organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-Ethyl N'-(3-hydroxybenzylidene)hydrazinecarboxylate dihydrate

Xian-Chao Hu,^{a,b}* Jie Zhang,^a Da-Yong Yang^c and Lu-Ping Lv^d

^aCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, ^bResearch Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, ^cHangzhou Fist Chemical Co. Ltd, Xiaoshan, Hangzhou 310007, People's Republic of China, and ^dLinjiang College, Hangzhou Vocational and Technical College, Hangzhou 310018, People's Republic of China Correspondence e-mail: zgdhxc@126.com

Received 23 June 2011; accepted 26 June 2011

Key indicators: single-crystal X-ray study; T = 223 K; mean σ (C–C) = 0.003 Å; R factor = 0.043; wR factor = 0.126; data-to-parameter ratio = 14.1.

The asymmetric unit of the title compound, C₁₀H₁₂N₂O₃. 2H₂O, contains two organic molecules with similar conformations and four water molecules. Each organic molecule is close to planar (r.m.s. deviations = 0.035 and 0.108 Å) and adopts a trans conformation with respect to its C-N bond. In the crystal, the components are linked into a three-dimensional network by N-H···O, O-H···N and C-H···O hydrogen bonds, some of which are bifurcated. An $R_2^2(8)$ loop occurs between adjacent organic molecules.

Related literature

For general background to benzaldehydehydrazone derivatives, see: Parashar et al. (1988); Hadjoudis et al. (1987); Borg et al. (1999). For a related structure, see: Shang et al. (2007).

Experimental

Crystal data $C_{10}H_{12}N_2O_3 \cdot 2H_2O$ $M_r = 244.25$ Monoclinic, $P2_1/c$ a = 12.8074 (10) Å b = 21.9101 (18) Å

Z = 8Mo $K\alpha$ radiation $\mu = 0.11 \text{ mm}^{-1}$ T = 223 K

Data collection

Bruker SMART CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\rm min} = 0.977, T_{\rm max} = 0.989$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	H atoms treated by a mixture of
WR(F) = 0.126 S = 0.95	refinement
4819 reflections 341 parameters	$\Delta \rho_{\text{max}} = 0.16 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.14 \text{ e } \text{\AA}^{-3}$

 $0.20 \times 0.19 \times 0.18 \; \mathrm{mm}$

22432 measured reflections 4819 independent reflections 3377 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.036$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2\cdots O6^{i}$	0.86	2.29	3.0968 (18)	157
$N4 - H4N \cdot \cdot \cdot O3$	0.86	2.24	3.0849 (18)	167
$O6-H6\cdots O4W$	0.82	1.90	2.675 (2)	157
C3-H3···O5	0.93	2.51	3.422 (2)	168
$O1W-H1A\cdots O2W^{ii}$	0.84 (3)	2.04 (3)	2.874 (3)	178 (3)
$O1W-H1B\cdots O2W^{iii}$	0.91 (3)	1.99 (3)	2.906 (2)	177 (3)
$O2W - H2A \cdots O4$	0.91 (3)	2.02 (3)	2.899 (2)	163 (2)
$O2W - H2B \cdot \cdot \cdot O1^{iv}$	0.85 (3)	2.25 (3)	2.9268 (19)	136 (2)
$O2W - H2B \cdot \cdot \cdot N1^{iv}$	0.85 (3)	2.41 (3)	3.165 (2)	148 (2)
$O3W-H3A\cdots O4^{iii}$	0.89 (3)	2.27 (3)	2.9417 (19)	132 (2)
O3W−H3A····N3 ⁱⁱⁱ	0.89 (3)	2.38 (3)	3.200 (2)	153 (3)
O3W−H3B···O1	0.90 (3)	2.10 (3)	2.991 (2)	171 (3)
$O4W - H4B \cdot \cdot \cdot O3W^{v}$	0.98 (6)	1.84 (6)	2.819 (3)	173 (5)
$O4W-H4A\cdots O3W^{iv}$	0.81 (3)	2.15 (3)	2.955 (2)	169 (3)
C	. 1	1.1. (!!)	. 1 . 1	1.1. (!!!)

Symmetry (i) x - 1, y, z + 1;-x+1, -y+1, -z+1;codes: (ii) (iii) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$; (iv) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$; (v) $x + 1, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank Hangzhou Vocational and Technical College, China, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5929).

References

- Borg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331-4342.
- Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345-1360.
- Parashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim Acta, 151, 201-208.
- Shang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, 03394.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, o1884 [doi:10.1107/S1600536811025104]

(E)-Ethyl N'-(3-hydroxybenzylidene)hydrazinecarboxylate dihydrate

Xian-Chao Hu, Jie Zhang, Da-Yong Yang and Lu-Ping Lv

S1. Comment

Benzaldehydehydrazone derivatives have received considerable attentions for a long time due to their pharmacological activity (Parashar *et al.*, 1988) and their photochromic properties(Hadjoudis *et al.*, 1987). Meanwhile, it's an important intermidiate of 1,3,4-oxadiazoles, which have been reported to be versatile compounds with many properties (Borg *et al.*, 1999). As a further investigation of this type of derivatives, we report herein the crystal structure of the title compound.

The title compound, $C_{10}H_{12}N_2O_3$.2H₂O, crystallizes with two very similar independent molecules in the asymmetric unit. Each independent molecule adopts a *trans* configuration with respect to the C=N bond. The N1/N2/O1/O2/C7-C10 and N3/N4/O4/O5/C17-C20 planes form dihedral angles of 2.56 (10)° and 8.02 (8)°, respectively, with the C1—C6 and C1—C16 planes. The bond lengths and angles of the main molecule agree with those observed for (E)-Methyl N'-(4-hydroxybenzylidene)hydrazinecarboxylate (Shang *et al.*, 2007).

In the crystal, molecules are linked into three-dimensional network by N—H…O,O—H…O,C—H…O and O—H…N hydrogen bonds (Table 1, Fig.2).

S2. Experimental

3-hydroxybenzaldehyde (1.22g, 0.01mol) and ethyl hydrazinecarboxylate(1.04g, 0.01mol) were dissolved in stirred methanol (30ml) and left for 3h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 88% yield. Colourless blocks of (I) were obtained by slow evaporation of a ethanol solution at room temperature (m.p. 438-441 K).

S3. Refinement

H atoms of the water molecule were located in a difference map and were refined with O-H distances restrained to 0.81 (3) Å, 0.84 (3) Å, 0.85 (3) Å, 0.90 (3) Å, 0.91 (3) Å, 0.95 (3) Å and 0.98 (3) Å, H atoms were included in the riding model approximation with N-H = 0.86Å and O-H=0.82Å. C-bound H atoms were positioned geometrically (C-H = 0.93Å and 0.96Å) and refined using a riding model, with $U_{iso}(H) = 1.2 \cdot 1.5 U_{eq}(C)$.

Molecular structure of (I), showing 40% probability displacement ellipsoids and the atomic numbering.

Figure 2

Crystal packing of the title compound, viewed approximately down the *a* axis. Dashed lines indicate hydrogen bonds. H atoms not intervening in H-bonding were eliminated for clarity.

(E)-Ethyl N'-(3-hydroxybenzylidene)hydrazinecarboxylate dihydrate

Crystal data	
$C_{10}H_{12}N_2O_3 \cdot 2H_2O$	V = 2482.8 (3) Å ³
$M_r = 244.25$	Z = 8
Monoclinic, $P2_1/c$	F(000) = 1040
Hall symbol: -P 2ybc	$D_{\rm x} = 1.307 { m Mg} { m m}^{-3}$
a = 12.8074 (10) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 21.9101 (18) Å	Cell parameters from 4819 reflections
c = 8.9048 (7) Å	$\theta = 1.6 - 25.0^{\circ}$
$\beta = 96.490 \ (3)^{\circ}$	$\mu = 0.11 \text{ mm}^{-1}$

T = 223 KBlock, colourless

Data collection

Dura concerión	
Bruker SMART CCD diffractometer	22432 measured reflections 4819 independent reflections
Radiation source: fine-focus sealed tube	3377 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.036$
φ and ω scans	$\theta_{\rm max} = 26.0^\circ, \theta_{\rm min} = 1.6^\circ$
Absorption correction: multi-scan	$h = -15 \rightarrow 15$
(SADABS; Bruker, 2002)	$k = -26 \rightarrow 27$
$T_{\min} = 0.977, \ T_{\max} = 0.989$	$l = -10 \rightarrow 10$
Refinement	
Refinement on F^2 Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.126$	H atoms treated by a mixture of independent
$WR(F^2) = 0.126$	and constrained refinement $1/(-2/(E^2)) + (0.06(15D)^2) + 0.06(04D)$
S = 0.95	$w = 1/[\sigma(r_0) + (0.0615P)^2 + 0.604P]$
4819 reflections	where $P = (P_0^2 + 2F_c^2)/3$

 $0.20 \times 0.19 \times 0.18 \text{ mm}$

341 parameters $(\Delta/\sigma)_{max} < 0.001$ 0 restraints $\Delta \rho_{max} = 0.16 \text{ e } \text{Å}^{-3}$ Primary atom site location: structure-invariant
direct methods $\Delta \rho_{min} = -0.14 \text{ e } \text{Å}^{-3}$ Secondary atom site location: difference Fourier
mapExtinction correction: SHELXL97 (Sheldrick,
2008), Fc*=kFc[1+0.001xFc²\lambda³/sin(2 θ)]-^{1/4}Extinction coefficient: 0.0022 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C10	-0.09028 (17)	0.12370 (9)	1.3239 (3)	0.0742 (6)	
H10A	-0.1020	0.0806	1.3319	0.111*	
H10B	-0.1545	0.1434	1.2842	0.111*	
H10C	-0.0670	0.1400	1.4221	0.111*	
O1W	0.42004 (14)	0.30255 (7)	0.7045 (2)	0.0734 (5)	
O2W	0.68695 (13)	0.73071 (8)	0.58510 (19)	0.0723 (4)	
O3W	0.14922 (13)	0.05421 (8)	1.0133 (2)	0.0770 (5)	
O4W	0.98022 (17)	0.48067 (8)	0.3000 (2)	0.0847 (5)	
H2A	0.694 (2)	0.6903 (13)	0.607 (3)	0.100 (9)*	
H1A	0.387 (2)	0.2930 (13)	0.621 (4)	0.112 (12)*	
H1B	0.386 (2)	0.2811 (13)	0.772 (3)	0.114 (10)*	
H2B	0.745 (2)	0.7398 (11)	0.554 (3)	0.096 (9)*	

H3A	0.213 (3)	0.0450 (13)	0.989 (3)	0.125 (11)*
H4A	0.938 (3)	0.5007 (15)	0.341 (3)	0.122 (12)*
H3B	0.150 (2)	0.0953 (15)	1.023 (3)	0.133 (12)*
H4B	1.041 (5)	0.472 (3)	0.374 (6)	0.28 (3)*
C1	0.28335 (13)	0.39669 (8)	0.9118 (2)	0.0477 (4)
H1	0.2871	0.3558	0.8849	0.057*
C2	0.34613 (13)	0.43925 (8)	0.8508 (2)	0.0507 (4)
C3	0.33908 (16)	0.49999 (8)	0.8888 (3)	0.0667 (6)
H3	0.3813	0.5287	0.8480	0.080*
C4	0.26972 (18)	0.51811 (9)	0.9868 (3)	0.0793 (7)
H4	0.2646	0.5592	1.0112	0.095*
C5	0.20760 (16)	0.47581 (8)	1.0491 (3)	0.0670 (6)
Н5	0 1608	0 4884	1 1155	0.080*
C6	0.21479 (13)	0.41483(7)	1.0130(2)	0.0480(4)
C7	0.14945(14)	0.37163(8)	1.0130(2) 1.0848(2)	0.0536(5)
С7 Н7	0.1046	0.3868	1.1511	0.064*
C8	0.07698 (13)	0.22053 (8)	1.1311 1.1273(2)	0.0506 (4)
C9	-0.00809(14)	0.22033(8) 0.13484(8)	1.1273(2) 1.2203(2)	0.0500(4) 0.0547(5)
Нол	0.00009 (14)	0.1155	1.2205 (2)	0.0547 (5)
LOR	-0.0303	0.1193	1.2393	0.000
C11	0.0303 0.77878 (13)	0.1105	1.1207 0.4056 (2)	0.000°
	0.77878 (13)	0.33505 (8)	0.4030 (2)	0.0483 (4)
	0.7901 0.82602 (12)	0.4550	0.3900	0.038°
C12	0.83093(13)	0.33004 (8)	0.3377(2)	0.0313(4)
U13	0.81980 (10)	0.28929 (9)	0.3388 (3)	0.0009 (0)
HI3	0.8588	0.2605	0.3125	0.080*
C14	0.74537 (18)	0.27088 (9)	0.4480 (3)	0.0791(7)
HI4	0.7341	0.2295	0.4623	0.095*
C15	0.68699 (16)	0.31331 (8)	0.5169 (3)	0.0669 (6)
HI5	0.6365	0.3004	0.5773	0.080*
C16	0.70352 (13)	0.37501 (8)	0.4961 (2)	0.0483 (4)
C17	0.64060 (14)	0.41813 (8)	0.5720 (2)	0.0529 (5)
H17	0.5858	0.4029	0.6212	0.063*
C18	0.59999 (13)	0.56870 (8)	0.6705 (2)	0.0478 (4)
C19	0.52938 (14)	0.65317 (8)	0.7918 (2)	0.0552 (5)
H19A	0.5111	0.6780	0.7025	0.066*
H19B	0.5992	0.6646	0.8366	0.066*
C20	0.45141 (16)	0.66243 (9)	0.9025 (3)	0.0696 (6)
H20A	0.4511	0.7046	0.9317	0.104*
H20B	0.4704	0.6376	0.9902	0.104*
H20C	0.3827	0.6510	0.8567	0.104*
N1	0.15055 (11)	0.31441 (6)	1.06170 (17)	0.0508 (4)
N2	0.08175 (12)	0.28158 (7)	1.13816 (19)	0.0604 (4)
H2	0.0413	0.3004	1.1936	0.073*
N3	0.65632 (10)	0.47535 (6)	0.57456 (16)	0.0480 (4)
N4	0.58747 (11)	0.50831 (6)	0.65046 (18)	0.0543 (4)
H4N	0.5359	0.4901	0.6854	0.065*
01	0.12881 (11)	0.18908 (6)	1.05295 (17)	0.0687 (4)
02	0.00520 (9)	0.20017 (5)	1.21202 (15)	0.0578 (4)

03	0.41697 (10)	0.42375 (6)	0.75455 (16)	0.0694 (4)	
H3C	0.4154	0.3867	0.7409	0.104*	
O4	0.66657 (10)	0.59992 (5)	0.62166 (16)	0.0600 (4)	
05	0.52645 (9)	0.58923 (5)	0.75261 (16)	0.0579 (4)	
O6	0.91245 (10)	0.36631 (6)	0.24827 (17)	0.0721 (4)	
H6	0.9188	0.4035	0.2474	0.086 (8)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C10	0.0782 (14)	0.0505 (12)	0.1003 (17)	-0.0111 (10)	0.0373 (13)	0.0089 (11)
O1W	0.0912 (11)	0.0552 (9)	0.0780 (12)	0.0013 (8)	0.0280 (11)	-0.0056 (8)
O2W	0.0765 (10)	0.0610 (10)	0.0868 (11)	-0.0007 (8)	0.0417 (9)	0.0052 (8)
O3W	0.0635 (9)	0.0624 (10)	0.1118 (13)	-0.0038 (7)	0.0396 (9)	-0.0021 (9)
O4W	0.0879 (12)	0.0599 (10)	0.1142 (15)	-0.0092 (8)	0.0454 (12)	-0.0058 (9)
C1	0.0481 (9)	0.0356 (9)	0.0620 (11)	-0.0014 (7)	0.0182 (8)	-0.0010 (8)
C2	0.0505 (10)	0.0451 (10)	0.0601 (11)	-0.0003 (8)	0.0220 (8)	0.0027 (8)
C3	0.0721 (13)	0.0414 (11)	0.0938 (16)	-0.0056 (9)	0.0409 (12)	0.0067 (10)
C4	0.0957 (16)	0.0370 (10)	0.1155 (19)	-0.0006 (10)	0.0575 (15)	-0.0041 (11)
C5	0.0732 (13)	0.0435 (11)	0.0930 (16)	0.0030 (9)	0.0476 (12)	-0.0037 (10)
C6	0.0463 (9)	0.0396 (9)	0.0608 (11)	-0.0005 (7)	0.0179 (8)	0.0021 (8)
C7	0.0520 (10)	0.0439 (10)	0.0702 (13)	0.0006 (8)	0.0301 (9)	-0.0017 (9)
C8	0.0487 (10)	0.0424 (10)	0.0641 (12)	-0.0002 (8)	0.0208 (9)	0.0022 (8)
C9	0.0596 (11)	0.0377 (9)	0.0693 (13)	-0.0040 (8)	0.0179 (9)	0.0027 (8)
C11	0.0500 (9)	0.0389 (9)	0.0586 (11)	-0.0006 (7)	0.0171 (8)	-0.0023 (8)
C12	0.0490 (9)	0.0453 (10)	0.0632 (11)	0.0006 (8)	0.0215 (8)	-0.0053 (8)
C13	0.0677 (12)	0.0437 (11)	0.0959 (16)	0.0051 (9)	0.0386 (11)	-0.0112 (10)
C14	0.0901 (15)	0.0365 (10)	0.120 (2)	0.0013 (10)	0.0539 (14)	-0.0020 (11)
C15	0.0716 (12)	0.0425 (11)	0.0944 (16)	-0.0034 (9)	0.0437 (12)	-0.0001 (10)
C16	0.0463 (9)	0.0421 (9)	0.0590 (11)	0.0023 (7)	0.0174 (8)	-0.0028 (8)
C17	0.0490 (10)	0.0458 (11)	0.0680 (12)	-0.0006 (8)	0.0253 (9)	-0.0024 (9)
C18	0.0459 (9)	0.0449 (10)	0.0550 (11)	0.0017 (7)	0.0156 (8)	-0.0055 (8)
C19	0.0565 (10)	0.0356 (9)	0.0757 (13)	0.0021 (8)	0.0175 (9)	-0.0074 (9)
C20	0.0687 (12)	0.0515 (12)	0.0933 (16)	0.0045 (10)	0.0290 (12)	-0.0180 (11)
N1	0.0482 (8)	0.0416 (8)	0.0667 (10)	-0.0036 (6)	0.0247 (7)	0.0024 (7)
N2	0.0621 (9)	0.0418 (9)	0.0857 (12)	-0.0043 (7)	0.0448 (9)	-0.0020 (8)
N3	0.0462 (8)	0.0434 (8)	0.0573 (9)	0.0035 (6)	0.0190 (7)	-0.0056 (7)
N4	0.0508 (8)	0.0408 (8)	0.0766 (11)	-0.0019 (6)	0.0308 (8)	-0.0107 (7)
01	0.0744 (9)	0.0447 (7)	0.0956 (11)	-0.0005 (6)	0.0471 (8)	-0.0044 (7)
O2	0.0606 (7)	0.0382 (6)	0.0807 (9)	-0.0043 (5)	0.0344 (7)	0.0017 (6)
O3	0.0766 (9)	0.0517 (8)	0.0894 (10)	-0.0078 (6)	0.0513 (8)	-0.0038 (7)
O4	0.0623 (8)	0.0471 (7)	0.0762 (9)	-0.0043 (6)	0.0321 (7)	-0.0032 (6)
O5	0.0558 (7)	0.0389 (7)	0.0846 (9)	-0.0018 (5)	0.0320 (7)	-0.0125 (6)
O6	0.0766 (9)	0.0526 (9)	0.0970 (11)	-0.0015 (7)	0.0529 (8)	-0.0098 (7)

Geometric parameters (Å, °)

С10—С9	1.496 (2)	С9—Н9В	0.9700
C10—H10A	0.9600	C11—C12	1.382 (2)
C10—H10B	0.9600	C11—C16	1.386 (2)
C10—H10C	0.9600	C11—H11	0.9300
O1W—H1A	0.84 (3)	C12—O6	1.365 (2)
O1W—H1B	0.91 (3)	C12—C13	1.378 (3)
O2W—H2A	0.91 (3)	C13—C14	1.370 (3)
O2W—H2B	0.85 (3)	C13—H13	0.9300
O3W—H3A	0.89 (3)	C14—C15	1.380 (3)
O3W—H3B	0.90 (3)	C14—H14	0.9300
O4W—H4A	0.81 (3)	C15—C16	1.384 (2)
O4W—H4B	0.98 (6)	C15—H15	0.9300
C1—C2	1.382 (2)	C16—C17	1.456 (2)
C1—C6	1.386 (2)	C17—N3	1.270 (2)
C1—H1	0.9300	C17—H17	0.9300
C2—O3	1.359 (2)	C18—O4	1.212 (2)
C2—C3	1.379 (3)	C18—O5	1.3339 (19)
C3—C4	1.372 (3)	C18—N4	1.342 (2)
С3—Н3	0.9300	C19—O5	1.443 (2)
C4—C5	1.378 (3)	C19—C20	1.494 (2)
C4—H4	0.9300	C19—H19A	0.9700
C5—C6	1.380 (2)	C19—H19B	0.9700
С5—Н5	0.9300	C20—H20A	0.9600
C6—C7	1.458 (2)	C20—H20B	0.9600
C7—N1	1.271 (2)	C20—H20C	0.9600
С7—Н7	0.9300	N1—N2	1.3759 (18)
C8—O1	1.206 (2)	N2—H2	0.8600
C8—O2	1.3303 (19)	N3—N4	1.3750 (18)
C8—N2	1.342 (2)	N4—H4N	0.8600
С9—О2	1.444 (2)	O3—H3C	0.8200
С9—Н9А	0.9700	О6—Н6	0.8200
С9—С10—Н10А	109.5	O6—C12—C11	122.46 (16)
C9—C10—H10B	109.5	C13—C12—C11	120.25 (16)
H10A—C10—H10B	109.5	C14—C13—C12	119.85 (17)
C9—C10—H10C	109.5	C14—C13—H13	120.1
H10A—C10—H10C	109.5	C12—C13—H13	120.1
H10B—C10—H10C	109.5	C13—C14—C15	120.52 (18)
H1A—O1W—H1B	103 (3)	C13—C14—H14	119.7
H2A—O2W—H2B	103 (2)	C15—C14—H14	119.7
H3A—O3W—H3B	104 (3)	C14—C15—C16	119.99 (17)
H4A—O4W—H4B	109 (4)	C14—C15—H15	120.0
C2—C1—C6	120.13 (16)	C16—C15—H15	120.0
C2—C1—H1	119.9	C11—C16—C15	119.49 (15)
C6—C1—H1	119.9	C11—C16—C17	122.43 (15)
O3—C2—C3	117.57 (15)	C15—C16—C17	118.08 (15)

O3—C2—C1	122.59 (15)	N3—C17—C16	123.66 (15)
C3—C2—C1	119.83 (16)	N3—C17—H17	118.2
C4—C3—C2	120.04 (17)	С16—С17—Н17	118.2
С4—С3—Н3	120.0	O4—C18—O5	125.14 (16)
C2—C3—H3	120.0	04—C18—N4	125.94 (15)
C_{3} C_{4} C_{5}	120.39(18)	05	108.92(14)
$C_3 - C_4 - H_4$	119.8	05-C19-C20	106.92(14)
$C_5 - C_4 - H_4$	119.8	05 - C19 - H19A	110.3
C4-C5-C6	120.05 (17)	C_{20} C_{19} H_{19A}	110.3
C4 - C5 - H5	120.03 (17)	05-019-019	110.3
C6 C5 H5	120.0	C_{20} C_{10} H_{10B}	110.3
C_{5} C_{6} C_{1}	110 53 (15)	$H_{10A} = C_{10} = H_{10B}$	108.6
$C_{5} = C_{6} = C_{7}$	119.55(15) 118.02(15)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.5
$C_{3} = C_{0} = C_{7}$	110.03(13) 122.42(15)	$C_{19} = C_{20} = H_{20}R$	109.5
$C_1 = C_0 = C_1$	122.43(13) 122.50(15)	H_{20} H_{20} H_{20} H_{20}	109.5
N1 = C7 = U7	123.30 (13)	$H_20A = C_20 = H_20B$	109.5
NI = C / = H /	118.3	H20A C20 H20C	109.5
C_{0} C_{1} C_{1} C_{2} C_{2}	118.3	$H_{20}A = C_{20} = H_{20}C$	109.5
01 - 02	125.35 (16)	H20B-C20-H20C	109.5
01 - C8 - N2	125.86 (16)	C = N = N = N = N = N = N = N = N = N =	114.59 (14)
02 - C8 - N2	108.80 (14)	C8 - N2 - N1	120.80 (14)
02-09-010	106.76 (14)	C8—N2—H2	119.6
02—C9—H9A	110.4	NI—N2—H2	119.6
С10—С9—Н9А	110.4	C17—N3—N4	114.73 (14)
O2—C9—H9B	110.4	C18—N4—N3	120.63 (14)
С10—С9—Н9В	110.4	C18—N4—H4N	119.7
Н9А—С9—Н9В	108.6	N3—N4—H4N	119.7
C12—C11—C16	119.90 (16)	C8—O2—C9	117.01 (13)
C12—C11—H11	120.0	C2—O3—H3C	109.5
C16—C11—H11	120.0	C18—O5—C19	117.34 (13)
O6-C12-C13	117.29 (15)	С12—О6—Н6	109.5
C6—C1—C2—O3	177.98 (18)	C12—C11—C16—C17	179.33 (18)
C6—C1—C2—C3	-1.1 (3)	C14-C15-C16-C11	0.1 (3)
O3—C2—C3—C4	-179.3 (2)	C14—C15—C16—C17	-179.6 (2)
C1—C2—C3—C4	-0.1 (3)	C11—C16—C17—N3	-7.5 (3)
C2—C3—C4—C5	0.7 (4)	C15—C16—C17—N3	172.2 (2)
C3—C4—C5—C6	-0.1 (4)	C6—C7—N1—N2	-178.90 (17)
C4—C5—C6—C1	-1.2 (3)	O1—C8—N2—N1	-0.5 (3)
C4—C5—C6—C7	178.4 (2)	O2—C8—N2—N1	179.68 (16)
C2-C1-C6-C5	1.8 (3)	C7—N1—N2—C8	-178.09 (19)
C2-C1-C6-C7	-177.82 (18)	C16—C17—N3—N4	179.20 (17)
C5-C6-C7-N1	-179.1 (2)	O4—C18—N4—N3	3.2 (3)
C1—C6—C7—N1	0.6 (3)	O5-C18-N4-N3	-177.24 (15)
C16—C11—C12—O6	-179.59 (17)	C17—N3—N4—C18	175.34 (18)
C16—C11—C12—C13	0.5 (3)	01	2.9 (3)
O6—C12—C13—C14	179.7 (2)	N2—C8—O2—C9	-177.33 (16)
C11—C12—C13—C14	-0.4 (3)	C10—C9—O2—C8	178.68 (17)
C12—C13—C14—C15	0.1 (4)	O4—C18—O5—C19	-2.9 (3)

supporting information

C12 C14 C15 C16	0.0(4)	N4 C18 O5 C10	177 54 (16)
C13 - C14 - C13 - C10	0.0 (4)	N4-C18-C19	177.34 (10)
C12—C11—C16—C15	-0.4(3)	C20-C19-O5-C18	-171.15 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N2—H2···O6 ⁱ	0.86	2.29	3.0968 (18)	157
N4—H4 <i>N</i> ···O3	0.86	2.24	3.0849 (18)	167
O6—H6…O4W	0.82	1.90	2.675 (2)	157
С3—Н3…О5	0.93	2.51	3.422 (2)	168
O1W— $H1A$ ··· $O2W$ ⁱⁱ	0.84 (3)	2.04 (3)	2.874 (3)	178 (3)
O1W— $H1B$ ··· $O2W$ ⁱⁱⁱ	0.91 (3)	1.99 (3)	2.906 (2)	177 (3)
O2 <i>W</i> —H2 <i>A</i> ···O4	0.91 (3)	2.02 (3)	2.899 (2)	163 (2)
$O2W - H2B \cdots O1^{iv}$	0.85 (3)	2.25 (3)	2.9268 (19)	136 (2)
$O2W - H2B \cdots N1^{iv}$	0.85 (3)	2.41 (3)	3.165 (2)	148 (2)
O3 <i>W</i> —H3 <i>A</i> ···O4 ⁱⁱⁱ	0.89 (3)	2.27 (3)	2.9417 (19)	132 (2)
O3W— $H3A$ ···· $N3$ ⁱⁱⁱ	0.89 (3)	2.38 (3)	3.200 (2)	153 (3)
O3 <i>W</i> —H3 <i>B</i> …O1	0.90 (3)	2.10 (3)	2.991 (2)	171 (3)
O4W— $H4B$ ···O $3W$	0.98 (6)	1.84 (6)	2.819 (3)	173 (5)
$O4W$ — $H4A$ ···O $3W^{iv}$	0.81 (3)	2.15 (3)	2.955 (2)	169 (3)

Symmetry codes: (i) x-1, y, z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+1, y-1/2, -z+3/2; (iv) -x+1, y+1/2, -z+3/2; (v) x+1, -y+1/2, z-1/2.