metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[[µ-aqua-tetraaquabis(µ-2-hydroxy-4-oxocyclobut-1-ene-1,3-diolato)strontium] hemihydrate]

Amira Bouhali,^a Chahrazed Trifa,^a Sofiane Bouacida,^a* Chaouki Boudaren^a and Thierry Bataille^b

^aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri–Constantine, 25000 Algeria, and ^bSciences Chimiques de Rennes, UMR 6226 CNRS - Université de Rennes 1, Avenue du Général Leclerc, 35042 Rennes cedex, France

Correspondence e-mail: Bouacida_Sofiane@yahoo.fr

Received 30 June 2011; accepted 17 July 2011

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.004 Å; R factor = 0.028; wR factor = 0.068; data-to-parameter ratio = 12.6.

In the title coordination polymer, $\{[Sr(C_4HO_4)_2(H_2O)_5] \cdot 0.5H_2O\}_n$, the Sr²⁺ ion is coordinated by three monodentate hydrogensquarate (hsq) anions and six aqua ligands in a distorted SrO₉ monocapped square-antiprismatic geometry. The hsq anions and water molecules bridge the metal ions into infinite sheets lying parallel to (100). The O atom of the uncoordinated water molecule lies on a crystallographic twofold axis. The packing is stabilized by numerous O– $H \cdots O$ hydrogen bonds.

Related literature

For the isostructural mixed-metal Ba/Sr analogue of the title compound and background references, see: Trifa *et al.* (2011).

Experimental

Crystal data [Sr(C₄HO₄)₂(H₂O)₅]·0.5H₂O $M_r = 412.81$ Monoclinic, C2/c a = 24.885 (3) Å b = 8.8026 (9) Å c = 13.8918 (17) Å $\beta = 119.609$ (4)°

 $V = 2645.7 (5) Å^{3}$ Z = 8 Mo K\alpha radiation \(\mu = 4.15 mm^{-1}\) T = 150 K 0.57 \times 0.27 \times 0.10 mm

9165 measured reflections

 $R_{\rm int} = 0.037$

3006 independent reflections

2243 reflections with $I > 2\sigma(I)$

Data collection

Bruker APEXII diffractometer Absorption correction: multi-scan SADABS (Bruker, 2006) $T_{min} = 0.365$, $T_{max} = 0.660$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.028$	H atoms treated by a mixture of
$wR(F^2) = 0.068$	independent and constrained
S = 1.03	refinement
3006 reflections	$\Delta \rho_{\rm max} = 0.42 \text{ e} \text{ Å}^{-3}$
239 parameters	$\Delta \rho_{\rm min} = -0.51 \text{ e} \text{ Å}^{-3}$
2 restraints	

Table 1 Selected bond length

Selected bond lengths (Å).

Sr1-O1	2.691 (2)	Sr1-O6	2.6179 (18)
Sr1-O2	2.642 (2)	Sr1-O12	2.6646 (16)
Sr1-O3	2.690 (2)	Sr1-O14 ⁱ	2.5906 (16)
Sr1-O4	2.641 (3)	Sr1-O3 ⁱⁱ	2.7154 (19)
Sr1-O5	2.572 (2)		

Symmetry codes: (i) x, y + 1, z; (ii) -x + 2, -y + 2, -z + 1.

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1A\cdots O9^{iii}$	0.76 (4)	2.27 (4)	2.983 (3)	158 (4)
$O1 - H1B \cdots O7^{iv}$	0.79 (4)	1.99 (4)	2.715 (2)	153 (4)
$O1W - H1W \cdots O13^{ii}$	0.76 (2)	2.39 (2)	2.801 (2)	115 (2)
$O1W - H1W \cdots O8^{v}$	0.76 (2)	2.51 (3)	3.118 (2)	138 (3)
$O2-H2A\cdots O14^{vi}$	0.92 (4)	1.91 (4)	2.794 (3)	161 (4)
$O2-H2B\cdots O1W^{vii}$	0.70 (4)	2.52 (4)	3.165 (3)	154 (4)
$O3-H3A\cdots O13^{ii}$	0.93 (4)	1.79 (4)	2.712 (3)	174 (3)
$O3-H3B\cdots O4^{viii}$	0.76 (4)	2.59 (4)	3.172 (3)	136 (3)
$O4-H4A\cdots O7^{ix}$	0.78 (4)	2.01 (4)	2.785 (3)	177 (4)
$O4 - H4B \cdots O1W$	0.87 (4)	2.03 (4)	2.871 (3)	163 (3)
$O5-H5A\cdots O1^{x}$	0.72 (4)	2.09 (4)	2.787 (3)	166 (4)
$O5-H5B\cdots O8^{xi}$	0.90 (4)	1.82 (4)	2.716 (3)	175 (4)
O9−H9···O12	0.82	1.74	2.548 (3)	169
$O11 - H11 \cdots O6^{vii}$	0.82	1.77	2.580 (2)	172
6		2 1 (1		1. C-A

Symmetry codes: (ii) -x + 2, -y + 2, -z + 1; (iii) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (iv) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (v) $x + \frac{1}{2}, -y + \frac{5}{2}, z + \frac{1}{2}$; (vi) -x + 2, -y + 1, -z + 1; (vii) x, y - 1, z; (viii) $-x + 2, y, -z + \frac{1}{2}$; (ix) $-x + \frac{3}{2}, -y + \frac{5}{2}, -z$; (x) $x, -y + 2, z - \frac{1}{2}$; (xi) $-x + \frac{3}{2}, -y + \frac{3}{2}, -z$.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SIR2002* (Burla *et al.*, 2003); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg & Berndt, 2001); software used to prepare material for publication: *WinGX* publication routines (Farrugia, 1999).

The authors thank Dr Thierry Roisnel, Centre de Diffractométrie X (CDIFX) de Rennes, Université de Rennes 1, France, for his technical assistance with the single-crystal X-ray data collection. This work was supported by the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri–Constantine 25000 Algeria. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5939).

References

- Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.
- Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Bolidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
 Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Trifa, C., Bouhali, A., Bouacida, S., Boudaren, C. & Bataille, T. (2011). Acta Cryst. E67, m275-m276.

supporting information

Acta Cryst. (2011). E67, m1130-m1131 [doi:10.1107/S1600536811028704]

Poly[[µ-aqua-tetraaquabis(µ-2-hydroxy-4-oxocyclobut-1-ene-1,3-diolato)strontium] hemihydrate]

Amira Bouhali, Chahrazed Trifa, Sofiane Bouacida, Chaouki Boudaren and Thierry Bataille

S1. Comment

As part of our ongoing sturctural studies of alkaline-earth squarate coordination networks (Trifa *et al.*, 2011), we now descibe the synthesis and structure of the title compound, (I).

The asymmetric unit of (I) contains one strontium cation, two hydrogensquarate anions, five aqua ligands and a water molecule (Fig. 1): the O-atom of the latter lies on a crystallographic 2-fold axis.

The strontium atom is coordinated by the O atoms from three hydrogensquarate anions and six water molecules. The ninefold coordination polyhedral of Sr can be described as a monocapped square antiprism $SrO_3(H_2O)_6$ (Fig. 2).

The hydrogensquarate (HSQ) anions bridge two strontium atoms to form a [Sr2 (H2O)12(HSQ)4] dimer (Fig. 3), thus leading a ribbon of formula [Sr (H2O)6(HC4O4)2] running along $[10\overline{1}]$. The SrO₉ polyhedra are linked together by sharing two water molecules in the direction of the *b* axis to build up layers, in between which are located the free water molecules (Fig. 4). The three-dimensionality is ensured by a network of O—H…O hydrogen bonds (Table 2).

S2. Experimental

Board colourless single crystals of the title compound were obtained by a hydrothermal reaction of an equimolar ratio (1 mmol) of strontium chloride, squaric acid and and 6 ml of water in a 23 ml Teflon-lined acid digestion bomb (Parr) heated for 3 days at 393 K under autogeneous pressure and then cooled down to room temperature. The product obtained were collected by filtration, thoroughly washed with distilled water and ethanol, and finally dried at room temperature.

S3. Refinement

All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were localized on Fourier maps and refined isotropically. Except for H atoms for hydroxy groups of hydrogenosquarate (H9 and H11) were introduced in calculated positions and treated as riding on their parent O atom.(with O—H = 0.82Å and U_{iso} (H) =1.5 U_{eq} (O)), One distance (O—H)of free water molecule are refined with soft constraint, the O—H distance is restrained to 0.85 Å. (O1W—H1W).

Figure 1

Drawing of asymetric unit of (I), with displacement ellipsoids drawn at the 50% probability level.

The monocapped square antiprism geometry of the Sr atom [Symmetry code: [(i):2 - x, 2 - y, 1 - z, (ii): x, 1 + y, z.].

Figure 3 Coordination between squarates ligands and polyhedron unit

Figure 4

The crystal structure of the title compound viewed along the b axis, showing the layers.

Poly[[µ-aqua-tetraaquabis(µ-2-hydroxy-4-oxocyclobut-1-ene- 1,3-diolato)strontium] hemihydrate]

Crystal data	
$[Sr(C_4HO_4)_2(H_2O)_5] \cdot 0.5H_2O$ $M_r = 412.81$ Monoclinic, C2/c Hall symbol: -C 2yc a = 24.885 (3) Å b = 8.8026 (9) Å c = 13.8918 (17) Å $\beta = 119.609$ (4)° V = 2645.7 (5) Å ³ Z = 8	F(000) = 1656 $D_x = 2.073 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3634 reflections $\theta = 2.5-27.5^{\circ}$ $\mu = 4.15 \text{ mm}^{-1}$ T = 150 K Slab, colourless $0.57 \times 0.27 \times 0.10 \text{ mm}$
Data collection	
Bruker APEXII diffractometer Graphite monochromator CCD rotation images, thin slices scans Absorption correction: multi-scan SADABS (Bruker, 2006) $T_{min} = 0.365$, $T_{max} = 0.660$ 9165 measured reflections	3006 independent reflections 2243 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.7^{\circ}$ $h = -32 \rightarrow 32$ $k = -8 \rightarrow 11$ $l = -17 \rightarrow 18$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.028$	Hydrogen site location: inferred from
$wR(F^2) = 0.068$	neighbouring sites
S = 1.03	H atoms treated by a mixture of independent
3006 reflections	and constrained refinement
239 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0273P)^2 + 1.5645P]$
2 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.42 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Sr1	0.911042 (8)	0.99774 (2)	0.338611 (16)	0.00988 (8)
01	0.83711 (7)	1.00426 (19)	0.42892 (15)	0.0142 (3)
O2	0.98788 (9)	0.7809 (2)	0.35213 (18)	0.0294 (5)
O3	1.02876 (8)	1.0958 (2)	0.44716 (15)	0.0192 (4)
O4	0.92432 (9)	1.2071 (3)	0.21578 (19)	0.0426 (7)
05	0.88485 (10)	0.8965 (3)	0.14660 (16)	0.0272 (5)
O6	0.80135 (7)	1.10726 (17)	0.20264 (13)	0.0145 (4)
07	0.68196 (8)	1.24431 (17)	-0.01295 (14)	0.0167 (4)
O8	0.63364 (7)	0.90554 (19)	-0.10260 (15)	0.0236 (4)
O9	0.74969 (7)	0.76209 (17)	0.11403 (15)	0.0170 (4)
H9	0.7835	0.763	0.1706	0.025*
O11	0.80095 (7)	0.40021 (18)	0.20800 (14)	0.0166 (4)
H11	0.8005	0.3073	0.2116	0.025*
O12	0.84872 (7)	0.73793 (16)	0.29979 (14)	0.0144 (4)
O13	0.95937 (8)	0.5984 (2)	0.52759 (16)	0.0318 (5)
O14	0.91536 (7)	0.25641 (17)	0.43112 (15)	0.0207 (4)
C6	0.75625 (10)	1.0501 (3)	0.1175 (2)	0.0114 (5)
C7	0.70216 (10)	1.1153 (3)	0.0187 (2)	0.0130 (5)
C8	0.67972 (11)	0.9580 (3)	-0.0218 (2)	0.0159 (5)
C9	0.73365 (10)	0.9012 (3)	0.0776 (2)	0.0126 (5)
C11	0.84871 (10)	0.4537 (3)	0.2975 (2)	0.0135 (5)
C12	0.86769 (10)	0.6055 (3)	0.3350 (2)	0.0130 (5)
C13	0.91914 (11)	0.5446 (3)	0.4401 (2)	0.0206 (6)
C14	0.89846 (10)	0.3877 (3)	0.3960 (2)	0.0165 (5)
O1W	1	1.4700 (3)	0.25	0.0446 (9)

H1B	0.8227 (16)	0.926 (4)	0.432 (3)	0.05*	
H1A	0.8113 (17)	1.062 (4)	0.401 (3)	0.05*	
H5B	0.8812 (15)	0.796 (4)	0.134 (3)	0.05*	
H2A	1.0251 (15)	0.776 (4)	0.417 (3)	0.05*	
H5A	0.8711 (17)	0.934 (5)	0.094 (3)	0.05*	
H3B	1.0439 (16)	1.072 (4)	0.414 (3)	0.05*	
H3A	1.0298 (15)	1.201 (4)	0.453 (3)	0.05*	
H2B	0.9798 (16)	0.719 (4)	0.316 (3)	0.05*	
H4A	0.8953 (17)	1.219 (4)	0.158 (3)	0.05*	
H4B	0.9498 (16)	1.284 (4)	0.241 (3)	0.05*	
H1W	1.0225 (13)	1.513 (3)	0.3020 (13)	0.05*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Sr1	0.00824 (11)	0.00952 (13)	0.00876 (12)	0.00008 (8)	0.00180 (8)	0.00180 (9)
01	0.0145 (8)	0.0109 (9)	0.0172 (9)	0.0003 (7)	0.0078 (7)	0.0015 (8)
02	0.0159 (9)	0.0414 (13)	0.0193 (11)	0.0073 (9)	-0.0001 (8)	-0.0139 (9)
03	0.0145 (8)	0.0236 (10)	0.0162 (10)	-0.0018 (8)	0.0050 (7)	0.0060 (8)
O4	0.0184 (10)	0.0565 (15)	0.0300 (13)	-0.0138 (10)	-0.0057 (9)	0.0294 (12)
05	0.0345 (11)	0.0293 (11)	0.0111 (10)	0.0049 (9)	0.0062 (9)	-0.0023 (9)
06	0.0125 (7)	0.0102 (8)	0.0112 (9)	-0.0020 (6)	-0.0015 (7)	-0.0015 (7)
07	0.0195 (9)	0.0117 (9)	0.0123 (9)	0.0056 (7)	0.0028 (7)	0.0001 (7)
08	0.0161 (8)	0.0192 (9)	0.0174 (10)	0.0049 (7)	-0.0056 (8)	-0.0093 (8)
09	0.0125 (8)	0.0095 (8)	0.0179 (10)	-0.0005 (6)	-0.0008 (7)	0.0016 (7)
011	0.0128 (8)	0.0093 (8)	0.0157 (9)	-0.0018 (7)	-0.0020 (7)	-0.0020 (7)
012	0.0158 (8)	0.0052 (8)	0.0142 (9)	0.0025 (6)	0.0014 (7)	0.0023 (7)
013	0.0286 (10)	0.0163 (9)	0.0199 (11)	-0.0104 (8)	-0.0113 (8)	0.0048 (8)
O14	0.0169 (9)	0.0069 (8)	0.0245 (11)	0.0008 (6)	-0.0003 (8)	0.0040 (7)
C6	0.0097 (10)	0.0124 (11)	0.0106 (12)	0.0029 (8)	0.0038 (9)	-0.0007 (9)
C7	0.0131 (11)	0.0132 (12)	0.0098 (12)	0.0042 (9)	0.0035 (10)	-0.0006 (10)
C8	0.0156 (11)	0.0136 (12)	0.0135 (13)	0.0038 (9)	0.0033 (10)	-0.0036 (10)
C9	0.0106 (10)	0.0093 (11)	0.0146 (12)	0.0011 (9)	0.0038 (10)	-0.0018 (10)
C11	0.0110 (10)	0.0085 (10)	0.0152 (13)	0.0003 (8)	0.0021 (10)	0.0000 (10)
C12	0.0132 (11)	0.0071 (11)	0.0142 (13)	-0.0013 (9)	0.0034 (10)	-0.0020 (10)
C13	0.0178 (12)	0.0104 (11)	0.0209 (15)	-0.0033 (9)	-0.0001 (11)	0.0031 (10)
C14	0.0121 (11)	0.0102 (11)	0.0185 (14)	-0.0014 (9)	0.0008 (10)	0.0016 (11)
O1W	0.095 (3)	0.0180 (16)	0.0227 (17)	0	0.031 (2)	0

Geometric parameters (Å, °)

Sr1-01	2.691 (2)	O2—H2B	0.70 (4)	
Sr1—O2	2.642 (2)	O3—H3B	0.76 (4)	
Sr1-03	2.690 (2)	O3—H3A	0.93 (4)	
Sr1—O4	2.641 (3)	O4—H4B	0.87 (4)	
Sr1—O5	2.572 (2)	O4—H4A	0.78 (4)	
Sr1—O6	2.6179 (18)	O5—H5A	0.72 (4)	
Sr1-012	2.6646 (16)	O5—H5B	0.90 (4)	

Sr1—O14 ⁱ	2.5906 (16)	O9—H9	0.8200
Sr1—O3 ⁱⁱ	2.7154 (19)	O11—H11	0.8200
O6—C6	1.265 (3)	O1W—H1W	0.76(2)
O7—C7	1.232 (3)	O1W—H1W ⁱⁱⁱ	0.76 (2)
O8—C8	1.231 (3)	C6—C7	1.483 (4)
O9—C9	1.310 (3)	C6—C9	1.426 (4)
011-C11	1.311 (3)	C7—C8	1.495 (4)
O12—C12	1.262 (3)	C8—C9	1.458 (4)
013-013	1.225 (3)	C11—C14	1.438 (4)
014-014	1.244 (3)	C11—C12	1.427 (4)
O1—H1A	0.76 (4)	C12—C13	1.487 (4)
01—H1B	0.79 (4)	C13—C14	1.495 (4)
Ω^2 —H2A	0.92(4)		11.50(1)
02 11211	0.52(1)		
O1—Sr1—O2	128.30 (6)	Sr1—O1—H1A	112 (3)
O1—Sr1—O3	122.53 (6)	H2A—O2—H2B	117 (4)
O1—Sr1—O4	128.24 (7)	Sr1—O2—H2A	117 (2)
O1—Sr1—O5	127.55 (7)	Sr1—O2—H2B	125 (3)
O1—Sr1—O6	67.62 (6)	H3A—O3—H3B	109 (4)
O1—Sr1—O12	69.46 (5)	Sr1—O3—H3B	108 (3)
$O1$ — $Sr1$ — $O14^i$	67.69 (6)	Sr1—O3—H3A	110 (3)
O1—Sr1—O3 ⁱⁱ	68.26 (6)	Sr1 ⁱⁱ —O3—H3A	103 (2)
O2—Sr1—O3	69.05 (6)	Sr1 ⁱⁱ —O3—H3B	114 (3)
O2—Sr1—O4	103.47 (8)	Sr1—O4—H4A	115 (3)
O2—Sr1—O5	68.10 (7)	Sr1—O4—H4B	125 (2)
O2—Sr1—O6	141.02 (6)	H4A—O4—H4B	115 (4)
O2—Sr1—O12	73.90 (6)	Sr1—O5—H5A	130 (3)
$O2$ — $Sr1$ — $O14^{i}$	138.47 (6)	Sr1—O5—H5B	120 (2)
O2—Sr1—O3 ⁱⁱ	73.44 (6)	H5A—O5—H5B	108 (4)
O3—Sr1—O4	71.88 (7)	С9—О9—Н9	109.00
O3—Sr1—O5	109.90 (7)	C11—O11—H11	109.00
O3—Sr1—O6	138.14 (5)	H1W—O1W—H1W ⁱⁱⁱ	120 (3)
O3—Sr1—O12	138.82 (5)	O6—C6—C7	133.8 (2)
$O3$ — $Sr1$ — $O14^{i}$	70.92 (6)	O6—C6—C9	136.6 (2)
O3—Sr1—O3 ⁱⁱ	67.95 (6)	C7—C6—C9	89.6 (2)
O4—Sr1—O5	67.68 (8)	O7—C7—C6	135.3 (2)
O4—Sr1—O6	72.28 (7)	C6—C7—C8	89.4 (2)
O4—Sr1—O12	135.59 (6)	O7—C7—C8	135.1 (2)
$O4$ — $Sr1$ — $O14^{i}$	73.70 (7)	O8—C8—C7	134.2 (2)
O3 ⁱⁱ —Sr1—O4	137.93 (7)	O8—C8—C9	137.9 (2)
O5—Sr1—O6	74.91 (7)	C7—C8—C9	87.9 (2)
O5—Sr1—O12	70.66 (7)	C6—C9—C8	93.1 (2)
$O5$ — $Sr1$ — $O14^{i}$	138.26 (7)	O9—C9—C6	136.3 (2)
O3 ⁱⁱ —Sr1—O5	138.71 (7)	09—C9—C8	130.4 (2)
O6—Sr1—O12	82.82 (5)	C12—C11—C14	93.3 (2)
06—Sr1—014 ⁱ	78.88 (5)	O11—C11—C12	131.6 (2)
O3 ⁱⁱ —Sr1—O6	135.76 (6)	O11—C11—C14	135.1 (2)
O12—Sr1—O14 ⁱ	137.07 (6)	O12—C12—C13	133.6 (2)
	× /		

$O3^{ii}$ —Sr1—O12	84.97 (5)	012—C12—C11	136.9 (2)
$O3^{ii}$ —Sr1—O14 ⁱ	81.82 (5)	C11—C12—C13	89.4 (2)
Sr1—O3—Sr1 ⁱⁱ	112.05 (7)	013-013-012	136.0 (2)
Sr1-06-C6	130.94 (16)	O13—C13—C14	135.3 (2)
Sr1	130.20 (17)	C12-C13-C14	88.6 (2)
Sr1 ^{iv}	134 33 (16)	014-C14-C13	1357(2)
Sr1—01—H1B	116 (3)	$C_{11} - C_{14} - C_{13}$	88 7 (2)
H1A-O1-H1B	109 (4)	014-C14-C11	1355(2)
	107 (1)		155.5 (2)
O1—Sr1—O3—Sr1 ⁱⁱ	42.91 (9)	Sr1—O6—C6—C7	-157.2(2)
$O2$ — $Sr1$ — $O3$ — $Sr1^{ii}$	-79.97 (8)	Sr1-06-C6-C9	26.7 (5)
O4— $Sr1$ — $O3$ — $Sr1$ ⁱⁱ	167.22 (9)	Sr1-012-C12-C11	-152.0(3)
$05-Sr1-03-Sr1^{ii}$	-135.69 (8)	Sr1-012-C12-C13	32.5 (4)
$06-Sr1-03-Sr1^{ii}$	134.93 (7)	Sr1 ^{iv} —014—C14—C11	32.9 (5)
O12—Sr1—O3—Sr1 ⁱⁱ	-52.65 (11)	Sr1 ^{iv} —014—C14—C13	-150.9(3)
$O14^{i}$ Sr1- $O3$ Sr1 ⁱⁱ	88.72 (7)	06—C6—C7—07	-2.1(6)
$O3^{ii}$ —Sr1—O3—Sr1 ⁱⁱ	0.00 (6)	O6—C6—C7—C8	-177.7(3)
01-Sr1-06-C6	-106.5(2)	C9—C6—C7—O7	175.2 (3)
02-sr1-06-c6	17.3 (3)	C9—C6—C7—C8	-0.4(2)
03-Sr1-06-C6	139.1 (2)	06-C6-C9-09	1.8 (6)
04 - Sr1 - 06 - C6	106.9 (2)	O6—C6—C9—C8	177.6 (3)
05-Sr1-06-C6	36.0 (2)	C7—C6—C9—O9	-175.3(3)
012—Sr1—O6—C6	-35.8(2)	C7—C6—C9—C8	0.5 (2)
014^{i} Sr1-06-C6	-176.8(2)	07	2.0 (6)
$O3^{ii}$ —Sr1—O6—C6	-111.0(2)	O7—C7—C8—C9	-175.2(3)
O1—Sr1—O12—C12	-112.7 (2)	C6—C7—C8—O8	177.6 (3)
02-Sr1-012-C12	30.1 (2)	C6—C7—C8—C9	0.4 (2)
03-Sr1-012-C12	3.6 (2)	08-C8-C9-09	-1.3 (6)
O4—Sr1—O12—C12	123.1 (2)	O8—C8—C9—C6	-177.4(4)
05-Sr1-012-C12	102.0 (2)	C7—C8—C9—O9	175.7 (3)
06-Sr1-012-C12	178.5 (2)	C7—C8—C9—C6	-0.5(2)
O14 ⁱ —Sr1—O12—C12	-116.4 (2)	O11—C11—C12—O12	-1.5 (6)
O3 ⁱⁱ —Sr1—O12—C12	-44.1 (2)	O11—C11—C12—C13	175.3 (3)
$O1$ — $Sr1$ — $O14^i$ — $C14^i$	-112.4 (3)	C14—C11—C12—O12	-178.2 (3)
$O2$ — $Sr1$ — $O14^{i}$ — $C14^{i}$	124.5 (2)	C14—C11—C12—C13	-1.4(2)
$O3$ — $Sr1$ — $O14^{i}$ — $C14^{i}$	108.4 (3)	O11—C11—C14—O14	2.3 (6)
$O4$ — $Sr1$ — $O14^{i}$ — $C14^{i}$	32.4 (3)	O11—C11—C14—C13	-175.1 (3)
$O5$ — $Sr1$ — $O14^{i}$ — $C14^{i}$	9.6 (3)	C12—C11—C14—O14	178.8 (3)
$O6-Sr1-O14^{i}-C14^{i}$	-42.2(3)	C12—C11—C14—C13	1.4 (2)
$O12$ — $Sr1$ — $O14^{i}$ — $C14^{i}$	-108.7(2)	O12—C12—C13—O13	1.5 (6)
$O1$ — $Sr1$ — $O3^{ii}$ — $Sr1^{ii}$	-141.83(8)	O12—C12—C13—C14	178.3 (3)
O2—Sr1—O3 ⁱⁱ —Sr1 ⁱⁱ	73.62 (8)	C11—C12—C13—O13	-175.4 (4)
O3—Sr1—O3 ⁱⁱ —Sr1 ⁱⁱ	0.00 (6)	C11—C12—C13—C14	1.4 (2)
O4—Sr1—O3 ⁱⁱ —Sr1 ⁱⁱ	-18.28 (14)	O13—C13—C14—O14	-1.9 (6)
$O5$ — $Sr1$ — $O3^{ii}$ — $Sr1^{ii}$	95.46 (11)	013—C13—C14—C11	175.5 (4)
			- / 2 / 2 / ()

O6—Sr1—O3 ⁱⁱ —Sr1 ⁱⁱ	-137.38 (7)	C12-C13-C14-O14	-178.7 (3)
O12—Sr1—O3 ⁱⁱ —Sr1 ⁱⁱ	148.30 (8)	C12-C13-C14-C11	-1.4 (2)

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) -*x*+2, -*y*+2, -*z*+1; (iii) -*x*+2, *y*, -*z*+1/2; (iv) *x*, *y*-1, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O1—H1 <i>A</i> ···O9 ^v	0.76 (4)	2.27 (4)	2.983 (3)	158 (4)
O1—H1 <i>B</i> ····O7 ^{vi}	0.79 (4)	1.99 (4)	2.715 (2)	153 (4)
O1 <i>W</i> —H1 <i>W</i> ···O13 ⁱⁱ	0.76 (2)	2.39 (2)	2.801 (2)	115 (2)
O1 <i>W</i> —H1 <i>W</i> ···O8 ^{vii}	0.76 (2)	2.51 (3)	3.118 (2)	138 (3)
O2—H2A···O14 ^{viii}	0.92 (4)	1.91 (4)	2.794 (3)	161 (4)
$O2$ — $H2B$ ···O1 W^{iv}	0.70 (4)	2.52 (4)	3.165 (3)	154 (4)
O3—H3A…O13 ⁱⁱ	0.93 (4)	1.79 (4)	2.712 (3)	174 (3)
O3—H3 <i>B</i> ···O4 ⁱⁱⁱ	0.76 (4)	2.59 (4)	3.172 (3)	136 (3)
O4— $H4A$ ···O7 ^{ix}	0.78 (4)	2.01 (4)	2.785 (3)	177 (4)
O4—H4 <i>B</i> ⋯O1 <i>W</i>	0.87 (4)	2.03 (4)	2.871 (3)	163 (3)
O5—H5 <i>A</i> ···O1 ^x	0.72 (4)	2.09 (4)	2.787 (3)	166 (4)
$O5$ — $H5B$ ···O 8^{xi}	0.90 (4)	1.82 (4)	2.716 (3)	175 (4)
O9—H9…O12	0.82	1.74	2.548 (3)	169
O11—H11…O6 ^{iv}	0.82	1.77	2.580 (2)	172

Symmetry codes: (ii) -*x*+2, -*y*+2, -*z*+1; (iii) -*x*+2, *y*, -*z*+1/2; (iv) *x*, *y*-1, *z*; (v) -*x*+3/2, *y*+1/2, -*z*+1/2; (vi) -*x*+3/2, *y*-1/2, -*z*+1/2; (vii) *x*+1/2, -*y*+5/2, *z*+1/2; (viii) -*x*+2, -*y*+1, -*z*+1; (ix) -*x*+3/2, -*y*+5/2, -*z*; (x) *x*, -*y*+2, *z*-1/2; (xi) -*x*+3/2, -*y*+3/2, -*z*.