metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetrakis(acetonitrile-*κN*)lithium hexafluoridophosphate acetonitrile monosolvate

Daniel M. Seo,^a* Paul D. Boyle^b and Wesley A. Henderson^a

^aDepartment of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA, and ^bDepartment of Chemistry, North Carolina State University, Raleigh, NC 27695, USA Correspondence e-mail: wesley_henderson@ncsu.edu

Received 23 June 2011; accepted 9 July 2011

Key indicators: single-crystal X-ray study; T = 110 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.054; wR factor = 0.157; data-to-parameter ratio = 23.5.

In the title compound, $[Li(CH_3CN)_4]PF_6 \cdot CH_3CN$, the asymmetric unit consists of three independent tetrahedral $[Li(CH_3CN)_4]^+$ cations, three uncoordinated PF_6^- anions and three uncoordinated CH_3CN solvent molecules. The three anions are disordered over two sites through a rotation along one of the F-P-F axes. The relative occupancies of the two sites for the F atoms are 0.643 (16):0.357 (16), 0.677 (10): 0.323 (10) and 0.723 (13):0.277 (13). The crystal used was a racemic twin, with approximately equal twin components.

Related literature

For solvates structures with the PF_6^- anion, see: Zavalij *et al.* (2004); Armstrong *et al.* (1998); Black *et al.* (1995). For solvate structures of CH₃CN with lithium salts, see: Seo *et al.* (2011*a,b*); Klapötke *et al.* (2006); Brooks *et al.* (2002); Yokota *et al.* (1999); Raston *et al.* (1989).

Experimental

Crystal data

[Li(C₂H₃N)₄]PF₆·C₂H₃N $M_r = 357.18$ Orthorhombic, $P2_12_12_1$ a = 8.6064 (3) Å b = 21.9864 (8) Å c = 27.8721 (10) Å

Data collection

Bruker–Nonius Kappa Axis X8 APEXII diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{min} = 0.870, T_{max} = 0.944$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.157$ S = 1.0317572 reflections 749 parameters H-atom parameters constrained $V = 5274.1 (3) \text{ Å}^{3}$ Z = 12Mo K\alpha radiation $\mu = 0.22 \text{ mm}^{-1}$ T = 110 K $0.67 \times 0.40 \times 0.27 \text{ mm}$

128974 measured reflections 17572 independent reflections 13189 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.060$

 $\begin{array}{l} \Delta \rho_{max} = 0.46 \ e \ \mathring{A}^{-3} \\ \Delta \rho_{min} = -0.31 \ e \ \mathring{A}^{-3} \\ Absolute structure: Flack (1983), \\ 7916 \ Friedel \ pairs \\ Flack \ parameter: 0.45 \ (7) \end{array}$

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: cif2tables.py (Boyle, 2008).

The authors wish to thank the Department of Chemistry of North Carolina State University and the State of North Carolina for funding the purchase of the APEXII diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2439).

References

- Armstrong, D. R., Khandelwal, A. H., Raithby, P. R., Kerr, L. C., Peasey, S., Shields, G. P., Snaith, R. & Wright, D. S. (1998). *Chem. Commun.* pp. 1011– 1012.
- Black, J. R., Levason, W. & Webster, M. (1995). Acta Cryst. C51, 623-625.
- Boyle, P. D. (2008). http://www.xray.ncsu.edu/PyCIFUtils/
- Brooks, N. R., Henderson, W. A. & Smyrl, W. H. (2002). Acta Cryst. E58, m176-m177.
- Bruker (2009). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Klapötke, T. M., Krumm, B., Mayer, P., Scherr, M. & Schwab, I. (2006). Acta Cryst. E62, m2666–m2667.
- Raston, C. L., Whitaker, C. R. & White, A. H. (1989). Aust. J. Chem. 42, 201– 207.
- Seo, D. M., Boyle, P. D. & Henderson, W. A. (2011a). Acta Cryst. E67, m534.
 Seo, D. M., Boyle, P. D. & Henderson, W. A. (2011b). Acta Cryst. E67, m547.
 Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Yokota, Y., Young, V. G. & Verkade, J. G. (1999). Acta Cryst. C55, 196–198. Zavalij, P. Y., Yang, S. & Whittingham, M. S. (2004). Acta Cryst. B60, 716–724.

supporting information

Acta Cryst. (2011). E67, m1148 [doi:10.1107/S1600536811027528]

Tetrakis(acetonitrile-*kN*)lithium hexafluoridophosphate acetonitrile monosolvate

Daniel M. Seo, Paul D. Boyle and Wesley A. Henderson

S1. Comment

LiPF₆ is the most widely used lithium salt for electrolytes in commercial Li-ion batteries. Little information is available regarding the interactions of the ions and solvent molecules within electrolytes. Crystal structures, however, provide useful models for these interactions. The structure of [Li(CH₃CN)₄]PF₆.CH₃CN is therefore reported here as part of an extensive study exploring solvate structures present in nitrile mixtures with lithium salts.

S2. Experimental

 $LiPF_6$ (99.99%) was purchased from Sigma-Aldrich and used as-received. Anhydrous acetonitrile (Sigma Aldrich, 99.8%) was used as-received. In a Vacuum Atmospheres inert atmosphere (N₂) glove box (< 5 p.p.m. H₂O), LiPF₆ (0.2 mmol) and acetonitrile (2 mmol) were sealed in a vial and heated on a hot plate to form a homogeneous solution. Upon standing at ambient temperature, colorless plate single crystals suitable for analysis formed.

S3. Refinement

The structure was solved by direct methods using the XS program. All non-hydrogen atoms were obtained from the initial solution. The hydrogen atoms were introduced at idealized positions and were allowed to ride on the parent atom. The PF_6 counterions exhibited an orientational disorder over two sites among the four equatorial fluorine atoms. The occupancies for the primary orientation were 0.643 (16), 0.677 (10), and 0.723 (13) for the three anionic sites, respectively. The structural model was fit to the data using full matrix least-squares based on F^2 . The calculated structure factors included corrections for anomalous dispersion from the usual tabulation. The structure was refined using the XL program from *SHELXTL* and graphic plots were produced using the *ORTEP-3* crystallographic program suite.

Figure 1

Molecular structure of the title compound. The thermal ellipsoids are shown at a 50% probability level.

Figure 2

Packing diagram for the title compound (Li-purple; P-gold; F-green; N-blue).

Tetrakis(acetonitrile-κN)lithium hexafluorophosphate acetonitrile monosolvate

Crystal data

$[Li(C_2H_3N)_4]PF_6 \cdot C_2H_3N$	F(000) = 2184
$M_r = 357.18$	$D_{\rm x} = 1.349 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 9760 reflections
a = 8.6064 (3) Å	$\theta = 2.9 - 25.3^{\circ}$
b = 21.9864 (8) Å	$\mu = 0.22 \text{ mm}^{-1}$
c = 27.8721 (10) Å	T = 110 K
V = 5274.1 (3) Å ³	Prism, colourless
Z = 12	$0.67 \times 0.40 \times 0.27 \text{ mm}$
Data collection	
Bruker–Nonius Kappa Axis X8 APEXII	128974 measured reflections
diffractometer	17572 independent reflections
Radiation source: fine-focus sealed tube	13189 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.060$
ω and φ scans	$\theta_{\rm max} = 31.6^\circ, \theta_{\rm min} = 2.0^\circ$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$
(SADABS; Bruker, 2009)	$k = -32 \rightarrow 32$
$T_{\min} = 0.870, \ T_{\max} = 0.944$	$l = -40 \longrightarrow 40$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.054$	H-atom parameters constrained
$wR(F^2) = 0.157$	$w = 1/[\sigma^2(F_o^2) + (0.0925P)^2 + 0.5839P]$
S = 1.03	where $P = (F_o^2 + 2F_c^2)/3$
17572 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
749 parameters	$\Delta \rho_{\rm max} = 0.46 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.31 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 7916 Friedel pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: 0.45 (7)
man	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Lil	0.4767 (5)	0.24443 (16)	0.92740 (13)	0.0283 (7)	
N1	0.3918 (2)	0.24237 (9)	0.86018 (7)	0.0315 (4)	
C1	0.3294 (3)	0.24034 (10)	0.82412 (8)	0.0270 (4)	
C2	0.2510 (3)	0.23804 (13)	0.77846 (9)	0.0395 (6)	
H2A	0.2308	0.2795	0.7672	0.059*	
H2B	0.1524	0.2163	0.7820	0.059*	
H2C	0.3166	0.2168	0.7551	0.059*	
N2	0.3962 (3)	0.32101 (8)	0.96007 (7)	0.0309 (4)	
C3	0.3370 (3)	0.35994 (9)	0.97954 (8)	0.0268 (4)	
C4	0.2623 (3)	0.40922 (12)	1.00584 (9)	0.0373 (5)	
H4A	0.1497	0.4026	1.0064	0.056*	
H4B	0.2850	0.4480	0.9900	0.056*	
H4C	0.3019	0.4102	1.0388	0.056*	
N3	0.7092 (3)	0.23919 (9)	0.93095 (7)	0.0337 (4)	
C5	0.8413 (3)	0.24082 (10)	0.93095 (8)	0.0273 (4)	
C6	1.0104 (3)	0.24217 (11)	0.93078 (9)	0.0333 (5)	
H6A	1.0480	0.2546	0.9625	0.050*	
H6B	1.0466	0.2712	0.9066	0.050*	
H6C	1.0504	0.2016	0.9232	0.050*	
N4	0.3809 (2)	0.17257 (9)	0.96466 (7)	0.0317 (4)	
C7	0.3163 (3)	0.13237 (9)	0.98013 (8)	0.0272 (4)	
C8	0.2329 (3)	0.08021 (12)	0.99953 (9)	0.0355 (5)	
H8A	0.1609	0.0645	0.9753	0.053*	

H8B	0.1745	0.0927	1.0281	0.053*
H8C	0.3073	0.0483	1.0083	0.053*
Li2	0.4831 (5)	0.07850 (16)	0.55254 (14)	0.0317 (8)
N5	0.5941 (2)	0.08137 (10)	0.48759 (7)	0.0362 (4)
С9	0.6478 (3)	0.08505 (10)	0.45077 (8)	0.0294 (4)
C10	0.7130 (3)	0.08955 (12)	0.40250 (8)	0.0344 (5)
H10A	0.6803	0.0543	0.3835	0.052*
H10B	0.8266	0.0905	0.4045	0.052*
H10C	0.6757	0.1269	0.3871	0.052*
N6	0.2498 (3)	0.07967 (9)	0.54441 (7)	0.0335(4)
C11	0.1191 (3)	0.07718 (10)	0.54844 (8)	0.0289 (4)
C12	-0.0483(3)	0 07269 (12)	0 55341 (10)	0.0392(6)
H12A	-0.0962	0.0714	0.5215	0.0592 (0)
H12R	-0.0873	0.1081	0.5710	0.059*
H12C	-0.0745	0.0355	0.5711	0.059*
N7	0.0745	0.0555 0.15207 (10)	0.59300 (8)	0.0391(5)
C13	0.5280(3)	0.13207(10) 0.10443(10)	0.59500 (8)	0.0391(5)
C14	0.5289(3)	0.19443(10) 0.24825(11)	0.01089(8) 0.64738(0)	0.0310(3)
	0.3297 (3)	0.24625 (11)	0.04/38(9)	0.0378(3)
П14А 1114D	0.4770	0.2391	0.0777	0.037*
HI4B	0.4755	0.2815	0.0311	0.057*
HI4C	0.63/3	0.2604	0.6539	0.05/*
N8	0.5384 (3)	0.00158 (9)	0.58959 (8)	0.0386 (5)
C15	0.5484 (3)	-0.04007 (10)	0.61326 (8)	0.0311 (5)
C16	0.5610 (4)	-0.09365 (11)	0.64400 (9)	0.0395 (6)
H16A	0.6246	-0.0838	0.6721	0.059*
H16B	0.6098	-0.1269	0.6260	0.059*
H16C	0.4571	-0.1062	0.6545	0.059*
Li3	0.0076 (4)	0.09502 (17)	0.27226 (13)	0.0285 (7)
N9	0.0996 (2)	0.17062 (9)	0.24202 (7)	0.0297 (4)
C17	0.1786 (3)	0.20528 (9)	0.22427 (8)	0.0269 (4)
C18	0.2810 (3)	0.24923 (11)	0.20127 (9)	0.0366 (5)
H18A	0.3334	0.2736	0.2259	0.055*
H18B	0.2197	0.2760	0.1805	0.055*
H18C	0.3587	0.2277	0.1820	0.055*
N10	0.0918 (3)	0.01963 (9)	0.23909 (7)	0.0337 (4)
C19	0.1617 (3)	-0.01773 (10)	0.22136 (9)	0.0306 (5)
C20	0.2520 (4)	-0.06494 (12)	0.19745 (12)	0.0451 (7)
H20A	0.1834	-0.0893	0.1770	0.068*
H20B	0.3006	-0.0912	0.2216	0.068*
H20C	0.3328	-0.0460	0.1777	0.068*
N11	0.0944(2)	0.09247 (9)	0.33925 (6)	0.0298(4)
C21	0.1661(2)	0.09051 (9)	0.37360(7)	0.0255(4)
C22	0.2588(3)	0.08770 (12)	0.41673 (8)	0.0368(5)
H22A	0 3248	0.0514	0.4158	0.055*
H22B	0 1903	0.0857	0 4448	0.055*
H22C	0 3242	0 1241	0.4189	0.055*
N12	-0.2242	0.09405 (10)	0.27100 (7)	0.0338 (4)
C23	-0.3580(3)	0.09458 (10)	0.27519(7)	0.0330(+) 0.0280(4)
025	0.5500 (5)		0.2/01/(/)	0.0200 (4)

C24	-0.5249 (3)	0.09527 (12)	0.28170 (9)	0.0350 (5)	
H24A	-0.5552	0.0623	0.3034	0.053*	
H24B	-0.5761	0.0896	0.2506	0.053*	
H24C	-0.5565	0.1344	0.2955	0.053*	
P1	0.96424 (7)	0.41157 (2)	0.868437 (19)	0.02657 (11)	
F1	1.0595 (2)	0.35676 (7)	0.84498 (6)	0.0487 (4)	
F2	0.8678 (2)	0.46607 (7)	0.89150 (6)	0.0458 (4)	
F3	0.8398 (7)	0.4121 (3)	0.82520 (16)	0.0585 (15)	0.643 (16)
F4	0.8495 (5)	0.3634 (2)	0.8934 (3)	0.0600 (16)	0.643 (16)
F5	1.0745 (8)	0.4087 (3)	0.91135 (16)	0.0769 (19)	0.643 (16)
F6	1.0657 (7)	0.4576 (3)	0.8407 (3)	0.068 (2)	0.643 (16)
F3′	0.8304 (12)	0.3874 (7)	0.8409 (8)	0.096 (6)	0.357 (16)
F4′	0.924 (3)	0.3725 (5)	0.9132 (5)	0.098 (7)	0.357 (16)
F5'	1.1177 (11)	0.4365 (8)	0.8979 (6)	0.099 (6)	0.357 (16)
F6′	1.027 (3)	0.4544 (7)	0.8274 (6)	0.110 (7)	0.357 (16)
P2	0.51359 (7)	0.42066 (2)	0.15009 (2)	0.02640 (12)	
F7	0.3841(2)	0.46339(8)	0.17316(7)	0.0521(4)	
F8	0.6435(2)	0.37953 (9)	0.12640 (9)	0.0696 (6)	
F9	0.3792(3)	0 37675 (13)	0 12999 (14)	0.0440(11)	0.677(10)
F10	0.5792(5) 0.5018(5)	0.45856 (15)	0.10114 (11)	0.0616(13)	0.677(10)
F11	0.6433(3)	0.46452 (16)	0 16889 (15)	0.0532(15)	0.677(10)
F12	0.5178 (6)	0.38244(17)	0 19771 (12)	0.0332(13) 0.0787(17)	0.677(10)
F9'	0.5170(0) 0.4171(14)	0.30211(17) 0.4138(7)	0.1035(3)	0.0707(17) 0.117(7)	0.373(10)
F10'	0.4171(14) 0.6068(14)	0.4190(7) 0.4797(3)	0.1342 (6)	0.117(7) 0.114(7)	0.323(10)
F11'	0.6000(14)	0.4797(5) 0.4248(5)	0.1942(0) 0.1995(3)	0.095(5)	0.323(10)
F12'	0.0121(11) 0.4302(12)	0.3621(3)	0.1995(5)	0.099 (5)	0.323(10)
P3	0.4302(12) 0.02195(7)	0.3021(3) 0.23730(3)	0.1030(3)	0.101(0) 0.02811(12)	0.525 (10)
F13	0.02195(7)	0.23730(3)	0.64333(2)	0.02011(12) 0.0571(5)	
F13 F14	-0.1073(3)	0.28030(9) 0.19621(9)	0.00797(7)	0.0371(3) 0.0726(6)	
F15	0.1075 (5)	0.19021(9)	0.01921(9)	0.0720(0)	0.723(13)
F15 F16	0.1179(0) 0.1150(5)	0.18000(10)	0.0390(2)	0.0811(17) 0.0704(15)	0.723(13) 0.723(13)
F10 F17	-0.0706(4)	0.2400(3) 0.2365(2)	0.39470(14)	0.0794(13) 0.0747(16)	0.723(13) 0.723(13)
F19	-0.0700(4)	0.2303(2)	0.09211(11) 0.62768(14)	0.0747(10) 0.0517(12)	0.723(13) 0.723(13)
Г10 Г15/	-0.0723(4)	0.29010(12) 0.1015(6)	0.02708(14)	0.0317(13)	0.725(13) 0.277(12)
Г13 Г1 <i>С</i> /	0.1477(11)	0.1913(0) 0.2721(7)	0.0200(7)	0.080(0)	0.277(13)
F10 F17/	0.044(2)	0.2731(7)	0.59/1(4)	0.103(9)	0.277(13)
ГI/ Г19/	0.008(2)	0.1978(7)	0.0921(3)	0.098(7)	0.277(13)
Г10 N12	-0.1088(11)	0.2809(0)	0.0038(7)	0.109(11)	0.277(13)
N13 C25	0.5640(3)	0.14595 (11)	0.74120(10) 0.72554(10)	0.0485 (6)	
C25	0.6588(3)	0.11557(12)	0.72554(10)	0.0390 (6)	
C26	0.7796 (4)	0.07672 (16)	0.70644 (13)	0.0580 (8)	
H26A	0.8673	0.0756	0.7289	0.087*	
H26B	0.8147	0.0927	0.6755	0.087*	
H26C	0./38/	0.0355	0.7021	0.08/*	
N14	0.5132 (3)	0.01637 (10)	0.93295 (9)	0.0445 (5)	
C27	0.5128 (3)	0.04165 (11)	0.89718 (10)	0.0363 (5)	
C28	0.5129 (3)	0.07287 (14)	0.85183 (11)	0.0465 (6)	
H28A	0.4534	0.0492	0.8284	0.070*	
H28B	0.6200	0.0776	0.8405	0.070*	

H28C	0.4651	0.1130	0.8557	0.070*
N15	0.9699 (3)	0.17657 (10)	0.46114 (9)	0.0464 (5)
C29 C30	0.9032 (3) 0.8206 (5) 0.8950	0.21382 (12) 0.26237 (18) 0.2801	0.47998 (9) 0.50378 (12) 0.5200	0.0359 (5) 0.0642 (10) 0.096*
H30B	0.7489	0.2451	0.5275	0.096*
H30C	0.7617	0.2858	0.4800	0.096*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Lil	0.0291 (19)	0.0287 (16)	0.0272 (16)	0.0051 (16)	-0.0016 (15)	-0.0035 (13)
N1	0.0311 (10)	0.0324 (9)	0.0310 (9)	-0.0023 (8)	-0.0011 (8)	0.0010 (7)
C1	0.0247 (10)	0.0278 (9)	0.0284 (10)	-0.0022 (8)	0.0026 (8)	0.0027 (8)
C2	0.0406 (14)	0.0480 (14)	0.0299 (11)	-0.0012 (12)	-0.0090 (10)	-0.0003 (10)
N2	0.0372 (11)	0.0283 (9)	0.0271 (9)	0.0009 (8)	0.0027 (8)	0.0028 (7)
C3	0.0287 (11)	0.0272 (9)	0.0245 (9)	-0.0010 (8)	0.0018 (8)	0.0033 (8)
C4	0.0400 (14)	0.0356 (12)	0.0363 (11)	0.0071 (11)	0.0062 (10)	-0.0050 (10)
N3	0.0324 (11)	0.0371 (10)	0.0317 (9)	-0.0005 (9)	-0.0009 (8)	0.0028 (8)
C5	0.0310 (12)	0.0257 (9)	0.0251 (9)	0.0028 (9)	0.0020 (8)	0.0041 (8)
C6	0.0283 (12)	0.0332 (10)	0.0385 (11)	0.0040 (10)	0.0001 (9)	0.0034 (9)
N4	0.0355 (11)	0.0284 (9)	0.0311 (9)	0.0000 (8)	-0.0012 (8)	0.0016 (7)
C7	0.0278 (11)	0.0283 (10)	0.0254 (9)	0.0073 (8)	-0.0005 (8)	-0.0009 (8)
C8	0.0355 (13)	0.0343 (12)	0.0368 (12)	-0.0045 (10)	0.0047 (10)	0.0055 (9)
Li2	0.036 (2)	0.0274 (16)	0.0315 (17)	-0.0011 (17)	-0.0026 (16)	-0.0001 (13)
N5	0.0297 (10)	0.0480 (12)	0.0309 (9)	-0.0011 (9)	-0.0018 (8)	0.0020 (9)
C9	0.0235 (10)	0.0337 (11)	0.0310 (10)	0.0021 (9)	-0.0035 (8)	0.0005 (9)
C10	0.0336 (12)	0.0372 (11)	0.0324 (11)	0.0017 (10)	0.0033 (9)	0.0008 (10)
N6	0.0360 (11)	0.0303 (9)	0.0343 (10)	-0.0020 (8)	-0.0017 (8)	0.0015 (8)
C11	0.0349 (12)	0.0240 (9)	0.0280 (10)	-0.0012 (9)	-0.0019 (9)	0.0017 (8)
C12	0.0292 (12)	0.0379 (12)	0.0506 (14)	0.0010 (10)	-0.0011 (11)	0.0087 (10)
N7	0.0407 (12)	0.0360 (10)	0.0405 (11)	-0.0043 (10)	-0.0059 (10)	-0.0038 (8)
C13	0.0311 (12)	0.0330 (10)	0.0306 (10)	-0.0027 (10)	-0.0009 (9)	0.0043 (8)
C14	0.0460 (14)	0.0312 (10)	0.0361 (11)	0.0006 (11)	-0.0020 (11)	-0.0048 (9)
N8	0.0426 (12)	0.0353 (10)	0.0378 (10)	0.0028 (10)	-0.0007 (10)	0.0029 (8)
C15	0.0357 (12)	0.0316 (10)	0.0261 (9)	0.0036 (9)	0.0025 (9)	-0.0033 (8)
C16	0.0546 (16)	0.0326 (11)	0.0313 (11)	0.0068 (11)	0.0075 (11)	0.0061 (9)
Li3	0.0279 (19)	0.0322 (16)	0.0255 (15)	-0.0030 (16)	0.0004 (14)	0.0003 (14)
N9	0.0325 (10)	0.0310 (9)	0.0257 (9)	0.0017 (8)	-0.0010 (8)	0.0007 (7)
C17	0.0307 (11)	0.0265 (9)	0.0235 (9)	0.0074 (9)	-0.0027 (8)	-0.0025 (8)
C18	0.0416 (14)	0.0318 (11)	0.0366 (12)	-0.0035 (10)	0.0091 (11)	0.0010 (9)
N10	0.0369 (11)	0.0293 (9)	0.0348 (10)	0.0018 (8)	-0.0004 (9)	0.0012 (7)
C19	0.0292 (11)	0.0290 (10)	0.0336 (11)	-0.0014 (9)	0.0018 (10)	0.0042 (8)
C20	0.0441 (16)	0.0304 (12)	0.0607 (17)	0.0055 (11)	0.0197 (13)	0.0022 (11)
N11	0.0297 (9)	0.0334 (9)	0.0264 (8)	0.0001 (8)	-0.0012 (7)	0.0023 (7)
C21	0.0243 (10)	0.0250 (8)	0.0272 (9)	-0.0001 (8)	0.0044 (8)	0.0000 (8)
C22	0.0350 (12)	0.0425 (13)	0.0329 (11)	-0.0007 (11)	-0.0081 (10)	-0.0022 (10)
N12	0.0301 (10)	0.0391 (10)	0.0322 (9)	0.0002 (9)	0.0004 (8)	0.0001 (8)

~~			a a a 44 (a)	0.000 0 (0)	0.0044 (0)	0.0000 (0)
C23	0.0314 (12)	0.0284 (9)	0.0241 (9)	-0.0002 (9)	-0.0011 (8)	-0.0008 (8)
C24	0.0276 (11)	0.0402 (11)	0.0373 (11)	-0.0002 (10)	0.0007 (10)	-0.0009 (9)
P1	0.0314 (3)	0.0229 (2)	0.0254 (2)	0.0009 (2)	-0.0007(2)	-0.00043 (19)
F1	0.0530 (10)	0.0338 (7)	0.0593 (10)	0.0085 (7)	0.0162 (8)	-0.0081 (7)
F2	0.0536 (10)	0.0312 (7)	0.0526 (9)	0.0058 (7)	0.0095 (8)	-0.0099 (7)
F3	0.054 (2)	0.081 (4)	0.0402 (18)	0.017 (3)	-0.0215 (14)	-0.0149 (19)
F4	0.054 (2)	0.0334 (15)	0.092 (4)	-0.0029 (15)	0.031 (2)	0.012 (2)
F5	0.083 (4)	0.099 (4)	0.048 (2)	0.014 (3)	-0.044(2)	-0.006 (2)
F6	0.052 (2)	0.0342 (19)	0.118 (6)	-0.0092 (16)	0.040 (3)	0.018 (3)
F3′	0.037 (3)	0.083 (8)	0.169 (16)	0.000 (5)	-0.033 (7)	-0.080 (9)
F4′	0.174 (17)	0.050 (5)	0.070 (6)	0.045 (7)	0.087 (8)	0.036 (4)
F5′	0.040 (4)	0.120 (9)	0.137 (10)	0.033 (5)	-0.038 (5)	-0.103 (8)
F6′	0.210 (18)	0.050 (6)	0.070 (7)	0.041 (9)	0.089 (9)	0.028 (4)
P2	0.0241 (3)	0.0235 (2)	0.0317 (3)	0.0000 (2)	-0.0001 (2)	-0.00195 (19)
F7	0.0391 (9)	0.0438 (9)	0.0732 (12)	0.0021 (7)	0.0123 (9)	-0.0213 (8)
F8	0.0347 (9)	0.0619 (11)	0.1122 (17)	0.0078 (9)	0.0047 (10)	-0.0483 (12)
F9	0.0313 (12)	0.0368 (15)	0.064 (2)	-0.0071 (10)	0.0013 (13)	-0.0184 (14)
F10	0.079 (3)	0.061 (2)	0.0447 (15)	-0.0105 (19)	0.0114 (16)	0.0156 (13)
F11	0.0272 (12)	0.048 (2)	0.085 (3)	-0.0038 (12)	-0.0091 (15)	-0.033 (2)
F12	0.120 (4)	0.064 (2)	0.0523 (17)	0.007 (3)	-0.024 (2)	0.0250 (16)
F9′	0.109 (9)	0.177 (16)	0.064 (5)	0.048 (12)	-0.043 (6)	-0.033 (8)
F10′	0.098 (9)	0.044 (4)	0.200 (17)	-0.015 (4)	0.075 (11)	0.031 (6)
F11′	0.088 (6)	0.137 (11)	0.060 (5)	0.028 (7)	-0.035 (5)	-0.023 (6)
F12′	0.097 (8)	0.045 (4)	0.160 (15)	-0.029 (4)	0.055 (10)	0.004 (5)
P3	0.0297 (3)	0.0256 (2)	0.0290 (2)	0.0024 (2)	-0.0014 (2)	0.00179 (19)
F13	0.0469 (10)	0.0572 (10)	0.0673 (12)	-0.0074 (9)	-0.0192 (9)	-0.0042 (9)
F14	0.0601 (13)	0.0539 (11)	0.1037 (17)	-0.0136 (10)	-0.0200 (12)	-0.0275 (11)
F15	0.087 (3)	0.0463 (16)	0.110 (4)	0.0323 (18)	-0.012 (3)	0.024 (2)
F16	0.080 (2)	0.112 (4)	0.0463 (17)	0.023 (2)	0.0308 (16)	0.004 (2)
F17	0.073 (2)	0.106 (4)	0.0446 (15)	0.003 (3)	0.0289 (15)	0.0200 (19)
F18	0.059 (2)	0.0370 (12)	0.059 (2)	0.0187 (12)	-0.0195 (18)	0.0046 (12)
F15′	0.044 (4)	0.073 (8)	0.140 (14)	0.017 (5)	0.009 (6)	-0.049 (9)
F16′	0.151 (18)	0.098 (10)	0.061 (6)	-0.075 (12)	-0.047 (10)	0.040 (7)
F17′	0.136 (15)	0.100 (10)	0.059 (5)	-0.060 (11)	-0.015 (7)	0.024 (6)
F18′	0.048 (5)	0.099 (12)	0.18 (2)	0.020 (5)	-0.014 (7)	-0.105 (15)
N13	0.0464 (14)	0.0421 (12)	0.0570 (15)	-0.0026 (11)	-0.0012 (12)	-0.0039 (11)
C25	0.0411 (14)	0.0352 (11)	0.0406 (13)	-0.0076 (11)	-0.0069 (11)	0.0036 (10)
C26	0.0548 (19)	0.0545 (17)	0.065 (2)	0.0112 (16)	0.0057 (16)	-0.0071 (15)
N14	0.0473 (14)	0.0399 (11)	0.0462 (12)	-0.0034 (10)	-0.0048 (11)	-0.0132 (9)
C27	0.0263 (11)	0.0322 (10)	0.0504 (14)	-0.0019 (9)	-0.0028 (11)	-0.0155 (10)
C28	0.0307 (12)	0.0523 (15)	0.0566 (16)	-0.0006 (12)	-0.0023 (12)	0.0015 (12)
N15	0.0504 (14)	0.0382 (11)	0.0507 (13)	0.0017 (11)	-0.0040 (12)	-0.0021 (10)
C29	0.0339 (13)	0.0417 (13)	0.0321 (11)	0.0010 (10)	-0.0016 (10)	0.0077 (10)
C30	0.074 (2)	0.076 (2)	0.0431 (16)	0.036 (2)	0.0067 (16)	0.0003 (16)

Geometric parameters (Å, °)

Li1—N3	2.007 (5)	C20—H20A	0.9800
Li1—N1	2.012 (4)	C20—H20B	0.9800
Li1—N2	2.036 (4)	C20—H20C	0.9800
Li1—N4	2.063 (4)	N11—C21	1.140 (3)
N1-C1	1.141 (3)	C21—C22	1.444 (3)
C1—C2	1.441 (3)	C22—H22A	0.9800
C2—H2A	0.9800	C22—H22B	0.9800
C2—H2B	0.9800	C22—H22C	0.9800
C2—H2C	0.9800	N12—C23	1.136 (3)
N2—C3	1.134 (3)	C23—C24	1.448 (3)
C3—C4	1.458 (3)	C24—H24A	0.9800
C4—H4A	0.9800	C24—H24B	0.9800
C4—H4B	0.9800	C24—H24C	0.9800
C4—H4C	0.9800	P1—F3′	1.484 (10)
N3—C5	1.137 (3)	P1—F5	1.528 (5)
C5—C6	1.456 (3)	P1—F6	1.544 (6)
С6—Н6А	0.9800	P1—F4′	1.555 (7)
C6—H6B	0.9800	P1—F6′	1.577 (14)
С6—Н6С	0.9800	P1—F2	1.5929 (16)
N4—C7	1.129 (3)	P1—F1	1.5975 (16)
С7—С8	1.457 (3)	P1—F4	1.607 (4)
C8—H8A	0.9800	P1—F3	1.612 (5)
C8—H8B	0.9800	P1—F5′	1.650 (8)
C8—H8C	0.9800	P2—F12′	1.535 (6)
Li2—N7	2.009 (4)	P2—F9′	1.548 (7)
Li2—N6	2.021 (5)	P2—F11	1.565 (3)
Li2—N8	2.038 (4)	P2—F12	1.571 (3)
Li2—N5	2.048 (5)	P2—F8	1.5823 (18)
N5—C9	1.128 (3)	P2—F10′	1.589 (7)
C9—C10	1.461 (3)	P2—F7	1.5933 (17)
C10—H10A	0.9800	P2—F10	1.602 (3)
C10—H10B	0.9800	P2—F9	1.608 (2)
C10—H10C	0.9800	P2—F11′	1.620 (7)
N6-C11	1.132 (3)	P3—F16′	1.526 (8)
C11—C12	1.451 (4)	P3—F15′	1.535 (8)
C12—H12A	0.9800	P3—F15	1.570 (3)
C12—H12B	0.9800	P3—F17	1.571 (3)
C12—H12C	0.9800	P3—F18′	1.582 (8)
N7—C13	1.145 (3)	P3—F16	1.585 (3)
C13—C14	1.457 (3)	P3—F14	1.586 (2)
C14—H14A	0.9800	P3—F18	1.590 (2)
C14—H14B	0.9800	P3—F13	1.5967 (19)
C14—H14C	0.9800	P3—F17′	1.614 (9)
N8—C15	1.132 (3)	N13—C25	1.141 (4)
C15—C16	1.461 (3)	C25—C26	1.447 (4)
C16—H16A	0.9800	C26—H26A	0.9800

C16—H16B	0.9800	C26—H26B	0.9800
C16—H16C	0.9800	C26—H26C	0.9800
Li3—N11	2.012 (4)	N14—C27	1.142 (4)
Li3—N12	2.017 (4)	C27—C28	1.438 (4)
Li3—N9	2.025 (4)	C28—H28A	0.9800
Li3—N10	2.032 (4)	C28—H28B	0.9800
N9—C17	1.135 (3)	C28—H28C	0.9800
C17—C18	1.456 (3)	N15—C29	1.129 (3)
C18—H18A	0.9800	C29—C30	1.444 (4)
C18—H18B	0.9800	С30—Н30А	0.9800
C18—H18C	0.9800	С30—Н30В	0.9800
N10—C19	1.132 (3)	С30—Н30С	0.9800
C19—C20	1.458 (3)		
N3—Li1—N1	114.0 (2)	F6—P1—F1	90.0 (3)
N3—Li1—N2	111.4 (2)	F4'—P1—F1	91.5 (3)
N1—Li1—N2	108.14 (19)	F6'—P1—F1	88.7 (6)
N3—Li1—N4	109.27 (19)	F2—P1—F1	179.44 (11)
N1—Li1—N4	107.83 (19)	F3'—P1—F4	60.7 (8)
N2—Li1—N4	105.79 (19)	F5—P1—F4	90.9 (3)
C1—N1—Li1	173.2 (2)	F6—P1—F4	175.3 (4)
N1—C1—C2	179.7 (3)	F6'—P1—F4	156.7 (8)
C1—C2—H2A	109.5	F2—P1—F4	90.04 (19)
C1—C2—H2B	109.5	F1—P1—F4	89.75 (19)
H2A—C2—H2B	109.5	F5—P1—F3	176.3 (3)
C1—C2—H2C	109.5	F6—P1—F3	89.8 (4)
H2A—C2—H2C	109.5	F4′—P1—F3	117.2 (9)
H2B—C2—H2C	109.5	F6'—P1—F3	71.4 (8)
C3—N2—Li1	172.3 (2)	F2—P1—F3	87.1 (2)
N2—C3—C4	178.4 (2)	F1—P1—F3	92.3 (2)
C3—C4—H4A	109.5	F4—P1—F3	85.5 (3)
C3—C4—H4B	109.5	F3'—P1—F5'	177.7 (5)
H4A—C4—H4B	109.5	F6—P1—F5'	65.1 (8)
C3—C4—H4C	109.5	F4'—P1—F5'	87.8 (7)
H4A—C4—H4C	109.5	F6'—P1—F5'	83.6 (8)
H4B—C4—H4C	109.5	F2—P1—F5'	88.0 (3)
C5—N3—Li1	174.2 (2)	F1—P1—F5'	92.5 (3)
N3—C5—C6	179.3 (3)	F4—P1—F5'	119.7 (7)
С5—С6—Н6А	109.5	F3—P1—F5'	154.4 (7)
С5—С6—Н6В	109.5	F12'—P2—F9'	84.5 (8)
H6A—C6—H6B	109.5	F12′—P2—F11	139.1 (6)
С5—С6—Н6С	109.5	F9'—P2—F11	136.3 (6)
H6A—C6—H6C	109.5	F12′—P2—F12	47.5 (5)
H6B—C6—H6C	109.5	F9'—P2—F12	131.9 (6)
C7—N4—Li1	171.2 (2)	F11—P2—F12	91.7 (2)
N4—C7—C8	179.3 (2)	F12′—P2—F8	88.2 (3)
С7—С8—Н8А	109.5	F9'—P2—F8	88.5 (4)
C7—C8—H8B	109.5	F11—P2—F8	89.29 (13)

H8A—C8—H8B	109.5	F12—P2—F8	91.75 (18)
C7—C8—H8C	109.5	F12'-P2-F10'	177.5 (6)
H8A—C8—H8C	109.5	F9'	96.6 (9)
H8B-C8-H8C	109.5	F12—P2—F10'	131.4 (7)
N7-Li2-N6	104.1 (2)	F8—P2—F10′	89.6 (3)
N7—Li2—N8	109.8(2)	F12'	93 1 (3)
N6—Li2—N8	107.4 (2)	F9'	91.2 (4)
N7—Li2—N5	112.4(2)	F11—P2—F7	90.05(12)
N6-Li2-N5	111 3 (2)	F12—P2—F7	89 46 (17)
N8—Li2—N5	111.4 (2)	F8—P2—F7	178.64 (13)
C9-N5-Li2	1757(2)	F10'-P2-F7	891(3)
N5-C9-C10	178 4 (2)	F12'	130.2 (6)
C9-C10-H10A	109 5	F9' - P2 - F10	45 8 (6)
C9-C10-H10B	109.5	$F_{11} = P_{2} = F_{10}$	90.6 (2)
H10A—C10—H10B	109.5	F12 - P2 - F10	177.5(2)
C9-C10-H10C	109.5	F8 - P2 - F10	89 23 (16)
H10A - C10 - H10C	109.5	$F_{10} = P_{2} = F_{10}$	50.9 (6)
H10B— $C10$ — $H10C$	109.5	F7 - P2 - F10	89 58 (14)
C_{11} N_{6} L_{12}	167.4 (2)	F11—P2—F9	178 8 (2)
N6-C11-C12	178 9 (3)	F12—P2—F9	894(2)
C11 - C12 - H12A	109 5	F8—P2—F9	91 13 (11)
C11—C12—H12B	109.5	F10′—P2—F9	139.1 (7)
H12A—C12—H12B	109.5	F7—P2—F9	89.50 (12)
C11-C12-H12C	109.5	F10-P2-F9	88 3 (2)
H12A— $C12$ — $H12C$	109.5	F12' - P2 - F11'	93.0(7)
H12B— $C12$ — $H12C$	109.5	F9'	177 4 (8)
C13 - N7 - Li2	169.3 (3)	F11—P2—F11′	46 2 (4)
N7-C13-C14	179 8 (3)	F12—P2—F11'	45.6 (4)
C13—C14—H14A	109.5	F8 - P2 - F11'	91.0 (3)
C13—C14—H14B	109.5	F10'-P2-F11'	85.9 (8)
H14A—C14—H14B	109.5	F7—P2—F11′	89.4 (3)
C13—C14—H14C	109.5	F_{10} P_{2} $F_{11'}$	136.7(5)
H14A—C14—H14C	109.5	F9—P2—F11′	135.0(5)
H14B— $C14$ — $H14C$	109.5	F16'-P3-F15'	91 3 (9)
C15 = N8 = Li2	169.9 (3)	F16'-P3-F15	1260(8)
N8-C15-C16	179 7 (3)	F16'-P3-F17	120.0(0) 143 1(8)
C15—C16—H16A	109 5	F15'	1255(8)
C15—C16—H16B	109.5	F15 - P3 - F17	90.7(3)
H_{16A} C_{16} H_{16B}	109.5	F16' - P3 - F18'	94.6 (10)
C15-C16-H16C	109.5	F15'	174 1 (9)
H_{16A} $-C_{16}$ $-H_{16C}$	109.5	F15—P3—F18'	139 3 (8)
H_{16B} C_{16} H_{16C}	109.5	F17—P3—F18'	48 6 (8)
N11—Li3—N12	112 78 (19)	F15' - P3 - F16	55 6 (7)
N11_Li3_N9	105.30(19)	F15—P3—F16	90.3 (3)
N12—Li3—N9	113 1 (2)	F17—P3—F16	178 5 (3)
N11—Li3—N10	105 50 (19)	F18'	130 3 (8)
N12—Li3—N10	109 9 (2)	F16'-P3-F14	91 1 (4)
N9_1 i3N10	109.9 (2)	F15' - P3 - F14	90.3(4)
	107.71 (10)	1 15 - 1 5 - 1 17	JU.J (T)

C17—N9—Li3	165.3 (2)	F15—P3—F14	91.9 (2)
N9—C17—C18	179.4 (3)	F17—P3—F14	90.36 (18)
C17—C18—H18A	109.5	F18′—P3—F14	90.0 (3)
C17—C18—H18B	109.5	F16—P3—F14	90.7 (2)
H18A—C18—H18B	109.5	F16'—P3—F18	53.8 (8)
C17—C18—H18C	109.5	F15′—P3—F18	145.1 (8)
H18A—C18—H18C	109.5	F15—P3—F18	178.9 (2)
H18B—C18—H18C	109.5	F17—P3—F18	89.4 (2)
C19 - N10 - Li3	168.7 (2)	F16—P3—F18	89.5 (2)
N10-C19-C20	178.6 (3)	F14—P3—F18	89.17 (14)
C19—C20—H20A	109 5	F16'—P3—F13	88 3 (4)
C19 - C20 - H20B	109.5	$F_{15'} - P_{3} - F_{13}$	91 2 (4)
$H_{20}A = C_{20} = H_{20}B$	109.5	F15 P3 F13	89 64 (19)
C19-C20-H20C	109.5	F17_P3_F13	89 21 (17)
H_{20}^{-} $H_{$	109.5	$F18'_P3_F13$	88.6.(3)
$H_{20}^{-1120} = C_{20}^{-1120} = H_{20}^{-1120} = H_{20}^{-110} = H_$	109.5	$F_{10} = 15 = 115$ F16 P3 F13	80.73 (10)
$C_{21} = N_{11} = L_{22}$	160.0 (2)	$F_{10} = 13 = F_{13}$	179 26 (12)
$\begin{array}{c} C_{21} \\ \hline \\ N_{11} \\ C_{21} \\ C_{22} \\ \hline \\ C_{22} \\ \hline \\ \end{array}$	109.0(2) 170.2(2)	$\Gamma 14 - \Gamma 3 - \Gamma 13$ E19 D2 E12	1/0.30(12)
N11 - C21 - C22	1/9.2 (2)	$\Gamma_{10} - \Gamma_{3} - \Gamma_{13}$	89.23 (13) 176.8 (0)
C_{21} C_{22} H_{22R}	109.5	F10 - F3 - F17	1/0.8(9)
C21—C22—H22B	109.5	F15' - P3 - F1/'	85.7 (8)
H22A—C22—H22B	109.5	F15 - F3 - F17'	50.9 (7)
C21—C22—H22C	109.5	F18' - P3 - F17'	88.5 (9)
H22A—C22—H22C	109.5	F16—P3—F17'	141.2 (7)
H22B—C22—H22C	109.5	F14—P3—F17'	90.0 (4)
C23—N12—Li3	173.0 (2)	F18—P3—F17′	129.3 (7)
N12—C23—C24	178.7 (2)	F13—P3—F17′	90.7 (4)
C23—C24—H24A	109.5	N13—C25—C26	179.1 (3)
C23—C24—H24B	109.5	C25—C26—H26A	109.5
H24A—C24—H24B	109.5	C25—C26—H26B	109.5
C23—C24—H24C	109.5	H26A—C26—H26B	109.5
H24A—C24—H24C	109.5	C25—C26—H26C	109.5
H24B—C24—H24C	109.5	H26A—C26—H26C	109.5
F3'—P1—F5	150.8 (8)	H26B—C26—H26C	109.5
F3'—P1—F6	114.5 (9)	N14—C27—C28	179.3 (3)
F5—P1—F6	93.8 (4)	C27—C28—H28A	109.5
F3'—P1—F4'	92.6 (7)	С27—С28—Н28В	109.5
F5—P1—F4'	59.1 (8)	H28A—C28—H28B	109.5
F6—P1—F4'	152.9 (9)	C27—C28—H28C	109.5
F3'—P1—F6'	96.0 (9)	H28A—C28—H28C	109.5
F5—P1—F6'	112.3 (8)	H28B—C28—H28C	109.5
F4'—P1—F6'	171.4 (9)	N15—C29—C30	178.8 (3)
F3'—P1—F2	94.3 (4)	С29—С30—Н30А	109.5
F5—P1—F2	92.2 (2)	С29—С30—Н30В	109.5
F6—P1—F2	90.2 (3)	H30A—C30—H30B	109.5
F4'—P1—F2	88.6 (3)	С29—С30—Н30С	109.5
F6'—P1—F2	91.3 (6)	H_{30A} C_{30} H_{30C}	109.5
F3′—P1—F1	85.2 (4)	H30B-C30-H30C	109.5
F5F1F1	88 3 (2)		
	00.0 (2)		