7—C8—C9—C13	-174.6 (9)	C21—C22—C23—C27	179.1 (8)
C8—C9—C10—C11	-1.5 (14)	C22—C23—C24—C25	-1.2 (14)
C13—C9—C10—C11	175.9 (10)	C27—C23—C24—C25	179.2 (9)
C9—C10—C11—C12	0.2 (15)	C23—C24—C25—C26	1.2 (14)
C9—C10—C11—C14	-177.6 (9)	C23—C24—C25—C28	-179.6 (10)
C10-C11-C12-C7	-0.2 (15)	C22—C21—C26—C25	-2.1 (14)
C14—C11—C12—C7	177.7 (9)	N2-C21-C26-C25	173.8 (8)
C8—C7—C12—C11	1.4 (13)	C24—C25—C26—C21	0.4 (14)
N1-C7-C12-C11	-176.6 (9)	C28—C25—C26—C21	-178.7 (10)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N1—H1A···O2 ⁱ	0.86	2.49	3.001 (9)	119
N2—H2A···O1 ⁱⁱ	0.86	2.39	3.006 (9)	130

Symmetry codes: (i) -x+1/2, y+1/2, z; (ii) -x+1/2, -y+1, z-1/2.