organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3,4-Dihydroxyphenethyl acetate

Fei Shen,^a Jing Zhu,^b Lu-lu Wang,^b Kai Wang^b and Wen-ge Yang^b*

^aJiangsu Engineering Technology Research Center of, Polypeptide Pharmaceutical, Nanjing 210009, People's Republic of China, and ^bState Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China

Correspondence e-mail: chemywg@126.com

Received 14 June 2011; accepted 5 July 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.046; wR factor = 0.146; data-to-parameter ratio = 14.1.

In the title compound, $C_{10}H_{12}O_4$, the dihedral angle between the acetate group and the aromatic ring is $20.47 (10)^{\circ}$. In the crystal, molecules are linked by O−H···O hydrogen bonds, forming [001] chains. Weak C-H···O interactions consolidate the packing.

Related literature

For the synthesis, see: Bovicelli et al. (2007).

Experimental

Crystal data

$C_{10}H_{12}O_4$
$M_r = 196.20$
Monoclinic, $P2_1/n$
a = 11.088 (2) Å
b = 7.7100 (15) Å
c = 12.687 (3) Å
$\beta = 114.50 \ (3)^{\circ}$

V = 986.9 (3) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 293 K $0.30 \times 0.20 \times 0.10 \ \mathrm{mm}$

Data collection

Enraf-Nonius CAD-4

Enraf–Nonius CAD-4	1819 independent reflections
diffractometer	1439 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.025$
(North et al., 1968)	3 standard reflections every 200
$T_{\min} = 0.970, \ T_{\max} = 0.990$	reflections
672 measured reflections	intensity decay: 1%

Refinement

A

3

 $R[F^2 > 2\sigma(F^2)] = 0.046$ 129 parameters $wR(F^2) = 0.146$ H-atom parameters constrained S = 1.01 $\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$ 1819 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$D1 - H1A \cdots O2^{i}$ $D2 - H2A \cdots O4^{ii}$ $C10 - H10A \cdots O1^{iii}$	0.82	2.11	2.827 (2)	145
	0.82	1.89	2.7138 (19)	179
	0.96	2.36	3.316 (3)	177

Symmetry codes: (i) -x + 2, -y, -z; (ii) -x + 2, -y, -z + 1; (iii) x, y, z + 1.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

This research work was supported financially by the Program of Six Talent Tops Foundation of Jiangsu Province (2009 NO 2009118) and the Natural Science Basic Research Program of Higher Education in Jiangsu Province (08 K J A530002).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5912).

References

Bovicelli, P., Antonioletti, R., Mancini, S., Causio, S., Borioni, G., Ammendola, S. & Barontini, M. (2007). Synth. Commun. 37, 4245-4252.

Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2011). E67, o1996 [doi:10.1107/S1600536811026730]

3,4-Dihydroxyphenethyl acetate

Fei Shen, Jing Zhu, Lu-lu Wang, Kai Wang and Wen-ge Yang

S1. Experimental

The title compound was prepared by the literature method (Bovicelli *et al.* 2007). Colourless blocks of (I) were obtained by slow evaporation of an ethanol solution.

S2. Refinement

H atoms were positioned geometrically with C—H = 0.93, 0.98 and 0.97 Å for aromatic, methine and methylene H atoms, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2$ (or 1.5 for methyl groups) times $U_{eq}(C)$.

Figure 1

The molecular structure of (I) with displacement ellipsoids drawn at 30% probability levels.

Figure 2

A practical packing diagram of the title compound. Hydron bonds are shown as dashed lines.

3,4-Dihydroxyphenethyl acetate

Crystal data $C_{10}H_{12}O_4$ $M_r = 196.20$ Monoclinic, $P2_1/n$ a = 11.088 (2) Å b = 7.7100 (15) Å c = 12.687 (3) Å $\beta = 114.50$ (3)° V = 986.9 (3) Å³ Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.970, T_{\max} = 0.990$ 3672 measured reflections F(000) = 416 $D_x = 1.320 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 Å Cell parameters from 25 reflections $\theta = 9-13^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.30 \times 0.20 \times 0.10 \text{ mm}$

1819 independent reflections 1439 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 25.4^{\circ}, \ \theta_{min} = 2.1^{\circ}$ $h = 0 \rightarrow 13$ $k = -9 \rightarrow 9$ $l = -15 \rightarrow 13$ 3 standard reflections every 200 reflections intensity decay: 1% Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.046$	H-atom parameters constrained
$wR(F^2) = 0.146$	$w = 1/[\sigma^2(F_o^2) + (0.1P)^2 + 0.110P]$
S = 1.01	where $P = (F_o^2 + 2F_c^2)/3$
1819 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
129 parameters	$\Delta ho_{ m max} = 0.28 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXS97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.113 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.82657 (16)	0.1555 (2)	-0.06613 (11)	0.0744 (5)
H1A	0.8814	0.0814	-0.0619	0.112*
C1	0.61846 (18)	0.1594 (2)	0.09171 (14)	0.0500 (5)
H1B	0.5326	0.1915	0.0787	0.060*
O2	0.99568 (12)	0.0172 (2)	0.13823 (10)	0.0600 (4)
H2A	1.0401	-0.0162	0.2045	0.090*
C2	0.6604 (2)	0.1768 (3)	0.00363 (14)	0.0551 (5)
H2B	0.6023	0.2195	-0.0681	0.066*
O3	0.67398 (12)	0.1071 (2)	0.48254 (10)	0.0591 (4)
C3	0.78691 (19)	0.1315 (2)	0.02105 (14)	0.0493 (5)
O4	0.85894 (13)	0.0936 (2)	0.64219 (11)	0.0667 (5)
C4	0.87258 (17)	0.0653 (2)	0.12809 (14)	0.0444 (4)
C5	0.83054 (17)	0.0485 (2)	0.21595 (13)	0.0435 (4)
H5A	0.8886	0.0053	0.2875	0.052*
C6	0.70253 (17)	0.0951 (2)	0.19887 (14)	0.0425 (4)
C7	0.65213 (17)	0.0689 (3)	0.29153 (14)	0.0498 (5)
H7A	0.5705	0.1339	0.2703	0.060*
H7B	0.6312	-0.0529	0.2934	0.060*
C8	0.74690 (17)	0.1231 (2)	0.41116 (15)	0.0490 (5)
H8A	0.8242	0.0483	0.4398	0.059*
H8B	0.7757	0.2418	0.4109	0.059*
C9	0.73987 (17)	0.0917 (2)	0.59542 (15)	0.0497 (5)
C10	0.6508 (2)	0.0698 (4)	0.65552 (17)	0.0706 (7)

supporting information

H10A	0.6997	0.0906	0.7369	0.106*
H10B	0.6163	-0.0463	0.6439	0.106*
H10C	0.5788	0.1508	0.6246	0.106*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0785 (10)	0.1125 (13)	0.0404 (7)	0.0258 (9)	0.0327 (7)	0.0154 (7)
C1	0.0448 (9)	0.0593 (11)	0.0435 (9)	0.0051 (8)	0.0162 (8)	-0.0028 (7)
O2	0.0493 (7)	0.0940 (11)	0.0420 (7)	0.0130 (7)	0.0241 (6)	0.0090 (6)
C2	0.0565 (11)	0.0675 (12)	0.0346 (9)	0.0115 (9)	0.0122 (8)	0.0035 (8)
O3	0.0406 (7)	0.1006 (11)	0.0383 (7)	0.0101 (6)	0.0185 (5)	0.0056 (6)
C3	0.0586 (11)	0.0581 (11)	0.0337 (8)	0.0033 (8)	0.0217 (8)	-0.0002(7)
O4	0.0414 (8)	0.1125 (12)	0.0430 (7)	0.0016 (7)	0.0144 (6)	0.0054 (7)
C4	0.0455 (9)	0.0515 (10)	0.0373 (8)	0.0000(7)	0.0184 (7)	-0.0019 (7)
C5	0.0462 (9)	0.0501 (9)	0.0344 (8)	0.0020 (7)	0.0169 (7)	0.0041 (7)
C6	0.0436 (9)	0.0458 (9)	0.0386 (9)	-0.0013 (7)	0.0176 (7)	-0.0026 (7)
C7	0.0469 (10)	0.0627 (11)	0.0443 (10)	0.0003 (8)	0.0235 (8)	0.0026 (8)
C8	0.0439 (9)	0.0641 (11)	0.0438 (9)	0.0065 (8)	0.0231 (8)	0.0074 (8)
С9	0.0414 (10)	0.0702 (12)	0.0380 (9)	0.0037 (8)	0.0170 (7)	-0.0026 (8)
C10	0.0529 (12)	0.1190 (19)	0.0459 (11)	-0.0016 (12)	0.0264 (9)	-0.0075 (11)

Geometric parameters (Å, °)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01—C3	1.362 (2)	C4—C5	1.381 (2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—H1A	0.8200	C5—C6	1.391 (2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C6	1.383 (2)	C5—H5A	0.9300	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2	1.384 (2)	C6—C7	1.510 (2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—H1B	0.9300	С7—С8	1.503 (3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2—C4	1.368 (2)	С7—Н7А	0.9700	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2—H2A	0.8200	С7—Н7В	0.9700	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C3	1.371 (3)	C8—H8A	0.9700	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—H2B	0.9300	C8—H8B	0.9700	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3—C9	1.316 (2)	C9—C10	1.487 (2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3—C8	1.448 (2)	C10—H10A	0.9600	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C4	1.392 (2)	C10—H10B	0.9600	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O4—C9	1.202 (2)	C10—H10C	0.9600	
C6—C1—C2 120.88 (16) C8—C7—H7A 108.6 C6—C1—H1B 119.6 C6—C7—H7A 108.6 C2—C1—H1B 119.6 C8—C7—H7B 108.6 C4—O2—H2A 109.5 C6—C7—H7B 108.6 C3—C2—C1 120.62 (16) H7A—C7—H7B 107.5 C3—C2—H2B 119.7 O3—C8—C7 105.67 (13) C1—C2—H2B 119.7 O3—C8—H8A 110.6 C9—O3—C8 119.11 (13) C7—C8—H8A 110.6 O1—C3—C2 119.20 (16) O3—C8—H8B 110.6	C3—O1—H1A	109.5	C8—C7—C6	114.80 (14)	
C6—C1—H1B119.6C6—C7—H7A108.6C2—C1—H1B119.6C8—C7—H7B108.6C4—O2—H2A109.5C6—C7—H7B108.6C3—C2—C1120.62 (16)H7A—C7—H7B107.5C3—C2—H2B119.7O3—C8—C7105.67 (13)C1—C2—H2B119.7O3—C8—H8A110.6C9—O3—C8119.11 (13)C7—C8—H8A110.6O1—C3—C2119.20 (16)O3—C8—H8B110.6	C6—C1—C2	120.88 (16)	C8—C7—H7A	108.6	
C2C1H1B119.6C8C7H7B108.6C4O2H2A109.5C6C7H7B108.6C3C2C1120.62 (16)H7AC7H7B107.5C3C2H2B119.7O3C8C7105.67 (13)C1C2H2B119.7O3C8H8A110.6C9O3C8119.11 (13)C7C8H8A110.6O1C3C2119.20 (16)O3C8H8B110.6	C6—C1—H1B	119.6	С6—С7—Н7А	108.6	
C4O2H2A109.5C6C7H7B108.6C3C2C1120.62 (16)H7AC7H7B107.5C3C2H2B119.7O3C8C7105.67 (13)C1C2H2B119.7O3C8H8A110.6C9O3C8119.11 (13)C7C8H8A110.6O1C3C2119.20 (16)O3C8H8B110.6	C2—C1—H1B	119.6	C8—C7—H7B	108.6	
C3-C2-C1120.62 (16)H7A-C7-H7B107.5C3-C2-H2B119.7O3-C8-C7105.67 (13)C1-C2-H2B119.7O3-C8-H8A110.6C9-O3-C8119.11 (13)C7-C8-H8A110.6O1-C3-C2119.20 (16)O3-C8-H8B110.6	C4—O2—H2A	109.5	C6—C7—H7B	108.6	
C3—C2—H2B119.7O3—C8—C7105.67 (13)C1—C2—H2B119.7O3—C8—H8A110.6C9—O3—C8119.11 (13)C7—C8—H8A110.6O1—C3—C2119.20 (16)O3—C8—H8B110.6	C3—C2—C1	120.62 (16)	H7A—C7—H7B	107.5	
C1C2H2B119.7O3C8H8A110.6C9O3C8119.11 (13)C7C8H8A110.6O1C3C2119.20 (16)O3C8H8B110.6	C3—C2—H2B	119.7	O3—C8—C7	105.67 (13)	
C9-O3-C8119.11 (13)C7-C8-H8A110.6O1-C3-C2119.20 (16)O3-C8-H8B110.6	C1—C2—H2B	119.7	O3—C8—H8A	110.6	
O1—C3—C2 119.20 (16) O3—C8—H8B 110.6	С9—О3—С8	119.11 (13)	C7—C8—H8A	110.6	
	O1—C3—C2	119.20 (16)	O3—C8—H8B	110.6	

O1—C3—C4	121.50 (17)	С7—С8—Н8В	110.6
C2—C3—C4	119.29 (16)	H8A—C8—H8B	108.7
O2—C4—C5	123.78 (16)	O4—C9—O3	122.44 (17)
O2—C4—C3	116.22 (15)	O4—C9—C10	125.14 (16)
C5—C4—C3	119.99 (16)	O3—C9—C10	112.42 (15)
C4—C5—C6	120.92 (16)	C9—C10—H10A	109.5
C4—C5—H5A	119.5	C9—C10—H10B	109.5
С6—С5—Н5А	119.5	H10A-C10-H10B	109.5
C1—C6—C5	118.30 (15)	C9—C10—H10C	109.5
C1—C6—C7	119.81 (15)	H10A-C10-H10C	109.5
C5—C6—C7	121.82 (15)	H10B—C10—H10C	109.5
C6—C1—C2—C3	-0.5 (3)	C2-C1-C6-C7	-176.88 (17)
C1—C2—C3—O1	-177.86 (17)	C4—C5—C6—C1	-0.2 (3)
C1—C2—C3—C4	0.9 (3)	C4—C5—C6—C7	176.70 (15)
O1—C3—C4—O2	-3.4 (3)	C1—C6—C7—C8	-138.32 (18)
C2-C3-C4-O2	177.79 (17)	C5—C6—C7—C8	44.8 (2)
O1—C3—C4—C5	177.72 (17)	C9—O3—C8—C7	158.48 (17)
C2—C3—C4—C5	-1.0 (3)	C6—C7—C8—O3	173.27 (15)
O2—C4—C5—C6	-178.03 (16)	C8—O3—C9—O4	1.5 (3)
C3—C4—C5—C6	0.7 (3)	C8—O3—C9—C10	-177.75 (18)
C2-C1-C6-C5	0.1 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D···· A	D—H··· A
O1—H1A···O2 ⁱ	0.82	2.11	2.827 (2)	145
O2—H2A···O4 ⁱⁱ	0.82	1.89	2.7138 (19)	179
C10—H10A····O1 ⁱⁱⁱ	0.96	2.36	3.316 (3)	177

Symmetry codes: (i) -*x*+2, -*y*, -*z*; (ii) -*x*+2, -*y*, -*z*+1; (iii) *x*, *y*, *z*+1.