organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-[(*Z*)-2-Phenylhydrazin-1-ylidene]-1-(piperidin-1-yl)propan-2-one

Hatem A. Abdel-Aziz,^a‡ Seik Weng Ng^{c,b} and Edward R. T. Tiekink^b*

^aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: edward.tiekink@gmail.com

Received 21 July 2011; accepted 22 July 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.033; wR factor = 0.080; data-to-parameter ratio = 15.4.

A Z configuration about the imine bond [1.3025 (18) Å] in the title compound, $C_{14}H_{19}N_3O$, allows for the formation of an intramoleclar N-H···N hydrogen bond between the hydrazone H and piperidine N atoms; the carbonyl group is disposed to lie over the piperidine residue, which is in a chair form. A twist between the terminal benzene ring and the hydrazine residue is seen [N-N-C-C torsion angle = 163.81 (12)°]. Helical supramolecular chains along the *c* axis mediated by N-H···O hydrogen bonds are the most prominent feature of the crystal packing. The chains are connected into layers lying in the *ac* plane by weak C-H··· π contacts involving two methylene H atoms and an adjacent benzene ring.

Related literature

For background to the biological activity of amidrazones, see: Frohberg *et al.* (2006); Abdel-Aziz & Mekawey (2009); Abdel-Aziz *et al.* (2010). For the synthesis, see: Frohberg *et al.* (1995).

Experimental

Crystal data C₁₄H₁₉N₃O

 $M_r = 245.32$

‡ Additional correspondence author, e-mail: hatem_741@yahoo.com.

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2010) $T_{min} = 0.857, T_{max} = 0.969$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.033 & \Delta \rho_{max} = 0.12 \text{ e } \text{\AA}^{-3} \\ & \omega R(F^2) &= 0.080 & \Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3} \\ S &= 1.05 & \Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3} \\ S &= 1.05 & \Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3} \\ S &= 1.05 & \Omega \\ S &= 1.05 & \Omega$$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C9-C14 benzene ring.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N3-H3\cdotsO1^{i}$ $N3-H3\cdotsN1$ $C2-H2b\cdotsCg1^{ii}$ $G2$	0.88 (2) 0.88 (2) 0.99	2.47 (2) 2.242 (19) 2.77	3.2317 (15) 2.6340 (16) 3.5535 (16)	145.6 (17) 106.8 (15) 137
$C3 - H3a \cdots Cg1^m$	0.99	2.98	3.9473 (16)	167

Z = 4

Cu $K\alpha$ radiation

 $0.25 \times 0.10 \times 0.05 \ \text{mm}$

5335 measured reflections

2589 independent reflections

2482 reflections with $I > 2\sigma(I)$

 $\mu = 0.64 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.021$

Symmetry codes: (i) $-x + \frac{3}{2}, -y + 1, z - \frac{1}{2}$; (ii) x + 1, y, z; (iii) $-x + \frac{3}{2}, -y + 1, z + \frac{1}{2}$.

Data collection: *CrysAlis PRO* (Agilent, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The authors thank King Saud University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6327).

References

- Abdel-Aziz, H. A., Abdel-Wahab, B. F. & Badria, F. A. (2010). Arch. Pharm. 343, 152–159.
- Abdel-Aziz, H. A. & Mekawey, A. A. I. (2009). Eur. J. Med. Chem. 44, 3985– 4997.
- Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Farrugia, L. J. (1997). J. Appl. Cryst. **30**, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Frohberg, P., Kupfer, C., Stenger, P., Baumeister, U. & Nuhn, P. (1995). Arch. Pharm. 328, 505–516.
- Frohberg, P., Wagner, C., Meier, R. & Sippl, W. (2006). *Tetrahedron*, **62**, 6050–6060.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2011). E67, o2172 [doi:10.1107/S1600536811029680]

1-[(Z)-2-Phenylhydrazin-1-ylidene]-1-(piperidin-1-yl)propan-2-one

Hatem A. Abdel-Aziz, Seik Weng Ng and Edward R. T. Tiekink

S1. Comment

The title compound (I) and related amidrazone derivatives are known to possess biological activity (Frohberg *et al.*, 2006), the motivation for on-going studies in this area (Abdel-Aziz & Mekawey, 2009; Abdel-Aziz *et al.*, 2010). In the molecule of (I), Fig. 1, the configuration about the imine N2=C6 bond [1.3025 (18) Å] is *Z*. This places the hydrazone-N3—H in close proximity to the piperidinyl-N1 enabling the formation of an intramolecular N—H···N hydrogen bond (Table 1). The carbonyl group is disposed to lie over the piperidinyl group which adopts a chair conformation. The benzene group is twisted out of the plane through the hydrazine residue to which it is connected as seen in the value of the N2—N3—C9—C10 torsion angle of 163.81 (12) °. The piperidinyl group is disposed to be almost normal to the rest of the molecule so that the dihedral plane formed through its least-squares plane and that through the O1,N2,N3,C6,C7,C9 atoms is 85.26 (6) °.

In the crystal, molecules are connected into a helical supramolecular chain mediated by N—H···O hydrogen bonds (Table 1). Chains are orientated along the *c* axis and are connected into a supramolecular array in the *ac* plane by C— $H \cdot \cdot \pi$ interactions involving methylene-H atoms associated with the bifurcated benzene ring (Table 1 and Fig. 2).

S2. Experimental

This compound was prepared by the reaction of 2-oxo-*N*'-phenylpropanehydrazonoyl chloride with piperidine (Frohberg *et al.*, 1995). The yellow prisms of (I) were isolated from its ethanol solution by slow evaporation at room temperature.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.99 Å, U_{iso} (H) 1.2 to 1.5 U_{eq} (C)] and were included in the refinement in the riding model approximation. The amino-H atom was located in a difference Fourier map, and subsequently refined freely.

Figure 1

The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.

Figure 2

Supramolecular array aligned in the *ac* plane in (I) mediated by N—H···O and C—H··· π interactions shown as orange and purple dashed lines, respectively.

1-[(Z)-2-Phenylhydrazin-1-ylidene]-1-(piperidin-1-yl)propan-2-one

Crystal	data
---------	------

C ₁₄ H ₁₉ N ₃ O	F(000) = 528
$M_r = 245.32$	$D_x = 1.241 \text{ Mg m}^{-3}$
Orthorhombic, $P2_12_12_1$	Cu Ka radiation, $\lambda = 1.5418 \text{ Å}$
Hall symbol: P 2ac 2ab	Cell parameters from 3524 reflections
a = 9.1195 (2) Å	$\theta = 3.7-73.9^{\circ}$
b = 11.9614 (2) Å	$\mu = 0.64 \text{ mm}^{-1}$
c = 12.0393 (2) Å	T = 100 K
V = 1313.27 (4) Å ³	Prism, yellow
Z = 4	$0.25 \times 0.10 \times 0.05 \text{ mm}$
Data collection Agilent SuperNova Dual diffractometer with an Atlas detector Radiation source: SuperNova (Cu) X-ray Source Mirror monochromator Detector resolution: 10.4041 pixels mm ⁻¹ ω scans	Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2010) $T_{min} = 0.857$, $T_{max} = 0.969$ 5335 measured reflections 2589 independent reflections 2482 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$

$\theta_{\text{max}} = 74.1^{\circ}, \ \theta_{\text{min}} = 5.2^{\circ}$ $h = -11 \rightarrow 7$	$k = -14 \rightarrow 11$ $l = -15 \rightarrow 13$
Refinement	1 10 / 10
Refinement on F^2 Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.033$	H atoms treated by a mixture of independent
$WR(F^2) = 0.080$ S = 1.05	$w = 1/[\sigma^2(F_o^2) + (0.0415P)^2 + 0.2381P]$
2589 reflections	where $P = (F_0^2 + 2F_c^2)/3$
168 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
0 restraints	$\Delta \rho_{\rm max} = 0.12 \ {\rm e} \ {\rm A}^{-5}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$
direct methods	Absolute structure: Flack (1983), 1077 Friedel
Secondary atom site location: difference Fourier	pairs
map	Absolute structure parameter: -0.1 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.78315 (11)	0.39621 (8)	0.41136 (8)	0.0206 (2)
N1	0.76810 (12)	0.50948 (9)	0.20177 (9)	0.0152 (2)
N2	0.55012 (12)	0.40406 (10)	0.18282 (10)	0.0161 (2)
N3	0.52865 (13)	0.46113 (10)	0.08925 (10)	0.0176 (2)
C1	0.91802 (15)	0.46592 (12)	0.18446 (12)	0.0180 (3)
H1A	0.9139	0.3963	0.1401	0.022*
H1B	0.9634	0.4482	0.2571	0.022*
C2	1.01007 (16)	0.55293 (12)	0.12398 (12)	0.0212 (3)
H2A	0.9713	0.5632	0.0479	0.025*
H2B	1.1123	0.5258	0.1179	0.025*
C3	1.00881 (16)	0.66502 (12)	0.18456 (13)	0.0221 (3)
H3A	1.0614	0.6576	0.2561	0.027*
H3B	1.0606	0.7216	0.1392	0.027*
C4	0.85187 (16)	0.70368 (12)	0.20604 (13)	0.0219 (3)
H4A	0.8531	0.7729	0.2510	0.026*
H4B	0.8031	0.7205	0.1345	0.026*
C5	0.76669 (16)	0.61340 (11)	0.26713 (12)	0.0201 (3)
H5A	0.8116	0.5999	0.3408	0.024*
H5B	0.6643	0.6382	0.2788	0.024*
C6	0.66729 (15)	0.42747 (11)	0.24015 (11)	0.0159 (3)
C7	0.68611 (15)	0.36763 (12)	0.34649 (11)	0.0172 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C8	0.58735 (18)	0.27024 (12)	0.37224 (12)	0.0236 (3)
H8A	0.5897	0.2550	0.4522	0.035*
H8B	0.6212	0.2041	0.3316	0.035*
H8C	0.4868	0.2882	0.3497	0.035*
C9	0.40458 (15)	0.43897 (11)	0.02405 (11)	0.0158 (3)
C10	0.36359 (15)	0.51634 (12)	-0.05636 (11)	0.0177 (3)
H10	0.4195	0.5825	-0.0668	0.021*
C11	0.24038 (16)	0.49645 (13)	-0.12146 (11)	0.0215 (3)
H11	0.2126	0.5490	-0.1768	0.026*
C12	0.15788 (17)	0.40034 (14)	-0.10604 (12)	0.0246 (3)
H12	0.0731	0.3875	-0.1500	0.030*
C13	0.19957 (17)	0.32311 (13)	-0.02621 (13)	0.0249 (3)
H13	0.1434	0.2570	-0.0160	0.030*
C14	0.32279 (16)	0.34171 (12)	0.03888 (12)	0.0206 (3)
H14	0.3512	0.2884	0.0933	0.025*
H3	0.596 (2)	0.5100 (15)	0.0692 (16)	0.029 (5)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0199 (5)	0.0240 (5)	0.0178 (5)	-0.0002 (4)	-0.0022 (4)	-0.0007 (4)
N1	0.0118 (5)	0.0150 (5)	0.0189 (5)	-0.0006 (4)	0.0002 (4)	-0.0004 (4)
N2	0.0153 (5)	0.0165 (5)	0.0166 (5)	0.0009 (5)	0.0010 (4)	-0.0002 (5)
N3	0.0141 (5)	0.0204 (6)	0.0184 (5)	-0.0045 (5)	-0.0016 (5)	0.0037 (5)
C1	0.0147 (6)	0.0190 (7)	0.0203 (6)	0.0023 (5)	0.0022 (6)	-0.0026 (6)
C2	0.0151 (6)	0.0244 (7)	0.0241 (7)	-0.0003 (6)	0.0043 (6)	0.0018 (6)
C3	0.0162 (7)	0.0221 (7)	0.0280 (7)	-0.0048 (6)	0.0004 (6)	0.0034 (6)
C4	0.0192 (7)	0.0167 (6)	0.0297 (7)	-0.0018 (6)	0.0014 (6)	0.0011 (6)
C5	0.0179 (7)	0.0167 (6)	0.0255 (7)	0.0009 (6)	0.0043 (6)	-0.0022 (6)
C6	0.0141 (6)	0.0156 (6)	0.0178 (6)	-0.0004 (5)	0.0020 (5)	-0.0018 (5)
C7	0.0170 (7)	0.0175 (7)	0.0171 (6)	0.0024 (5)	0.0017 (5)	-0.0029 (5)
C8	0.0299 (8)	0.0211 (7)	0.0199 (7)	-0.0047 (6)	-0.0008 (6)	0.0031 (6)
C9	0.0117 (6)	0.0187 (7)	0.0171 (6)	0.0002 (5)	0.0004 (5)	-0.0039 (5)
C10	0.0154 (6)	0.0203 (6)	0.0175 (6)	0.0000 (5)	0.0019 (5)	-0.0023 (5)
C11	0.0177 (7)	0.0286 (8)	0.0181 (6)	0.0044 (6)	-0.0001 (5)	-0.0019 (6)
C12	0.0156 (6)	0.0342 (8)	0.0241 (7)	-0.0019 (6)	-0.0052 (6)	-0.0072 (6)
C13	0.0192 (7)	0.0248 (7)	0.0307 (8)	-0.0061 (6)	-0.0009 (6)	-0.0047 (6)
C14	0.0180 (7)	0.0191 (7)	0.0247 (7)	-0.0034 (6)	-0.0014 (6)	-0.0006 (6)

Geometric parameters (Å, °)

01—C7	1.2288 (17)	C4—H4B	0.9900	
N1—C6	1.4216 (17)	C5—H5A	0.9900	
N1—C5	1.4712 (17)	C5—H5B	0.9900	
N1—C1	1.4778 (17)	C6—C7	1.4767 (19)	
N2—C6	1.3025 (18)	C7—C8	1.505 (2)	
N2—N3	1.3317 (16)	C8—H8A	0.9800	
N3—C9	1.4023 (17)	C8—H8B	0.9800	

N3H3	0.88 (2)	C8H8C	0.9800
C1 - C2	1.523(2)	C9-C10	1.391(2)
C1—H1A	0.9900	C9-C14	1.391(2) 1 3934(19)
C1—H1B	0.9900	C10-C11	1 390 (2)
$C_2 - C_3$	1.526(2)	C10 $H10$	0.9500
$C_2 = H_2 \Lambda$	0.0000	C_{11} C_{12}	1.386(2)
$C_2 = H_2 R$	0.9900	$C_{11} = C_{12}$	0.9500
C_2 — H_2D	1 526 (2)	C12 $C13$	1.386(2)
$C_3 = U_3 \wedge U_3 $	0.0000	$C_{12} = C_{13}$	0.0500
$C_3 = H_3 R$	0.9900	C_{12} C_{12} C_{14}	1.388(2)
C_{3}	1,5201 (10)	$C_{13} = C_{14}$	1.388(2)
$C_4 = C_3$	0.0000	C14 H14	0.9500
С4—п4А	0.9900	C14—H14	0.9300
C6—N1—C5	113.80 (10)	N1—C5—H5B	109.7
C6—N1—C1	113.63 (10)	C4—C5—H5B	109.7
C5—N1—C1	112.42 (10)	H5A—C5—H5B	108.2
C6—N2—N3	117.31 (11)	N2—C6—N1	120.44 (12)
N2—N3—C9	119.69 (11)	N2—C6—C7	116.78 (12)
N2—N3—H3	118.1 (13)	N1—C6—C7	122.75 (12)
С9—N3—H3	122.1 (13)	O1—C7—C6	119.99 (13)
N1—C1—C2	109.67 (11)	O1—C7—C8	121.03 (12)
N1—C1—H1A	109.7	C6—C7—C8	118.96 (12)
C2—C1—H1A	109.7	C7—C8—H8A	109.5
N1—C1—H1B	109.7	C7—C8—H8B	109.5
C2—C1—H1B	109.7	H8A—C8—H8B	109.5
H1A—C1—H1B	108.2	C7—C8—H8C	109.5
C1—C2—C3	111.58 (12)	H8A—C8—H8C	109.5
C1—C2—H2A	109.3	H8B—C8—H8C	109.5
C3—C2—H2A	109.3	C10—C9—C14	120.06 (13)
C1—C2—H2B	109.3	C10—C9—N3	118.74 (12)
C3—C2—H2B	109.3	C14—C9—N3	121.20 (13)
H2A—C2—H2B	108.0	C11—C10—C9	119.72 (13)
C4—C3—C2	110.75 (12)	C11—C10—H10	120.1
С4—С3—Н3А	109.5	С9—С10—Н10	120.1
С2—С3—НЗА	109.5	C10—C11—C12	120.33 (14)
C4—C3—H3B	109.5	C10—C11—H11	119.8
С2—С3—Н3В	109.5	C12—C11—H11	119.8
H3A—C3—H3B	108.1	C13—C12—C11	119.78 (13)
C5-C4-C3	110.24 (12)	C13—C12—H12	120.1
C5-C4-H4A	109.6	C11 - C12 - H12	120.1
C3—C4—H4A	109.6	C12 - C13 - C14	120.44 (14)
C5-C4-H4B	109.6	C12—C13—H13	119.8
C3—C4—H4B	109.6	C14—C13—H13	119.8
H4A—C4—H4B	108.1	C13—C14—C9	119.66 (14)
N1-C5-C4	109.69 (11)	C13—C14—H14	120.2
N1—C5—H5A	109.7	C9—C14—H14	120.2
C4—C5—H5A	109.7		

C6—N2—N3—C9	179.73 (12)	N2-C6-C7-O1	-170.31 (12)
C6—N1—C1—C2	169.70 (11)	N1-C6-C7-O1	7.84 (19)
C5—N1—C1—C2	-59.23 (15)	N2—C6—C7—C8	11.11 (18)
N1—C1—C2—C3	54.55 (15)	N1—C6—C7—C8	-170.74 (13)
C1—C2—C3—C4	-53.17 (16)	N2—N3—C9—C10	163.81 (12)
C2—C3—C4—C5	54.34 (16)	N2—N3—C9—C14	-16.06 (19)
C6—N1—C5—C4	-167.80 (11)	C14—C9—C10—C11	0.3 (2)
C1—N1—C5—C4	61.21 (15)	N3-C9-C10-C11	-179.57 (12)
C3—C4—C5—N1	-57.74 (16)	C9-C10-C11-C12	0.4 (2)
N3—N2—C6—N1	-1.12 (18)	C10-C11-C12-C13	-0.8 (2)
N3—N2—C6—C7	177.07 (11)	C11—C12—C13—C14	0.4 (2)
C5—N1—C6—N2	108.74 (14)	C12—C13—C14—C9	0.3 (2)
C1—N1—C6—N2	-120.87 (13)	C10-C9-C14-C13	-0.7 (2)
C5—N1—C6—C7	-69.34 (15)	N3—C9—C14—C13	179.22 (13)
C1—N1—C6—C7	61.04 (16)		

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C9–C14 benzene ring.

D—H···A	<i>D</i> —Н	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N3—H3…O1 ⁱ	0.88 (2)	2.47 (2)	3.2317 (15)	145.6 (17)
N3—H3…N1	0.88 (2)	2.242 (19)	2.6340 (16)	106.8 (15)
C2—H2b··· <i>Cg</i> 1 ⁱⁱ	0.99	2.77	3.5535 (16)	137
C3—H3a····Cg1 ⁱⁱⁱ	0.99	2.98	3.9473 (16)	167

Symmetry codes: (i) -x+3/2, -y+1, z-1/2; (ii) x+1, y, z; (iii) -x+3/2, -y+1, z+1/2.