# organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# *N*-(2,4-Dinitrophenyl)-1,3-dimethoxy-isoindolin-2-amine

#### Na-Na Du, Hua-Jie Xu and Liang-Quan Sheng\*

Department of Chemistry, Fuyang Normal College, Fuyang, Anhui 236041, People's Republic of China

Correspondence e-mail: shenglq@fync.edu.cn

Received 15 May 2011; accepted 2 July 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.067; wR factor = 0.225; data-to-parameter ratio = 13.4.

In the title compound,  $C_{16}H_{16}N_4O_6$ , the planes of the isoindole and dinitrobenzene groups make a dihedral angle between of 84.15 (8)°. The N atom of the isoindole group is displaced by 0.2937 (3) Å from the plane through the remaining atoms. An intramolecular N-H···O interaction occurs. In the crystal, inversion dimers linked by pairs of N-H···O hydrogen bonds occur.

#### **Related literature**

For general background to isoindoles and their derivatives, see: Mancilla *et al.* (2007); Toru *et al.* (1986). For the synthetic method and related structures, see: Maliha *et al.* (2008, 2009).



#### Experimental

| Crystal data               |
|----------------------------|
| $C_{16}H_{16}N_4O_6$       |
| $M_r = 360.33$             |
| Triclinic, $P\overline{1}$ |

| a = 7.727 (4) $A$ |
|-------------------|
| b = 10.244 (5)    |
| c = 11.326 (6)    |
|                   |

| $\alpha = 86.076 \ (9)^{\circ}$ |  |
|---------------------------------|--|
| $\beta = 77.705 \ (8)^{\circ}$  |  |
| $\gamma = 70.794 \ (8)^{\circ}$ |  |
| $V = 827.2 (7) \text{ Å}^3$     |  |
| 7 - 2                           |  |

#### Data collection

| Bruker SMART APEXII CCD                      | 4365 measured reflections              |
|----------------------------------------------|----------------------------------------|
| diffractometer                               | 3181 independent reflections           |
| Absorption correction: multi-scan            | 2045 reflections with $I > 2\sigma(I)$ |
| (SADABS; Sheldrick, 1996)                    | $R_{\rm int} = 0.062$                  |
| $T_{\rm min} = 0.982, \ T_{\rm max} = 0.989$ |                                        |
|                                              |                                        |

Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.067$ | 237 parameters                                            |
|---------------------------------|-----------------------------------------------------------|
| $wR(F^2) = 0.225$               | H-atom parameters constrained                             |
| S = 1.02                        | $\Delta \rho_{\rm max} = 0.49 \ {\rm e} \ {\rm \AA}^{-3}$ |
| 3181 reflections                | $\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$  |

Mo  $K\alpha$  radiation  $\mu = 0.11 \text{ mm}^{-1}$ 

 $0.16 \times 0.14 \times 0.10 \text{ mm}$ 

T = 296 K

# Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$                   | D-H          | $H \cdot \cdot \cdot A$ | $D \cdots A$           | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------------------------|--------------|-------------------------|------------------------|--------------------------------------|
| $N2 - H2A \cdots O1$ $N2 - H2A \cdots O1^{i}$ | 0.86<br>0.86 | 1.96<br>2.27            | 2.593 (3)<br>3.032 (3) | 130<br>148                           |
| Commentation and as (i)                       |              | 2                       |                        |                                      |

Symmetry code: (i) -x, -y + 1, -z + 2.

Data collection: *APEX2* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Key Project of Science and Technology of Anhui, (grant No. 08010302218), the Natural Science Foundation of Anhui Provincial University (grant No. KJ2009A127) and the National Natural Science Foundation of China (grant No. 20971024).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2248).

#### References

- Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Maliha, B., Hussain, I., Tahir, M. N., Tariq, M. I. & Siddiqui, H. L. (2008). Acta Cryst. E64, 0626.
- Maliha, B., Tariq, M. I., Tahir, M. N., Hussain, I. & Ali, M. (2009). Acta Cryst. E65, 041.
- Mancilla, T., Correa-Basurto, J. C., Carbajal, K. S. A., Escalante, E. T. J. S. & Ferrara, J. T. (2007). J. Mex. Chem. Soc. E51, 96–102.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Toru, H., Eiki, N., Ryo, Y. & Shunichi, H. (1986). US Patent No. 4 595 409.

# supporting information

Acta Cryst. (2011). E67, o1970 [doi:10.1107/S1600536811026316]

# N-(2,4-Dinitrophenyl)-1,3-dimethoxyisoindolin-2-amine

## Na-Na Du, Hua-Jie Xu and Liang-Quan Sheng

#### S1. Comment

Isoindoles and their derivatives are of great pharmaceutical importance (Mancilla *et al.*, 2007). In addition, some derivatives of isoindoles have shown a wide range of herbicidal activities (Toru *et al.*, 1986). Here, the synthesis and characterization with X-ray crystallography of a new derivative is described.

The molecule of the title compound (Fig. 1), is similar to the previously reported compound, 1,3-dimethoxy-2,3-dihydro-1H-isoindole-2-carbothioamide, with its bond lengths and angles being within normal ranges (Maliha *et al.*, 2009). Ring A (C1—C6) is planar, while the five-membered ring B (N1/C5/C6/C7/C8) adopts an envelope conformation with atom N1 displaced by 0.320 (3) Å from the plane of the other ring atoms. The molecule contains a pseudo mirror plane, with the symmetrical orientations of the O-CH<sub>3</sub> groups leading to R and S-configurations at carbon atoms C7 and C8, respectively. The crystal structure is stabilized by an intramolecular N—H…O interaction and an intermolecular N—H…O interaction (see Table 1), which links a pair of molecules to form a dimer (Fig. 2).

#### **S2.** Experimental

All reagents and solvents were used as obtained commercially without further purification. The title compound was prepared according to the reported procedure (Maliha *et al.*, 2009). For the preparation of the title compound, a mixture of *ortho*-phthaldehyde (1.34 g, 10 mmol) and 2, 4-dinitrophenylhydrazine (1.98 g, 10 mmol) in 20 ml of methanol, and aqueous NaOH (5 ml, 5%) was added dropwise with constant stirring. Then, it was further refluxed in methanol for 2 h, and left to stand overnight. After 3 h, a colorless precipitate was obtained, which was washed with hexane, ethanol and acetone, respectively. Crystals suitable for X-ray analysis were obtained from a solution of acetone/methanol mixture by slow evaporation at room temperature.

#### **S3. Refinement**

H atoms bonded to C atoms were placed geometrically and treated as riding, with C—H distances 0.93–0.98Å and  $U_{iso}(H) = 1.2U_{eq}(C)$  for the CH while  $U_{iso}(H) = 1.5U_{eq}(C)$  for the CH<sub>3</sub> groups. The amide H atoms were located from difference maps and refined with the N—H distances restrained to 0.86 Å and  $U_{iso}(H) = 1.2U_{eq}(N)$ .



#### Figure 1

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.



## Figure 2

The dimeric structure of the title compound formed by intermolecular hydrogen bonds. The intra- and intermolecular hydrogen bonds are shown as green dashed lines.

#### N-(2,4-Dinitrophenyl)-1,3-dimethoxyisoindolin-2-amine

Crystal data

 $\begin{array}{l} C_{16}H_{16}N_4O_6\\ M_r = 360.33\\ Triclinic, P\overline{1}\\ Hall symbol: -P 1\\ a = 7.727 \ (4) \ Å\\ b = 10.244 \ (5) \ Å\\ c = 11.326 \ (6) \ Å\\ a = 86.076 \ (9)^\circ\\ \beta = 77.705 \ (8)^\circ\\ \gamma = 70.794 \ (8)^\circ\\ V = 827.2 \ (7) \ Å^3 \end{array}$ 

#### Data collection

Bruker SMART APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996)  $T_{\min} = 0.982, T_{\max} = 0.989$ 

#### Refinement

| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.067$ | Secondary atom site location: difference Fourier<br>map<br>Hydrogen site location: inferred from |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| $wR(F^2) = 0.225$                                                                    | neighbouring sites                                                                               |
| S = 1.02                                                                             | H-atom parameters constrained                                                                    |
| 3181 reflections                                                                     | $w = 1/[\sigma^2(F_o^2) + (0.1489P)^2]$                                                          |
| 237 parameters                                                                       | where $P = (F_o^2 + 2F_c^2)/3$                                                                   |
| 0 restraints                                                                         | $(\Delta/\sigma)_{\rm max} < 0.001$                                                              |
| Primary atom site location: structure-invariant                                      | $\Delta \rho_{\rm max} = 0.49 \text{ e} \text{ Å}^{-3}$                                          |
| direct methods                                                                       | $\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$                                       |

Z = 2

F(000) = 376

 $\theta = 2.8 - 27.5^{\circ}$  $\mu = 0.11 \text{ mm}^{-1}$ 

Block, colorless  $0.16 \times 0.14 \times 0.10$  mm

4365 measured reflections

 $\theta_{\rm max} = 26.0^\circ, \ \theta_{\rm min} = 1.8^\circ$ 

3181 independent reflections

2045 reflections with  $I > 2\sigma(I)$ 

T = 296 K

 $R_{\rm int} = 0.062$ 

 $h = -9 \rightarrow 8$ 

 $k = -11 \rightarrow 12$ 

 $l = -13 \rightarrow 13$ 

 $D_{\rm x} = 1.447 {\rm Mg} {\rm m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 1638 reflections

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|    | x          | У          | Ζ          | $U_{ m iso}$ */ $U_{ m eq}$ |
|----|------------|------------|------------|-----------------------------|
| C1 | 0.1312 (5) | 0.1163 (3) | 0.6041 (3) | 0.0665 (9)                  |
| H1 | 0.1032     | 0.0400     | 0.6417     | 0.080*                      |
| C2 | 0.1069 (5) | 0.1515 (4) | 0.4885 (3) | 0.0741 (10)                 |

| Н2   | 0.0623     | 0 0983       | 0 4471       | 0.089*      |
|------|------------|--------------|--------------|-------------|
| C3   | 0.1476 (5) | 0 2646 (4)   | 0.4328(3)    | 0.0684 (9)  |
| H3   | 0 1297     | 0.2869       | 0 3543       | 0.082*      |
| C4   | 0.2142(4)  | 0.3446(3)    | 0 4915 (3)   | 0.0588(8)   |
| H4   | 0.2414     | 0.4212       | 0.4539       | 0.071*      |
| C5   | 0.2401 (4) | 0.3088(3)    | 0.6080 (2)   | 0.0451 (6)  |
| C6   | 0.1985 (4) | 0.1974 (3)   | 0.6640(2)    | 0.0487(7)   |
| C7   | 0.2308 (4) | 0.1839 (3)   | 0.7897(2)    | 0.0501(7)   |
| H7   | 0.1096     | 0.2205       | 0.8450       | 0.060*      |
| C8   | 0.3055 (4) | 0.3813 (3)   | 0.6914 (2)   | 0.0450 (6)  |
| H8   | 0.2013     | 0.4633       | 0.7241       | 0.054*      |
| C9   | 0.4404 (3) | 0.3127 (2)   | 0.9664 (2)   | 0.0404 (6)  |
| C10  | 0.4134 (3) | 0.3760(2)    | 1.0796(2)    | 0.0405 (6)  |
| C11  | 0.5561 (4) | 0.3448 (2)   | 1.1440 (2)   | 0.0436 (6)  |
| H11  | 0.5367     | 0.3873       | 1.2179       | 0.052*      |
| C12  | 0.7242 (4) | 0.2512 (3)   | 1.0975 (2)   | 0.0478 (7)  |
| C13  | 0.7560 (4) | 0.1846 (3)   | 0.9883 (2)   | 0.0516 (7)  |
| H13  | 0.8714     | 0.1193       | 0.9589       | 0.062*      |
| C14  | 0.6169 (4) | 0.2160 (3)   | 0.9250 (2)   | 0.0496 (7)  |
| H14  | 0.6395     | 0.1717       | 0.8516       | 0.060*      |
| C15  | 0.4939 (5) | -0.0207 (3)  | 0.7495 (4)   | 0.0802 (10) |
| H15A | 0.4677     | -0.0681      | 0.6887       | 0.120*      |
| H15B | 0.5744     | -0.0866      | 0.7950       | 0.120*      |
| H15C | 0.5546     | 0.0439       | 0.7116       | 0.120*      |
| C16  | 0.6218 (5) | 0.3179 (3)   | 0.5833 (3)   | 0.0656 (8)  |
| H16A | 0.6744     | 0.2530       | 0.6417       | 0.098*      |
| H16B | 0.7128     | 0.3590       | 0.5413       | 0.098*      |
| H16C | 0.5869     | 0.2708       | 0.5265       | 0.098*      |
| N1   | 0.3375 (3) | 0.2795 (2)   | 0.78934 (18) | 0.0438 (5)  |
| N2   | 0.3060 (3) | 0.3424 (2)   | 0.90125 (19) | 0.0499 (6)  |
| H2A  | 0.1982     | 0.4013       | 0.9289       | 0.060*      |
| N3   | 0.2382 (3) | 0.4743 (2)   | 1.13435 (19) | 0.0478 (6)  |
| N4   | 0.8726 (4) | 0.2154 (3)   | 1.1652 (3)   | 0.0671 (8)  |
| 01   | 0.1085 (3) | 0.5064 (3)   | 1.0803 (2)   | 0.0811 (8)  |
| O2   | 0.2215 (3) | 0.5263 (2)   | 1.23014 (19) | 0.0758 (7)  |
| O3   | 1.0248 (4) | 0.1387 (4)   | 1.1204 (3)   | 0.1139 (12) |
| O4   | 0.8371 (4) | 0.2619 (3)   | 1.2668 (3)   | 0.1046 (11) |
| O5   | 0.3227 (3) | 0.0518 (2)   | 0.8286 (2)   | 0.0697 (6)  |
| O6   | 0.4614 (3) | 0.42259 (18) | 0.64289 (17) | 0.0553 (6)  |

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|----|-------------|-------------|-------------|--------------|--------------|--------------|
| C1 | 0.078 (2)   | 0.0666 (19) | 0.071 (2)   | -0.0393 (17) | -0.0207 (17) | -0.0068 (15) |
| C2 | 0.078 (2)   | 0.087 (2)   | 0.073 (2)   | -0.0333 (19) | -0.0310 (18) | -0.0206 (18) |
| C3 | 0.077 (2)   | 0.082 (2)   | 0.0539 (18) | -0.0243 (18) | -0.0284 (16) | -0.0103 (16) |
| C4 | 0.074 (2)   | 0.0550 (17) | 0.0505 (17) | -0.0184 (15) | -0.0220 (14) | -0.0007 (13) |
| C5 | 0.0475 (15) | 0.0434 (13) | 0.0443 (14) | -0.0093 (11) | -0.0157 (11) | -0.0063 (11) |

| C6  | 0.0502 (15) | 0.0503 (15) | 0.0488 (15) | -0.0158 (12) | -0.0156 (12) | -0.0062 (12) |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C7  | 0.0563 (16) | 0.0491 (15) | 0.0472 (15) | -0.0189 (12) | -0.0116 (12) | -0.0027 (12) |
| C8  | 0.0533 (15) | 0.0390 (13) | 0.0429 (14) | -0.0110 (11) | -0.0147 (11) | -0.0043 (10) |
| C9  | 0.0470 (14) | 0.0391 (13) | 0.0373 (13) | -0.0139 (11) | -0.0139 (11) | 0.0029 (10)  |
| C10 | 0.0463 (14) | 0.0361 (12) | 0.0380 (13) | -0.0112 (10) | -0.0100 (11) | 0.0007 (10)  |
| C11 | 0.0552 (16) | 0.0383 (13) | 0.0406 (14) | -0.0156 (11) | -0.0160 (12) | 0.0006 (10)  |
| C12 | 0.0504 (16) | 0.0435 (14) | 0.0530 (16) | -0.0139 (12) | -0.0208 (12) | 0.0029 (11)  |
| C13 | 0.0493 (16) | 0.0480 (15) | 0.0534 (16) | -0.0084 (12) | -0.0127 (13) | -0.0026 (12) |
| C14 | 0.0523 (16) | 0.0522 (15) | 0.0425 (14) | -0.0110 (13) | -0.0131 (12) | -0.0060 (12) |
| C15 | 0.087 (3)   | 0.0460 (17) | 0.101 (3)   | -0.0132 (17) | -0.020 (2)   | 0.0006 (17)  |
| C16 | 0.067 (2)   | 0.0663 (19) | 0.0624 (19) | -0.0253 (16) | -0.0027 (15) | -0.0038 (15) |
| N1  | 0.0538 (13) | 0.0420 (11) | 0.0369 (11) | -0.0127 (10) | -0.0142 (9)  | -0.0062 (9)  |
| N2  | 0.0485 (13) | 0.0547 (13) | 0.0413 (12) | -0.0047 (10) | -0.0136 (10) | -0.0118 (10) |
| N3  | 0.0526 (13) | 0.0487 (12) | 0.0406 (12) | -0.0100 (10) | -0.0152 (10) | -0.0038 (9)  |
| N4  | 0.0626 (17) | 0.0641 (16) | 0.0746 (18) | -0.0036 (13) | -0.0367 (14) | -0.0125 (14) |
| 01  | 0.0548 (13) | 0.1044 (18) | 0.0684 (15) | 0.0123 (12)  | -0.0283 (11) | -0.0361 (13) |
| O2  | 0.0744 (15) | 0.0890 (16) | 0.0526 (13) | 0.0012 (12)  | -0.0230 (11) | -0.0312 (11) |
| O3  | 0.0634 (16) | 0.139 (3)   | 0.122 (2)   | 0.0166 (17)  | -0.0444 (16) | -0.052 (2)   |
| O4  | 0.0970 (19) | 0.111 (2)   | 0.094 (2)   | 0.0161 (16)  | -0.0634 (16) | -0.0374 (17) |
| O5  | 0.0905 (16) | 0.0517 (12) | 0.0685 (14) | -0.0258 (11) | -0.0194 (12) | 0.0151 (10)  |
| O6  | 0.0670 (13) | 0.0474 (11) | 0.0574 (12) | -0.0267 (10) | -0.0108 (10) | -0.0039 (9)  |
|     |             |             |             |              |              |              |

# Geometric parameters (Å, °)

| C1—C2    | 1.369 (5) | C10—N3      | 1.436 (3) |
|----------|-----------|-------------|-----------|
| C1—C6    | 1.390 (4) | C11—C12     | 1.357 (4) |
| C1—H1    | 0.9300    | C11—H11     | 0.9300    |
| C2—C3    | 1.376 (5) | C12—C13     | 1.390 (4) |
| С2—Н2    | 0.9300    | C12—N4      | 1.448 (4) |
| C3—C4    | 1.370 (4) | C13—C14     | 1.358 (4) |
| С3—Н3    | 0.9300    | C13—H13     | 0.9300    |
| C4—C5    | 1.384 (4) | C14—H14     | 0.9300    |
| C4—H4    | 0.9300    | C15—O5      | 1.430 (4) |
| С5—С6    | 1.365 (4) | C15—H15A    | 0.9600    |
| С5—С8    | 1.499 (3) | C15—H15B    | 0.9600    |
| C6—C7    | 1.486 (4) | C15—H15C    | 0.9600    |
| С7—О5    | 1.396 (4) | C16—O6      | 1.418 (4) |
| C7—N1    | 1.473 (3) | C16—H16A    | 0.9600    |
| С7—Н7    | 0.9800    | C16—H16B    | 0.9600    |
| C8—O6    | 1.397 (3) | C16—H16C    | 0.9600    |
| C8—N1    | 1.472 (3) | N1—N2       | 1.399 (3) |
| С8—Н8    | 0.9800    | N2—H2A      | 0.8600    |
| C9—N2    | 1.343 (3) | N3—O2       | 1.205 (3) |
| C9—C14   | 1.401 (4) | N3—O1       | 1.227 (3) |
| C9—C10   | 1.421 (3) | N4—O3       | 1.204 (3) |
| C10—C11  | 1.388 (4) | N4—O4       | 1.217 (3) |
| C2—C1—C6 | 118.4 (3) | C12—C11—H11 | 120.5     |
|          | er (e)    |             |           |

| C2 C1 H1                        | 120.8                | C10 C11 H11                                     | 120.5                |
|---------------------------------|----------------------|-------------------------------------------------|----------------------|
|                                 | 120.8                | $C_{11} = C_{12} = C_{13}$                      | 120.3<br>121.7(2)    |
| $C_0 = C_1 = C_1$               | 120.0                | $C_{11} = C_{12} = C_{13}$                      | 121.7(2)             |
| $C_1 = C_2 = C_3$               | 121.0 (5)            | $C_{11} = C_{12} = N_{4}$                       | 119.4(3)             |
| $C_1 = C_2 = H_2$               | 119.5                | C13 - C12 - N4                                  | 110.0(2)             |
| $C_3 = C_2 = C_2$               | 119.5                | C14 - C13 - C12                                 | 119.5 (5)            |
| C4 - C3 - C2                    | 120.8 (3)            | C12 C12 H12                                     | 120.4                |
| C4 - C3 - H3                    | 119.0                | C12—C13—H13                                     | 120.4                |
| C2—C3—H3                        | 119.6                | C13 - C14 - C9                                  | 122.3 (2)            |
| $C_3 - C_4 - C_5$               | 118.4 (3)            | C13—C14—H14                                     | 118.8                |
| C3—C4—H4                        | 120.8                | C9—C14—H14                                      | 118.8                |
| C5—C4—H4                        | 120.8                | O5—C15—H15A                                     | 109.5                |
| C6—C5—C4                        | 121.1 (3)            | O5—C15—H15B                                     | 109.5                |
| C6—C5—C8                        | 110.5 (2)            | H15A—C15—H15B                                   | 109.5                |
| C4—C5—C8                        | 128.4 (3)            | O5—C15—H15C                                     | 109.5                |
| C5—C6—C1                        | 120.4 (3)            | H15A—C15—H15C                                   | 109.5                |
| C5—C6—C7                        | 110.8 (2)            | H15B—C15—H15C                                   | 109.5                |
| C1—C6—C7                        | 128.8 (3)            | O6—C16—H16A                                     | 109.5                |
| O5—C7—N1                        | 112.1 (2)            | O6—C16—H16B                                     | 109.5                |
| O5—C7—C6                        | 117.2 (2)            | H16A—C16—H16B                                   | 109.5                |
| N1—C7—C6                        | 101.9 (2)            | O6—C16—H16C                                     | 109.5                |
| О5—С7—Н7                        | 108.4                | H16A—C16—H16C                                   | 109.5                |
| N1—C7—H7                        | 108.4                | H16B—C16—H16C                                   | 109.5                |
| С6—С7—Н7                        | 108.4                | N2—N1—C8                                        | 112.18 (19)          |
| O6—C8—N1                        | 113.0 (2)            | N2—N1—C7                                        | 113.7 (2)            |
| O6—C8—C5                        | 117.0 (2)            | C8—N1—C7                                        | 110.43 (19)          |
| N1—C8—C5                        | 101.6 (2)            | C9—N2—N1                                        | 121.4 (2)            |
| O6—C8—H8                        | 108.3                | C9—N2—H2A                                       | 119.3                |
| N1—C8—H8                        | 108.3                | N1—N2—H2A                                       | 119.3                |
| С5—С8—Н8                        | 108.3                | O2—N3—O1                                        | 121.1 (2)            |
| N2-C9-C14                       | 121.0 (2)            | O2—N3—C10                                       | 120.2 (2)            |
| N2-C9-C10                       | 122.7(2)             | 01 - N3 - C10                                   | 118.7(2)             |
| C14—C9—C10                      | 116.3 (2)            | 03—N4—04                                        | 122.5(3)             |
| C11-C10-C9                      | 121 4 (2)            | 03—N4—C12                                       | 1191(3)              |
| $C_{11} - C_{10} - N_3$         | 116 3 (2)            | 04 - N4 - C12                                   | 119.1(3)<br>1184(3)  |
| C9-C10-N3                       | 1223(2)              | C7-05-C15                                       | 110.1(3)<br>114.8(2) |
| $C_{12}$ $C_{11}$ $C_{10}$      | 122.3(2)<br>118.9(2) | $C_{8} = O_{6} = C_{16}$                        | 114.0(2)<br>115.8(2) |
|                                 | 110.9 (2)            | 00 00 010                                       | 115.6 (2)            |
| $C_{1}$ $C_{1}$ $C_{2}$ $C_{3}$ | -0.2(5)              | N4 C12 C13 C14                                  | 170 1 (3)            |
| $C_{1} = C_{2} = C_{3}$         | 0.2(5)               | $C_{12} = C_{12} = C_{13} = C_{14} = C_{14}$    | -0.6(4)              |
| $C_1 = C_2 = C_3 = C_4$         | 0.2(5)               | $N_2 = C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1$ | 170 A (2)            |
| $C_2 = C_3 = C_4 = C_5$         | 0.2(3)               | $N_2 = C_9 = C_1 4 = C_{13}$                    | 1/9.4(2)             |
| $C_{3}$ $C_{4}$ $C_{5}$ $C_{8}$ | -0.7(4)              | C10 - C9 - C14 - C13                            | -0.6(4)              |
| $C_4 = C_5 = C_6 = C_1$         | -1/8.1(3)            | 00 - 0 - 11 - 102                               | 04.0 ( <i>3</i> )    |
| $C_{4} = C_{5} = C_{6} = C_{1}$ | 0.8 (4)              | $C_{0} = C_{0} = N_{1} = C_{0}$                 | -149.3(2)            |
|                                 | 1/8.6 (3)            | $U_0 - U_8 - N_1 - U_7$                         | -14/.5(2)            |
| C4—C5—C6—C7                     | -1/7.7(2)            | C5—C8—N1—C7                                     | -21.3 (3)            |
| C8—C5—C6—C7                     | 0.2 (3)              | US-C/-N1-N2                                     | -85.2 (3)            |
| C2—C1—C6—C5                     | -0.3 (5)             | C6—C7—N1—N2                                     | 148.6 (2)            |
| C2—C1—C6—C7                     | 177.8 (3)            | O5—C7—N1—C8                                     | 147.7 (2)            |

| C5—C6—C7—O5     | -135.8 (3) | C6—C7—N1—C8   | 21.5 (3)   |
|-----------------|------------|---------------|------------|
| C1—C6—C7—O5     | 46.0 (4)   | C14—C9—N2—N1  | -0.8 (4)   |
| C5—C6—C7—N1     | -13.0 (3)  | C10—C9—N2—N1  | 179.2 (2)  |
| C1C6C7N1        | 168.7 (3)  | C8—N1—N2—C9   | -122.1 (3) |
| C6—C5—C8—O6     | 136.2 (2)  | C7—N1—N2—C9   | 111.7 (3)  |
| C4—C5—C8—O6     | -46.1 (4)  | C11—C10—N3—O2 | 1.0 (4)    |
| C6C5C8N1        | 12.7 (3)   | C9—C10—N3—O2  | -179.5 (3) |
| C4—C5—C8—N1     | -169.6 (3) | C11—C10—N3—O1 | 179.2 (2)  |
| N2-C9-C10-C11   | -179.0 (2) | C9—C10—N3—O1  | -1.4 (4)   |
| C14—C9—C10—C11  | 1.0 (4)    | C11—C12—N4—O3 | -175.6 (3) |
| N2-C9-C10-N3    | 1.6 (4)    | C13—C12—N4—O3 | 6.7 (5)    |
| C14—C9—C10—N3   | -178.4 (2) | C11—C12—N4—O4 | 6.0 (5)    |
| C9-C10-C11-C12  | -0.3 (4)   | C13—C12—N4—O4 | -171.6 (3) |
| N3—C10—C11—C12  | 179.2 (2)  | N1-C7-O5-C15  | -66.5 (3)  |
| C10-C11-C12-C13 | -1.0 (4)   | C6—C7—O5—C15  | 50.8 (3)   |
| C10-C11-C12-N4  | -178.6 (2) | N1-C8-O6-C16  | 64.6 (3)   |
| C11—C12—C13—C14 | 1.5 (4)    | C5-C8-O6-C16  | -52.9 (3)  |
|                 |            |               |            |

Hydrogen-bond geometry (Å, °)

| <i>D</i> —H··· <i>A</i>  | D—H  | Н…А  | $D \cdots A$ | <i>D</i> —H··· <i>A</i> |
|--------------------------|------|------|--------------|-------------------------|
| N2—H2A…O1                | 0.86 | 1.96 | 2.593 (3)    | 130                     |
| N2—H2A···O1 <sup>i</sup> | 0.86 | 2.27 | 3.032 (3)    | 148                     |

Symmetry code: (i) -x, -y+1, -z+2.