

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[dibromidomercury(II)]-*µ*-3,6-bis(2-pyridylsulfanyl)pyridazine- $\kappa^2 N^3 : N^6$

Xue-Hua Zhu,^a Xiao-Yuan Yang,^a Rui-Feng Song^{a*} and Hai-Yan Li^b

^aSchool of Chemistry and Bioengineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China, and ^bCollege of Chemistry, Chemical Engineering and Material Science, Suzhou University, Suzhou 215123, People's Republic of China

Correspondence e-mail: songrf@mail.usts.edu.cn

Received 28 June 2011; accepted 13 July 2011

Key indicators: single-crystal X-ray study; T = 223 K; mean σ (C–C) = 0.010 Å; R factor = 0.038; wR factor = 0.080; data-to-parameter ratio = 18.8.

In the title coordination polymer, $[HgBr_2(C_{14}H_{10}N_4S_2)]_n$, the Hg^{II} atom is four-coordinated in a distorted tetrahedral geometry by the two N atoms of the pyridyl groups of different 3,6-bis(2-pyridylsulfanyl)pyridazine ligands and two Br atoms. The bridging function of the cis ligands leads to a helical chain structure along [100].

Related literature

For metal coordination compounds with 3,6-bis(2-pyridylthio) pyridazine, see: Chen et al. (1996); Mandal et al. (1987, 1988); Song et al. (2011); Woon et al. (1986).

Experimental

Crystal data

$[HgBr_2(C_{14}H_{10}N_4S_2)]$	$V = 1775.1 (5) \text{ Å}^3$
$M_r = 658.78$	Z = 4
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 16.393 (3) Å	$\mu = 13.41 \text{ mm}^{-1}$
b = 12.4954 (19) Å	T = 223 K
c = 9.7648 (16) Å	$0.55 \times 0.30 \times 0.26 \text{ mm}$
$\beta = 117.444 \ (3)^{\circ}$	

Data collection

Rigaku Saturn diffractometer Absorption correction: multi-scan (REQAB; Jacobson, 1998) $T_{\min} = 0.013, \ T_{\max} = 0.030$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.080$ S = 1.002013 reflections

5341 measured reflections 2013 independent reflections 1688 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.032$

107 parameters H-atom parameters constrained $\Delta \rho_{\text{max}} = 1.56 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -2.20 \text{ e } \text{\AA}^{-3}$

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank Suzhou University of Science and Technology for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5063).

References

- Chen, L., Thompson, L. K. & Bridson, J. N. (1996). Inorg. Chim. Acta, 244, 87-93.
- Jacobson, R. (1998). REOAB. Private communication to the Rigaku Corporation, Tokyo, Japan.
- Mandal, S. K., Thompson, L. K., Gabe, E. J., Charland, J.-P. & Lee, F. L. (1988). Inorg. Chem. 27, 855-859.
- Mandal, S. K., Thompson, L. K., Gabe, E. J., Lee, F. L. & Charland, J.-P. (1987). Inorg. Chem. 26, 2384-2389.
- Rigaku (2001). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Song, R.-F., Sun, Y.-Y., Yang, J. & Yang, X.-Y. (2011). J. Inorg. Organomet. Polym. 21, 237-243.
- Woon, T. C., McDonald, R., Mandal, S. K., Thompson, L. K. & Addison, A. W. (1986). J. Chem. Soc. Dalton Trans. pp. 2381-2386.

supporting information

Acta Cryst. (2011). E67, m1111 [doi:10.1107/S1600536811028066]

catena-Poly[[dibromidomercury(II)]- μ -3,6-bis(2-pyridylsulfanyl)pyridazine- $\kappa^2 N^3$: N^6]

Xue-Hua Zhu, Xiao-Yuan Yang, Rui-Feng Song and Hai-Yan Li

S1. Comment

In recent years, metal complexes of N-containing heterocyclic flexible thioethers ligands especially attracted considerable interest. The ligand 3,6-bis(2-pyridylthio) pyridazine (PTP) is interesting bridging ligand and is able to act as bridges between metal centers to form dinuclear (Chen *et al.*, 1996; Mandal *et al.*, 1987, 1988; Woon *et al.*, 1986) and coordination polymer (Song *et al.* 2011). Herein, we report the crystal structure of Hg^{II} complex (I).

The title complex (I) is one-dimensional chain coordination polymer. Each Hg^{II} atom is in a distorted tetrahedral geometry with two N atoms from two different PTP ligands and two bromide (Fig. 1). Its structure is isomorphous with HgI₂ complex (Song *et al.*, 2011). Complex (I) has a compressed N—Hg—N angle of 98.8 (2)° and an expanded Br—Hg —Br angle of 140.84 (4)°, whereas for iodide structure the compressed N—Hg—N angle and expanded I—Hg—I angle are 96.6 (2)° and 144.01 (2)° (Song *et al.*, 2011), respectively. As HgI₂ complex (Song *et al.*, 2011), HgBr₂ units of the complex (I) are connected to each other by *cis*-PTP ligands through the pyridyl nitrogen atoms into a one-dimensional chain along [100] (Fig. 2). The ligand adopts a pronounced *syn* twist, creating an angle of 15.3 (1)° between the pyridine planes and angles of 83.2 (1)° between the pyridine planes and the pyridazine plane. The two pyridyl groups in PTP are not coplanar, and the bending of the ligand and its coordination at the Hg(II) center result in one-dimensional chains that adopt a helical twist. The isomorphous structure results from tetrahedral coordination geometry Hg^{II} ions.

S2. Experimental

The ligand 3,6-bis(2-pyridylthio) pyridazine (PTP) was prepared according to the general procedure reported by Woon *et al.* (1986). For preparation of the title compound, a solution of HgBr₂ (18.5 mg, 0.05 mmol) in acetone (2 ml) was slowly added to a solution of PTP (15 mg, 0.05 mmol) in CH₃OH (2 ml). The mixture was stirred for 0.5 h at room temperature, and then filtered and kept in the refrigerator (-18 C°). After 48 h, yellow prismatic single-crystals (I) of suitable for X-ray analysis was obtained in 67.2% yield. IR (cm⁻¹): 3039.81.w, 2368.58w, 1581.62*m*, 1450.47*m*, 1427.32*m*, 1396.46 s, 833.25w, 771.52 s, 632.65w, 578.64w. Anal. Found: C, 25.53; H, 1.51; N, 8.46. Calcd. For $C_{14}H_{10}Br_2HgN_4S_2$: C, 25.50; H, 1.32; N, 8.50.

S3. Refinement

H atoms were included in calculated positions refined as part of a riding with C—H distances of 0.94Å (aromatic H), and with $U_{iso} = 1.2U_{eq}(C)$.

Figure 1

The the coordination environment of Hg^{II} center of complex(I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Figure 2

Perspective view of the 1-D helical chain structure of complex(I).

catena-Poly[[dibromidomercury(II)]- μ -3,6-bis(2- pyridylsulfanyl)pyridazine- $\kappa^2 N^3$: N^6]

Crystal	data
---------	------

[HgBr₂(C₁₄H₁₀N₄S₂)] $M_r = 658.78$ Monoclinic, C2/c Hall symbol: -C 2yc a = 16.393 (3) Å b = 12.4954 (19) Å c = 9.7648 (16) Å $\beta = 117.444$ (3)° V = 1775.1 (5) Å³ Z = 4

Data collection

Rigaku Saturn diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 14.63 pixels mm⁻¹ ω scans F(000) = 1216 $D_x = 2.465 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 2664 reflections $\theta = 3.6-27.5^{\circ}$ $\mu = 13.41 \text{ mm}^{-1}$ T = 223 KPrism, yellow $0.55 \times 0.30 \times 0.26 \text{ mm}$

Absorption correction: multi-scan (*REQAB*; Jacobson, 1998) $T_{min} = 0.013$, $T_{max} = 0.030$ 5341 measured reflections 2013 independent reflections 1688 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$

$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.6^{\circ}$	$k = -9 \rightarrow 16$
$h = -18 \rightarrow 21$	$l = -12 \rightarrow 10$
Refinement	
Refinement on F^2 Least-squares matrix: full	Hydrogen site location: inferred from
$R[F^2 > 2\sigma(F^2)] = 0.038$	H-atom parameters constrained
$wR(F^2) = 0.080$	$w = 1/[\sigma^2(F_o^2) + (0.0419P)^2]$
S = 1.00	where $P = (F_o^2 + 2F_c^2)/3$
2013 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
107 parameters	$\Delta \rho_{\rm max} = 1.56 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -2.20 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.00186 (14)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Hg1	0.5000	0.24799 (3)	0.2500	0.03257 (15)
Br1	0.37219 (4)	0.18078 (6)	0.00215 (7)	0.03794 (19)
S1	0.63765 (10)	0.19500 (16)	0.09685 (16)	0.0354 (4)
N1	0.5935 (3)	0.3774 (4)	0.1882 (5)	0.0300 (11)
N2	0.5304 (3)	0.2847 (4)	-0.1745 (5)	0.0282 (11)
C1	0.6470 (3)	0.3344 (5)	0.1311 (6)	0.0272 (13)
C2	0.7060 (4)	0.3982 (7)	0.0995 (7)	0.0438 (18)
H2A	0.7442	0.3669	0.0625	0.053*
C3	0.7083 (4)	0.5050 (8)	0.1218 (7)	0.051 (2)
Н3	0.7469	0.5486	0.0984	0.062*
C4	0.6537 (4)	0.5493 (6)	0.1790 (7)	0.0440 (16)
H4	0.6530	0.6236	0.1937	0.053*
C5	0.6000 (4)	0.4815 (6)	0.2142 (8)	0.0427 (16)
Н5	0.5657	0.5113	0.2598	0.051*
C6	0.5593 (3)	0.1942 (5)	-0.1028 (6)	0.0284 (12)
C7	0.5306 (4)	0.0926 (6)	-0.1734 (7)	0.0411 (15)
H7	0.5525	0.0287	-0.1176	0.049*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Hg1	0.0342 (2)	0.0283 (2)	0.0378 (2)	0.000	0.01890 (15)	0.000

supporting information

Br1	0.0372 (3)	0.0317 (4)	0.0401 (3)	-0.0041 (3)	0.0137 (3)	0.0007 (3)
S 1	0.0382 (7)	0.0330 (10)	0.0332 (7)	0.0155 (7)	0.0148 (6)	0.0078 (7)
N1	0.029(2)	0.021 (3)	0.041 (2)	-0.003(2)	0.018 (2)	0.000(2)
N2	0.030(2)	0.019 (3)	0.031 (2)	0.000 (2)	0.0111 (19)	-0.004 (2)
C1	0.018 (2)	0.035 (4)	0.025 (2)	0.003 (2)	0.007 (2)	0.008 (2)
C2	0.032 (3)	0.063 (6)	0.043 (3)	-0.013 (3)	0.023 (3)	-0.009(3)
C3	0.050 (4)	0.059 (6)	0.045 (3)	-0.032 (4)	0.022 (3)	-0.004 (4)
C4	0.045 (3)	0.029 (4)	0.054 (4)	-0.012 (3)	0.019 (3)	-0.002 (3)
C5	0.041 (3)	0.028 (4)	0.066 (4)	-0.003 (3)	0.030 (3)	-0.004 (3)
C6	0.028 (3)	0.026 (4)	0.036 (3)	0.008 (2)	0.019 (2)	0.008 (3)
C7	0.066 (4)	0.015 (3)	0.048 (3)	0.005 (3)	0.030 (3)	0.010 (3)

Geometric parameters (Å, °)

Hg1—N1	2.485 (5)	С2—С3	1.350 (12)	
Hg1—N1 ⁱ	2.485 (5)	C2—H2A	0.9400	
Hg1—Br1	2.5056 (6)	C3—C4	1.371 (10)	
Hg1—Br1 ⁱ	2.5056 (6)	С3—Н3	0.9400	
S1—C1	1.767 (7)	C4—C5	1.373 (9)	
S1—C6	1.773 (5)	C4—H4	0.9400	
N1—C5	1.321 (9)	С5—Н5	0.9400	
N1-C1	1.349 (7)	C6—C7	1.417 (9)	
N2—C6	1.299 (8)	C7—C7 ⁱⁱ	1.365 (12)	
N2—N2 ⁱⁱ	1.347 (9)	С7—Н7	0.9400	
C1—C2	1.394 (9)			
N1—Hg1—N1 ⁱ	98.8 (2)	C1—C2—H2A	120.0	
N1—Hg1—Br1	108.55 (10)	C2—C3—C4	119.4 (6)	
Nli—Hgl—Brl	96.77 (10)	С2—С3—Н3	120.3	
N1—Hg1—Br1 ⁱ	96.77 (10)	С4—С3—Н3	120.3	
N1 ⁱ —Hg1—Br1 ⁱ	108.55 (10)	C3—C4—C5	117.8 (7)	
Br1—Hg1—Br1 ⁱ	140.84 (4)	C3—C4—H4	121.1	
C1—S1—C6	99.7 (3)	C5—C4—H4	121.1	
C5—N1—C1	117.4 (5)	N1C5C4	124.4 (6)	
C5—N1—Hg1	126.8 (4)	N1—C5—H5	117.8	
C1—N1—Hg1	115.6 (4)	C4—C5—H5	117.8	
C6—N2—N2 ⁱⁱ	119.5 (4)	N2—C6—C7	124.2 (5)	
N1-C1-C2	120.9 (6)	N2	119.1 (5)	
N1-C1-S1	117.0 (4)	C7—C6—S1	116.7 (5)	
C2C1S1	122.0 (5)	C7 ⁱⁱ —C7—C6	116.4 (3)	
C3—C2—C1	120.0 (6)	С7 ^{іі} —С7—Н7	121.8	
С3—С2—Н2А	120.0	С6—С7—Н7	121.8	
N1 ⁱ —Hg1—N1—C5	11.6 (4)	S1—C1—C2—C3	177.5 (5)	
Br1—Hg1—N1—C5	111.9 (5)	C1—C2—C3—C4	1.5 (10)	
Br1 ⁱ —Hg1—N1—C5	-98.4 (5)	C2—C3—C4—C5	1.3 (10)	
$N1^{i}$ —Hg1—N1—C1	-172.8 (4)	C1—N1—C5—C4	3.8 (9)	
Br1—Hg1—N1—C1	-72.5 (3)	Hg1—N1—C5—C4	179.3 (5)	
5	× /	5		

Br1 ⁱ —Hg1—N1—C1	77.2 (3)	C3—C4—C5—N1	-4.1 (10)
C5—N1—C1—C2	-0.7 (8)	N2 ⁱⁱ —N2—C6—C7	-0.2 (9)
Hg1—N1—C1—C2	-176.7 (4)	N2 ⁱⁱ —N2—C6—S1	-178.8 (5)
C5—N1—C1—S1	180.0 (4)	C1—S1—C6—N2	1.6 (4)
Hg1—N1—C1—S1	3.9 (5)	C1—S1—C6—C7	-177.1 (4)
C6—S1—C1—N1	96.6 (4)	N2-C6-C7-C7 ⁱⁱ	0.6 (10)
C6—S1—C1—C2	-82.8 (5)	S1—C6—C7—C7 ⁱⁱ	179.2 (6)
N1—C1—C2—C3	-1.9 (9)		

Symmetry codes: (i) -*x*+1, *y*, -*z*+1/2; (ii) -*x*+1, *y*, -*z*-1/2.