organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-[(1,3-Benzodioxol-5-vlmethylidene)amino]-4,5,6,7-tetrahydro-1-benzothiophene-3-carbonitrile

Abdullah M. Asiri,^{a,b} Salman A. Khan^b and M. Nawaz Tahir^c*

^aThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, PO Box 80203, Saudi Arabia, ^bDepartment of Chemistry, Faculty of Science, King Abduaziz University, Jeddah 21589, PO Box 80203, Saudi Arabia, and ^cUniversity of Sargodha, Department of Physics, Sargodha, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 19 July 2011; accepted 21 July 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.042; wR factor = 0.119; data-to-parameter ratio = 13.4.

The title compound, C17H14N2O2S, crystallizes with two roughly planar molecules in the asymmetric unit, in which the dihedral angles between the 1,3-benzodioxole-5-carbaldehyde moiety and the heterocyclic five-membered ring are 3.76 (5) and 5.33 (12)°. In each molecule, a short $C-H\cdots S$ contact generates an S(5) ring. In the crystal, pairs of molecules are linked by a weak C-H···N interaction, forming dimers.

Related literature

For a related structure, see: Elerman & Elmali, (1998). For graph-set notation, see: Bernstein et al. (1995).

b = 10.9895 (3) Å

c = 13.5749 (3) Å

 $\alpha = 99.409 \ (1)^{\circ}$

 $\beta = 109.707 (1)^{\circ}$

Experimental

Crystal data

$C_{17}H_{14}N_2O_2S$	
$M_r = 310.36$	
Triclinic, P1	
a = 10.9450 (3) Å	

 $\gamma = 92.854 \ (1)^{\circ}$ V = 1506.77 (7) Å³ Z = 4Mo $K\alpha$ radiation

Data collection ---

.

Bruker Kappa APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\min} = 0.947, \ T_{\max} = 0.962$

. _ _ _ _ _

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ 397 parameters $wR(F^2) = 0.119$ H-atom parameters constrained S = 1.01 $\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$ 5331 reflections

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
C8—H8···S1	0.93	2.65	3.081 (2)	109
C25—H25···S2	0.93	2.61	3.060 (2)	110
C7—H7 <i>A</i> ···N4 ⁱ	0.97	2.62	3.190 (3)	118

 $\mu = 0.22 \text{ mm}^{-1}$

 $0.32 \times 0.23 \times 0.20$ mm

21604 measured reflections

5331 independent reflections 3812 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int} = 0.030$

Symmetry code: (i) x, y - 1, z.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

The authors thank the Chemistry Department, King Abdul Aziz University, Jeddah, Saudi Arabia for providing the research facilities and for the financial support of this work via grant No. 3-045/430.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6325).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Elerman, Y. & Elmali, A. (1998). Acta Cryst. C54, 529-531.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2011). E67, o2162 [doi:10.1107/S1600536811029564]

2-[(1,3-Benzodioxol-5-ylmethylidene)amino]-4,5,6,7-tetrahydro-1-benzothio-phene-3-carbonitrile

Abdullah M. Asiri, Salman A. Khan and M. Nawaz Tahir

S1. Comment

The crystal structures of 2-salicylideneamino-4,5,6,7-tetrahydrobenzo(*b*) thiophene-3-carbonitrile (Elerman & Elmali, 1998) has been published which is related to the title compound (I, Fig. 1).

The title compound consist of two molecules having different configuration. In one molecule, the ring system of 1,3benzodioxole-5-carbaldehyde moiety A (C1—C7/O1/O2) and five membered ring B (C9—C12/S1) of 2-amino-4,5,6,7tetrahydro-1-benzothiophene-3-carbonitrile group are planar with r. m. s. deviations of 0.010 and 0.007 Å, respectively. The dihedral angle between A/B is 3.76 (5)°. In the second molecule, the ring system of 1,3-benzodioxole-5-carbaldehyde moiety C (C18—C24/O3/O4) and five membered ring D (C26—C29/S2) of 2-amino-4,5,6,7-tetrahydro-1-benzothiophene-3- carbonitrile group are also almost planar with r. m. s. deviation of 0.003 and 0.003 Å, respectively. The dihedral angle between C/D is 5.33 (12)°. There exist intra-molecular H-bonding of C—H…S type completing S(5) ring (Table 1, Fig. 1) motifs (Bernstein *et al.*, 1995) in each molecule. The inter-molecular H-bondings of C—H…N type links the molecules in pair.

S2. Experimental

A mixture of 1,3-benzodioxole-5-carbaldehyde (0.50 g, 3.3 mmol) and 2-amino-4,5,6,7-tetrahydro-1-benzothiophene-3-carbonitrile (0.58 g, 3.3 mmol) in ethanol (15 ml) was heated for 3 h. The progress of the reaction was monitored by TLC. The solid that separated from the cooled mixture was collected and recrystallized from a methanol-chloroform mixture (9:1) to give yellow prisms of the title compound (I).

Yield: 80%; m.p. 452-453 K.

S3. Refinement

The H-atoms were positioned geometrically (C–H = 0.93–0.97 Å) and refined as riding with $U_{iso}(H) = x U_{eq}(C)$, where x = 1.2 for all H-atoms.

Figure 1

View of the title compound with displacement ellipsoids drawn at the 50% probability level. The dotted lines represent the C—H…S short contacts.

Figure 2

The partial packing of (I0, which shows that molecules are linked into pairs.

2-[(1,3-Benzodioxol-5-ylmethylidene)amino]-4,5,6,7-tetrahydro-1- benzothiophene-3-carbonitrile

Z = 4

F(000) = 648

 $\theta = 3.0-25.3^{\circ}$ $\mu = 0.22 \text{ mm}^{-1}$

Prism, yellow

 $0.32 \times 0.23 \times 0.20$ mm

 $\theta_{\text{max}} = 25.1^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$

21604 measured reflections

5331 independent reflections

3812 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int} = 0.030$

 $h = -13 \rightarrow 13$

 $k = -13 \rightarrow 13$

 $l = -16 \rightarrow 16$

 $D_{\rm x} = 1.368 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3812 reflections

Crystal data

 $C_{17}H_{14}N_2O_2S$ $M_r = 310.36$ Triclinic, *P*1 Hall symbol: -P 1 a = 10.9450 (3) Å b = 10.9895 (3) Å c = 13.5749 (3) Å a = 99.409 (1)° $\beta = 109.707$ (1)° $\gamma = 92.854$ (1)° V = 1506.77 (7) Å³

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.20 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\min} = 0.947, T_{\max} = 0.962$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from
$wR(F^2) = 0.119$	neighbouring sites
<i>S</i> = 1.01	H-atom parameters constrained
5331 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0574P)^2 + 0.3989P]$
397 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.47 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

F 1		1. /	1	• • •		• 1 /	• , •	1. 1		,	18	21
Fractional	atomic	coordinates	and	isofronic	or i	eauivalent	isofronic	disnlaceme	nt i	narameters i	1 A '	-)
1 i actionat	aronne	coordinates		isonopie		equiverent	isonopie	unspiceenie	· • • F	sur univerers	(**	/

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S 1	0.69931 (6)	0.61842 (6)	0.38319 (5)	0.0608 (3)	
01	0.83134 (17)	-0.08541 (15)	0.34616 (16)	0.0760 (7)	
02	1.04492 (17)	-0.06592 (16)	0.35358 (15)	0.0732 (7)	
N1	0.68413 (17)	0.36120 (16)	0.35774 (13)	0.0469 (6)	

N2	0.3467 (2)	0.2739 (2)	0.32998 (19)	0.0791 (9)
C1	0.87133 (19)	0.25306 (19)	0.37004 (16)	0.0454 (7)
C2	1.0002 (2)	0.2632 (2)	0.37598 (19)	0.0574 (8)
C3	1.0676 (2)	0.1591 (2)	0.3701 (2)	0.0636 (10)
C4	1.0009 (2)	0.0478 (2)	0.35961 (18)	0.0523 (8)
C5	0.8728 (2)	0.0370 (2)	0.35467 (17)	0.0495 (8)
C6	0.8052 (2)	0.13625 (19)	0.35878 (17)	0.0484 (7)
C7	0.9391 (3)	-0.1520 (2)	0.3461 (2)	0.0698 (10)
C8	0.8065 (2)	0.3644 (2)	0.37473 (17)	0.0489 (8)
C9	0.6260 (2)	0.4690 (2)	0.36425 (16)	0.0463 (7)
C10	0.4990 (2)	0.4719 (2)	0.35984 (16)	0.0465 (7)
C11	0.4612 (2)	0.5942 (2)	0.37466 (16)	0.0490 (8)
C12	0.5596 (2)	0.6817 (2)	0.38799 (18)	0.0552 (8)
C13	0.5532(3)	0.8189(2)	0.4071 (2)	0.0745(10)
C14	0.4109(3)	0.8429(3)	0.3783(3)	0.0969 (14)
C15	0.3357(3)	0.7633(3)	0.3705(3) 0.4195(3)	0.0927(12)
C16	0.3315(2)	0.7055(3) 0.6258(2)	0.1195(3) 0.37836(19)	0.0625 (9)
C17	0.5515(2) 0.4154(2)	0.0230(2) 0.3617(2)	0.34364(18)	0.0023(9)
S2	0.74553(6)	0.38875(6)	-0.09354(5)	0.0555(9)
03	0.74333(0) 0.33202(10)	0.90165(18)	0.07354(3)	0.0021(2)
04	0.53292(19) 0.51968(18)	0.99105(16)	0.05740(17) 0.19428(15)	0.0314(3)
N3	0.51900(18) 0.71457(18)	0.58138 (16)	0.19420(15) 0.05320(15)	0.0798(7)
NJ NJ	0.71437(18)	0.56138(10)	0.000000(10)	0.0509(7)
C19	0.3304(2)	0.3072(2)	0.29333(19) 0.00214(17)	0.0721(8)
C10	0.5551(2) 0.5760(2)	0.7022(2) 0.7860(2)	0.00214(17) 0.00010(18)	0.0494(8) 0.0537(8)
C19 C20	0.5700(2)	0.7800(2)	0.09919(18)	0.0537(8)
C20	0.3008(2)	0.8788(2)	0.10818(19) 0.0267(2)	0.0538(8)
C21	0.3895(2)	0.8915(2)	0.0267(2)	0.0571(9)
C22	0.3474(2) 0.4220(2)	0.8116(3)	-0.0684(2)	0.0675(10)
C23	0.4220(2)	0.7156(2)	-0.07955(19)	0.0620 (9)
C24	0.4140(3)	1.0438 (3)	0.1634 (3)	0.0790 (11)
C25	0.6096 (2)	0.6012 (2)	-0.01630 (19)	0.0542 (8)
C26	0.7833 (2)	0.48621 (19)	0.02932 (18)	0.0495 (8)
C27	0.8952 (2)	0.45635 (19)	0.10042 (17)	0.0478 (8)
C28	0.9499 (2)	0.35489 (19)	0.05702 (19)	0.0502 (8)
C29	0.8797 (2)	0.3105 (2)	-0.0468 (2)	0.0550 (8)
C30	0.9103 (3)	0.2036 (2)	-0.1155 (2)	0.0675 (10)
C31	1.0462 (3)	0.1722 (3)	-0.0606 (3)	0.0790 (11)
C32	1.0763 (3)	0.1751 (3)	0.0558 (3)	0.0878 (11)
C33	1.0699 (3)	0.3015 (2)	0.1166 (2)	0.0649 (9)
C34	0.9495 (2)	0.5197 (2)	0.2080 (2)	0.0535 (9)
H2	1.04310	0.34134	0.38414	0.0689*
H3	1.15386	0.16599	0.37317	0.0763*
H6	0.71841	0.12736	0.35432	0.0581*
H7A	0.91573	-0.21367	0.28101	0.0838*
H7B	0.96394	-0.19426	0.40615	0.0838*
H8	0.85578	0.44114	0.39070	0.0587*
H13A	0.59244	0.85699	0.36364	0.0894*
H13B	0.60114	0.85481	0.48136	0.0894*

H14A	0.40709	0.92904	0.40645	0.1157*	
H14B	0.37063	0.82949	0.30131	0.1157*	
H15A	0.24704	0.78525	0.40004	0.1114*	
H15B	0.37364	0.77969	0.49667	0.1114*	
H16A	0.30649	0.57872	0.42448	0.0750*	
H16B	0.26608	0.60265	0.30742	0.0750*	
H19	0.65114	0.77860	0.15506	0.0645*	
H22	0.27214	0.82079	-0.12347	0.0811*	
H23	0.39555	0.65842	-0.14321	0.0744*	
H24A	0.36445	1.04391	0.21071	0.0947*	
H24B	0.44678	1.12889	0.16768	0.0947*	
H25	0.57911	0.54799	-0.08239	0.0650*	
H30A	0.90390	0.22530	-0.18334	0.0810*	
H30B	0.84742	0.13191	-0.12909	0.0810*	
H31A	1.05551	0.09013	-0.09447	0.0950*	
H31B	1.10907	0.23096	-0.06945	0.0950*	
H32A	1.16308	0.15071	0.08613	0.1056*	
H32B	1.01468	0.11488	0.06452	0.1056*	
H33A	1.06867	0.29412	0.18647	0.0778*	
H33B	1.14680	0.35662	0.12626	0.0778*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
S 1	0.0483 (4)	0.0490 (4)	0.0878 (5)	0.0129 (3)	0.0275 (3)	0.0109 (3)
01	0.0641 (11)	0.0413 (9)	0.1252 (16)	0.0107 (8)	0.0392 (11)	0.0086 (9)
O2	0.0650 (11)	0.0577 (11)	0.1085 (14)	0.0299 (9)	0.0416 (10)	0.0167 (10)
N1	0.0427 (11)	0.0475 (11)	0.0511 (10)	0.0126 (8)	0.0173 (8)	0.0073 (8)
N2	0.0574 (14)	0.0806 (17)	0.0976 (18)	-0.0021 (13)	0.0271 (13)	0.0153 (14)
C1	0.0384 (12)	0.0472 (13)	0.0500 (12)	0.0104 (10)	0.0146 (10)	0.0078 (10)
C2	0.0417 (13)	0.0537 (14)	0.0791 (16)	0.0074 (11)	0.0216 (12)	0.0175 (12)
C3	0.0435 (13)	0.0665 (17)	0.0918 (19)	0.0174 (12)	0.0326 (13)	0.0227 (14)
C4	0.0496 (14)	0.0513 (14)	0.0616 (14)	0.0190 (11)	0.0245 (11)	0.0114 (10)
C5	0.0467 (13)	0.0445 (13)	0.0577 (13)	0.0080 (10)	0.0201 (10)	0.0061 (10)
C6	0.0364 (12)	0.0487 (13)	0.0591 (13)	0.0079 (10)	0.0177 (10)	0.0042 (10)
C7	0.0760 (18)	0.0537 (16)	0.0867 (19)	0.0237 (14)	0.0357 (15)	0.0122 (13)
C8	0.0439 (13)	0.0453 (13)	0.0576 (13)	0.0080 (10)	0.0184 (10)	0.0078 (10)
C9	0.0441 (12)	0.0480 (13)	0.0473 (12)	0.0133 (10)	0.0163 (10)	0.0076 (9)
C10	0.0400 (12)	0.0569 (14)	0.0424 (12)	0.0113 (10)	0.0133 (9)	0.0098 (10)
C11	0.0473 (13)	0.0600 (14)	0.0428 (12)	0.0205 (11)	0.0161 (10)	0.0135 (10)
C12	0.0538 (14)	0.0542 (14)	0.0572 (14)	0.0231 (12)	0.0177 (11)	0.0087 (11)
C13	0.0763 (18)	0.0552 (16)	0.091 (2)	0.0270 (14)	0.0269 (15)	0.0110 (14)
C14	0.098 (2)	0.078 (2)	0.124 (3)	0.0478 (19)	0.044 (2)	0.0229 (19)
C15	0.090 (2)	0.107 (2)	0.109 (2)	0.062 (2)	0.056 (2)	0.037 (2)
C16	0.0521 (14)	0.0878 (19)	0.0579 (14)	0.0340 (13)	0.0246 (12)	0.0233 (13)
C17	0.0413 (13)	0.0661 (17)	0.0595 (14)	0.0121 (12)	0.0177 (11)	0.0127 (12)
S2	0.0629 (4)	0.0661 (4)	0.0598 (4)	0.0201 (3)	0.0237 (3)	0.0105 (3)
O3	0.0814 (13)	0.0794 (13)	0.1002 (15)	0.0480 (11)	0.0408 (12)	0.0329 (11)

O4	0.0764 (12)	0.0626 (11)	0.0894 (13)	0.0246 (9)	0.0205 (10)	-0.0020 (10)
N3	0.0487 (11)	0.0472 (11)	0.0616 (12)	0.0142 (9)	0.0218 (9)	0.0156 (9)
N4	0.0724 (15)	0.0575 (13)	0.0759 (15)	0.0195 (11)	0.0162 (12)	0.0015 (12)
C18	0.0439 (12)	0.0517 (13)	0.0568 (14)	0.0121 (10)	0.0193 (11)	0.0169 (11)
C19	0.0432 (13)	0.0528 (14)	0.0612 (14)	0.0118 (10)	0.0107 (11)	0.0146 (11)
C20	0.0524 (14)	0.0480 (14)	0.0651 (15)	0.0112 (11)	0.0238 (12)	0.0138 (11)
C21	0.0526 (14)	0.0602 (15)	0.0724 (16)	0.0247 (12)	0.0294 (13)	0.0298 (13)
C22	0.0542 (15)	0.091 (2)	0.0639 (16)	0.0314 (14)	0.0168 (13)	0.0347 (15)
C23	0.0585 (15)	0.0761 (17)	0.0515 (14)	0.0202 (13)	0.0156 (12)	0.0165 (12)
C24	0.082 (2)	0.0575 (16)	0.111 (2)	0.0248 (15)	0.0473 (19)	0.0190 (16)
C25	0.0538 (14)	0.0526 (14)	0.0598 (14)	0.0127 (11)	0.0227 (12)	0.0131 (11)
C26	0.0488 (13)	0.0446 (12)	0.0611 (14)	0.0106 (10)	0.0245 (11)	0.0142 (10)
C27	0.0478 (13)	0.0395 (12)	0.0604 (14)	0.0072 (10)	0.0231 (11)	0.0115 (10)
C28	0.0494 (13)	0.0399 (12)	0.0689 (15)	0.0096 (10)	0.0285 (12)	0.0136 (10)
C29	0.0534 (14)	0.0501 (14)	0.0708 (16)	0.0109 (11)	0.0322 (12)	0.0135 (12)
C30	0.0737 (18)	0.0571 (16)	0.0816 (18)	0.0139 (13)	0.0433 (15)	0.0038 (13)
C31	0.079 (2)	0.0586 (17)	0.108 (2)	0.0217 (14)	0.0472 (17)	0.0045 (15)
C32	0.092 (2)	0.0670 (19)	0.108 (2)	0.0414 (16)	0.0351 (19)	0.0173 (16)
C33	0.0605 (16)	0.0533 (15)	0.0854 (18)	0.0226 (12)	0.0276 (14)	0.0168 (13)
C34	0.0497 (14)	0.0388 (13)	0.0737 (18)	0.0139 (10)	0.0222 (12)	0.0117 (12)

Geometric parameters (Å, °)

S1—C9	1.731 (2)	C8—H8	0.9300
S1—C12	1.728 (2)	C13—H13B	0.9700
S2—C29	1.725 (2)	C13—H13A	0.9700
S2—C26	1.734 (2)	C14—H14B	0.9700
O1—C7	1.419 (4)	C14—H14A	0.9700
01—C5	1.372 (3)	C15—H15A	0.9700
O2—C4	1.362 (3)	C15—H15B	0.9700
O2—C7	1.424 (4)	C16—H16B	0.9700
O3—C21	1.364 (3)	C16—H16A	0.9700
O3—C24	1.416 (4)	C18—C19	1.396 (3)
O4—C24	1.419 (4)	C18—C23	1.388 (3)
O4—C20	1.370 (3)	C18—C25	1.448 (3)
N1—C9	1.377 (3)	C19—C20	1.358 (3)
N1—C8	1.278 (3)	C20—C21	1.373 (3)
N2—C17	1.143 (3)	C21—C22	1.356 (4)
N3—C26	1.377 (3)	C22—C23	1.385 (4)
N3—C25	1.272 (3)	C26—C27	1.373 (3)
N4—C34	1.144 (3)	C27—C28	1.428 (3)
C1—C2	1.383 (3)	C27—C34	1.418 (3)
C1—C6	1.401 (3)	C28—C29	1.350 (3)
C1—C8	1.448 (3)	C28—C33	1.496 (4)
C2—C3	1.398 (3)	C29—C30	1.501 (4)
C3—C4	1.354 (3)	C30—C31	1.508 (5)
C4—C5	1.379 (3)	C31—C32	1.496 (5)
C5—C6	1.352 (3)	C32—C33	1.513 (4)

C9—C10	1.373 (3)	C19—H19	0.9300
C10-C11	1.429 (3)	C22—H22	0.9300
C10-C17	1.421 (3)	C23—H23	0.9300
C11—C16	1.493 (3)	C24—H24A	0.9700
C11—C12	1.351 (3)	C24—H24B	0.9700
C12—C13	1.497 (3)	C25—H25	0.9300
C13—C14	1.521 (5)	C30—H30A	0.9700
C14—C15	1.468 (5)	C30—H30B	0.9700
C15—C16	1.516 (4)	C31—H31A	0.9700
C2—H2	0.9300	C31—H31B	0.9700
С3—Н3	0.9300	C32—H32A	0.9700
С6—Н6	0.9300	C32—H32B	0.9700
C7—H7B	0.9700	C33—H33A	0.9700
С7—Н7А	0.9700	C33—H33B	0.9700
C/-II/A	0.9700	055-11550	0.9700
C9—S1—C12	91.86 (11)	C15—C16—H16A	109.00
C26—S2—C29	92.06 (12)	C15—C16—H16B	109.00
C5—O1—C7	106.22 (19)	C11—C16—H16A	109.00
C4—O2—C7	106.0 (2)	C11—C16—H16B	109.00
C21—O3—C24	105.9 (2)	C19—C18—C23	120.1 (2)
C20—O4—C24	106.0 (2)	C19—C18—C25	121.2 (2)
C8—N1—C9	120.91 (19)	C23—C18—C25	118.7 (2)
C25—N3—C26	120.5 (2)	C18—C19—C20	116.8 (2)
C2-C1-C6	120.0 (2)	O4—C20—C19	128.0 (2)
C6—C1—C8	121.0 (2)	O4—C20—C21	109.5 (2)
C2C1C8	119.0 (2)	C19—C20—C21	122.5 (2)
C1—C2—C3	121.8 (2)	O3—C21—C20	110.2 (2)
C2—C3—C4	116.6 (2)	O3—C21—C22	127.8 (2)
C3—C4—C5	122.0 (2)	C20—C21—C22	122.0 (2)
O2—C4—C5	110.2 (2)	C21—C22—C23	116.6 (2)
O2—C4—C3	127.8 (2)	C18—C23—C22	122.0 (2)
O1—C5—C6	128.3 (2)	O3—C24—O4	108.5 (3)
C4—C5—C6	122.4 (2)	N3—C25—C18	123.4 (2)
01—C5—C4	109.3 (2)	S2—C26—N3	126.02 (17)
C1—C6—C5	117.2 (2)	S2—C26—C27	109.71 (17)
01	108.25 (18)	N3—C26—C27	124.3 (2)
N1-C8-C1	122.5 (2)	C26—C27—C28	114.1 (2)
S1-C9-C10	110.04 (17)	C26—C27—C34	122.6 (2)
N1 - C9 - C10	123 4 (2)	$C_{28} - C_{27} - C_{34}$	122.3(2)
S1-C9-N1	126.57 (17)	C27—C28—C29	111.8 (2)
C9-C10-C11	114.0 (2)	C27—C28—C33	125.6 (2)
C9-C10-C17	121.9 (2)	C29 - C28 - C33	122.0(2) 122.7(2)
C11—C10—C17	124.1 (2)	S2-C29-C28	112.36 (18)
C12-C11-C16	122.6(2)	S2-C29-C30	122.51 (19)
C10-C11-C12	111.6 (2)	C_{28} C_{29} C_{30}	125.1 (2)
C10-C11-C16	125 8 (2)	C_{29} C_{30} C_{31}	120.1(2) 1100(2)
SI-C12-C13	123.0(2) 122.2(2)	C_{30} C_{31} C_{32}	112.7(3)
C11-C12-C13	125.2(2) 125.3(2)	$C_{31} - C_{32} - C_{33}$	112.7(3) 113.0(3)
C.1 C12 C13	140.0 (4)	001 002 000	110.0 (0)

S1—C12—C11	112.46 (17)	C28—C33—C32	110.2 (2)
C12—C13—C14	108.9 (2)	N4—C34—C27	177.3 (3)
C13—C14—C15	113.2 (3)	C18—C19—H19	122.00
C14—C15—C16	113.7 (3)	С20—С19—Н19	122.00
C11—C16—C15	111.1 (2)	C21—C22—H22	122.00
N2—C17—C10	179.1 (3)	C23—C22—H22	122.00
C1—C2—H2	119.00	C18—C23—H23	119.00
C3—C2—H2	119.00	С22—С23—Н23	119.00
С4—С3—Н3	122.00	O3—C24—H24A	110.00
С2—С3—Н3	122.00	O3—C24—H24B	110.00
С1—С6—Н6	121.00	O4—C24—H24A	110.00
С5—С6—Н6	121.00	O4—C24—H24B	110.00
O1—C7—H7B	110.00	H24A—C24—H24B	108.00
O2—C7—H7A	110.00	N3—C25—H25	118.00
O2—C7—H7B	110.00	C18—C25—H25	118.00
H7A—C7—H7B	108.00	С29—С30—Н30А	110.00
O1—C7—H7A	110.00	С29—С30—Н30В	110.00
N1—C8—H8	119.00	С31—С30—Н30А	110.00
C1—C8—H8	119.00	C31—C30—H30B	110.00
H13A—C13—H13B	108.00	H30A-C30-H30B	108.00
C14—C13—H13A	110.00	C30—C31—H31A	109.00
C14—C13—H13B	110.00	C30—C31—H31B	109.00
C12—C13—H13A	110.00	C32—C31—H31A	109.00
C12—C13—H13B	110.00	C32—C31—H31B	109.00
H14A—C14—H14B	108.00	H31A—C31—H31B	108.00
C13—C14—H14A	109.00	C31—C32—H32A	109.00
C13—C14—H14B	109.00	C31—C32—H32B	109.00
C15—C14—H14A	109.00	С33—С32—Н32А	109.00
C15—C14—H14B	109.00	С33—С32—Н32В	109.00
C14—C15—H15B	109.00	H32A—C32—H32B	108.00
C16—C15—H15A	109.00	С28—С33—Н33А	110.00
C14—C15—H15A	109.00	С28—С33—Н33В	110.00
C16—C15—H15B	109.00	С32—С33—Н33А	110.00
H15A—C15—H15B	108.00	С32—С33—Н33В	110.00
H16A—C16—H16B	108.00	H33A—C33—H33B	108.00
C12—S1—C9—N1	-176.63 (19)	C9—C10—C11—C12	1.2 (3)
C12—S1—C9—C10	1.35 (17)	C17—C10—C11—C16	1.7 (3)
C9—S1—C12—C11	-0.70 (18)	C10-C11-C12-C13	-179.0 (2)
C9—S1—C12—C13	178.2 (2)	C16—C11—C12—S1	178.43 (17)
C26—S2—C29—C30	179.1 (2)	C10-C11-C12-S1	-0.1 (2)
C26—S2—C29—C28	0.38 (19)	C10-C11-C16-C15	167.3 (2)
C29—S2—C26—N3	178.9 (2)	C12—C11—C16—C15	-11.1 (3)
C29—S2—C26—C27	0.14 (18)	C16—C11—C12—C13	-0.4 (4)
C7—O1—C5—C6	-179.5 (2)	C11—C12—C13—C14	-15.8 (3)
C5-01-C7-02	-0.7 (2)	S1—C12—C13—C14	165.4 (2)
C7—O1—C5—C4	0.1 (3)	C12—C13—C14—C15	44.9 (4)
C7—O2—C4—C3	178.4 (2)	C13—C14—C15—C16	-60.2 (4)

C7—O2—C4—C5	-0.9 (3)	C14—C15—C16—C11	40.6 (4)
C4—O2—C7—O1	1.0 (2)	C23-C18-C19-C20	-0.3 (3)
C24—O3—C21—C22	179.8 (3)	C25-C18-C19-C20	178.9 (2)
C21—O3—C24—O4	0.0 (3)	C19—C18—C23—C22	0.8 (4)
C24—O3—C21—C20	0.2 (3)	C25—C18—C23—C22	-178.5 (2)
C20—O4—C24—O3	-0.2 (3)	C19—C18—C25—N3	0.6 (4)
C24—O4—C20—C21	0.3 (3)	C23—C18—C25—N3	179.8 (2)
C24—O4—C20—C19	-179.7 (3)	C18—C19—C20—O4	179.9 (2)
C8—N1—C9—C10	-171.7 (2)	C18—C19—C20—C21	-0.1 (4)
C8—N1—C9—S1	6.0 (3)	O4—C20—C21—O3	-0.4 (3)
C9—N1—C8—C1	179.13 (19)	O4—C20—C21—C22	-179.9 (2)
C25—N3—C26—C27	-178.1 (2)	C19—C20—C21—O3	179.7 (2)
C25—N3—C26—S2	3.4 (3)	C19—C20—C21—C22	0.1 (4)
C26—N3—C25—C18	-177.7 (2)	O3—C21—C22—C23	-179.2 (2)
C2—C1—C6—C5	0.3 (3)	C20—C21—C22—C23	0.4 (4)
C8—C1—C2—C3	-178.9 (2)	C21—C22—C23—C18	-0.8 (4)
C6—C1—C2—C3	0.6 (3)	S2—C26—C27—C28	-0.6 (3)
C8—C1—C6—C5	179.8 (2)	S2—C26—C27—C34	-179.41 (18)
C2—C1—C8—N1	171.9 (2)	N3—C26—C27—C28	-179.4 (2)
C6—C1—C8—N1	-7.6 (3)	N3—C26—C27—C34	1.8 (4)
C1—C2—C3—C4	-0.8 (4)	C26—C27—C28—C29	0.9 (3)
C2—C3—C4—C5	0.2 (4)	C26—C27—C28—C33	-179.0 (2)
C2—C3—C4—O2	-179.1 (2)	C34—C27—C28—C29	179.7 (2)
O2—C4—C5—O1	0.5 (3)	C34—C27—C28—C33	-0.2 (4)
O2—C4—C5—C6	-179.9 (2)	C27—C28—C29—S2	-0.8 (3)
C3—C4—C5—O1	-178.9 (2)	C27—C28—C29—C30	-179.5 (2)
C3—C4—C5—C6	0.7 (4)	C33—C28—C29—S2	179.15 (19)
C4—C5—C6—C1	-0.9 (3)	C33—C28—C29—C30	0.4 (4)
O1-C5-C6-C1	178.6 (2)	C27—C28—C33—C32	163.9 (2)
N1-C9-C10-C11	176.37 (18)	C29—C28—C33—C32	-16.0 (4)
N1-C9-C10-C17	-2.7 (3)	S2-C29-C30-C31	168.2 (2)
S1—C9—C10—C17	179.30 (17)	C28—C29—C30—C31	-13.2 (4)
S1—C9—C10—C11	-1.7 (2)	C29—C30—C31—C32	42.1 (3)
C9—C10—C11—C16	-177.3 (2)	C30—C31—C32—C33	-61.1 (4)
C17—C10—C11—C12	-179.8 (2)	C31—C32—C33—C28	45.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C8—H8…S1	0.93	2.65	3.081 (2)	109
C25—H25····S2	0.93	2.61	3.060 (2)	110
C7—H7A····N4 ⁱ	0.97	2.62	3.190 (3)	118

Symmetry code: (i) x, y-1, z.