# metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## $Bis(\mu_2-2-amino-5-nitrobenzoato)bis(2$ amino-5-nitrobenzoato)octabutvldi-u3oxido-tetratin(IV)

#### Yip-Foo Win,<sup>a</sup> Chen-Shang Choong,<sup>a</sup> Siang-Guan Teoh,<sup>b</sup> Chin Sing Yeap<sup>c</sup>‡and Hoong-Kun Fun<sup>c\*</sup>§

<sup>a</sup>Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Perak Campus, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia, <sup>b</sup>School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and <sup>c</sup>X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 4 July 2011; accepted 14 July 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.032; wR factor = 0.073; data-to-parameter ratio = 32.8.

In the title complex,  $[Sn_4(C_4H_9)_8(C_7H_5N_2O_4)_4O_2]$ , all four Sn<sup>IV</sup> atoms are five-coordinated with distorted trigonalbipyramidal SnC<sub>2</sub>O<sub>3</sub> geometries. Two Sn<sup>IV</sup> atoms are coordinated by two butyl groups, one benzoate O atom and two bridging O atoms, whereas the other two Sn<sup>IV</sup> atoms are coordinated by two butyl groups, two benzoate O atoms and a bridging O atom. All the butyl groups are equatorial with respect to the SnO<sub>3</sub> trigonal plane. In the crystal, molecules are linked into a two-dimensional layer parallel to the ab plane by intermolecular N-H···O and C-H···O hydrogen bonds and further stabilized by a  $\pi$ - $\pi$  interaction [centroidcentroid distance = 3.6489 (11) Å]. Intramolecular N-H···O and  $C-H\cdots O$  hydrogen bonds stabilize the molecular structure. Two of the butyl groups are each disordered over two sets of sites with site-occupancy ratios of 0.510 (4): 0.490 (4) and 0.860 (5):0.140 (5).

#### **Related literature**

For general background to the title complex, see: Win et al. (2006); Win, Teoh et al. (2011). For closely related structures, see: Win et al. (2008); Win, Choong, Ha et al. (2010); Win, Choong et al. (2011); Win, Choong, Teoh et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

#### ‡ Thomson Reuters ResearcherID: A-5523-2009.



 $\gamma = 65.631 \ (1)^{\circ}$ 

Z = 2

V = 3519.49 (8) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.45 \times 0.19 \times 0.07$  mm

110407 measured reflections

29672 independent reflections

23074 reflections with  $I > 2\sigma(I)$ 

 $\mu = 1.47 \text{ mm}^{-1}$ 

T = 100 K

 $R_{\rm int} = 0.030$ 

#### **Experimental**

Crystal data

[Sn<sub>4</sub>(C<sub>4</sub>H<sub>9</sub>)<sub>8</sub>(C<sub>7</sub>H<sub>5</sub>N<sub>2</sub>O<sub>4</sub>)<sub>4</sub>O<sub>2</sub>]  $M_{-} = 1688.18$ Triclinic,  $P\overline{1}$ a = 14.3292 (2) Å b = 15.3691 (2) Å c = 18.2096 (2) Å  $\alpha = 80.289(1)^{\circ}$  $\beta = 74.982 \ (1)^{\circ}$ 

#### Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009)  $T_{\min} = 0.554, T_{\max} = 0.899$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.032$ | H atoms treated by a mixture of                            |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.073$               | independent and constrained                                |
| S = 1.04                        | refinement                                                 |
| 29672 reflections               | $\Delta \rho_{\rm max} = 2.67 \text{ e} \text{ Å}^{-3}$    |
| 906 parameters                  | $\Delta \rho_{\rm min} = -1.48 \text{ e } \text{\AA}^{-3}$ |

#### Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                 | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|----------------------------------|----------|-------------------------|--------------|---------------------------|
| $N2-H1N2\cdots O9^{i}$           | 0.86 (3) | 2.32 (3)                | 3.122 (3)    | 157 (3)                   |
| $N2 - H2N2 \cdot \cdot \cdot O3$ | 0.84(3)  | 2.02 (3)                | 2.684 (3)    | 135 (2)                   |
| $N4-H1N4\cdots O6^{ii}$          | 0.84(3)  | 2.20 (3)                | 3.002 (2)    | 160 (3)                   |
| $N4 - H2N4 \cdots O8$            | 0.87 (3) | 2.02 (3)                | 2.675 (2)    | 131 (3)                   |
| N6−H1 <i>N</i> 6···O12           | 0.82(3)  | 2.07 (3)                | 2.688 (3)    | 132 (2)                   |
| $N6-H2N6\cdots O17^{iii}$        | 0.83 (3) | 2.36 (3)                | 3.152 (3)    | 158 (2)                   |
| $N6-H2N6\cdotsO18^{iii}$         | 0.83(3)  | 2.49 (2)                | 3.229 (3)    | 149 (2)                   |
| N8−H1 <i>N</i> 8···O16           | 0.86 (3) | 2.03 (3)                | 2.674 (2)    | 131 (3)                   |
| $N8-H2N8\cdots O13^{iv}$         | 0.82(3)  | 2.22 (3)                | 2.998 (2)    | 160 (3)                   |
| $C6-H6A\cdots O9^{i}$            | 0.95     | 2.48                    | 3.261 (2)    | 139                       |
| $C13-H13A\cdots O6^{ii}$         | 0.95     | 2.57                    | 3.350 (2)    | 140                       |
| $C20-H20A\cdots O17^{iii}$       | 0.95     | 2.54                    | 3.338 (3)    | 142                       |
| $C43-H43B\cdots O13^{v}$         | 0.99     | 2.58                    | 3.544 (3)    | 164                       |
| C50−H50B···O8                    | 0.99     | 2.56                    | 3.304 (3)    | 131                       |
| C54-H54A···O16                   | 0.99     | 2.51                    | 3.210 (3)    | 128                       |
| C58-H58A···O16                   | 0.99     | 2.58                    | 3.221 (2)    | 123                       |

Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y - 1, z; (iii) x + 1, y, z; (iv) x - 1, y + 1, z; (v) x + 2, -v, -z + 1

<sup>§</sup> Thomson Reuters ResearcherID: A-3561-2009.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

We would like to thank Universiti Tunku Abdul Rahman (UTAR) for the UTAR Research Fund (project No. IPSR/ RMC/UTARRF/C1–11/C07) and Universiti Sains Malaysia (USM) for financial support as well as technical assistance and facilities. HKF and CSY also thank USM for the Research University Grant 1001/PFIZIK/811160.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2746).

#### References

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Win, Y.-F., Choong, C.-S., Ha, S.-T., Goh, J. H. & Fun, H.-K. (2010). Acta Cryst. E66, m1698–m1699.
- Win, Y.-F., Choong, C.-S., Ha, S.-T., Yeap, C. S. & Fun, H.-K. (2011). Acta Cryst. E67, m1018–m1019.
- Win, Y.-F., Choong, C.-S., Teoh, S.-G., Goh, J. H. & Fun, H.-K. (2010). Acta Cryst. E66, m1406–m1407.
- Win, Y. F., Guan, T. S. & Yamin, B. M. (2006). Acta Cryst. E62, m34-m36.
- Win, Y. F., Teoh, S. G., Ha, S. T., Kia, R. & Fun, H.-K. (2008). Acta Cryst. E64, m1572–m1573.
- Win, Y.-F., Teoh, S.-G., Ha, S.-T., Ong, L. G.-A. & Tengku-Muhammad, T.-S. (2011). Int. J. Phys. Sci. 6, 1463–1470.

Acta Cryst. (2011). E67, m1114-m1115 [doi:10.1107/S1600536811028212]

# Bis( $\mu_2$ -2-amino-5-nitrobenzoato)bis(2-amino-5-nitrobenzoato)octabutyldi- $\mu_3$ -oxido-tetratin(IV)

### Yip-Foo Win, Chen-Shang Choong, Siang-Guan Teoh, Chin Sing Yeap and Hoong-Kun Fun

#### S1. Comment

In general, diorganotin(IV) carboxylate complexes can be obtained in monomeric or organodistannoxane dimer forms when the reaction of diorganotin(IV) with carboxylic acid is carried out in 1:2 or 1:1 ratio respectively (Win *et al.*, 2006; Win, Teoh *et al.*, 2011). The core geometry of the organodistannoxane dimer complexes consists of a centrosymmetric planar Sn<sub>2</sub>O<sub>2</sub> group and all the four tin(IV) atoms (*exo-* and endocyclic) are five coordinated and exist in distorted trigonal bipyramidal geometry (Win *et al.*, 2008; Win, Choong, Ha *et al.*, 2010; Win, Choong *et al.*, 2011; Win, Choong, Teoh *et al.*, 2010). In this study, the structure of the title complex (I) is in dimeric form whereas bis(2-amino-5-nitrobenzoato- $\kappa^2 O, O'$ )dibutyltin(IV) is in monomeric structure.

Similar to previous structures (Win *et al.*, 2008; Win, Choong, Ha *et al.*, 2010; Win, Choong *et al.*, 2011; Win, Choong, Teoh *et al.*, 2010), all Sn atoms are five-coordinated in distorted trigonal-bipiramidal geometries (Fig. 1). The Sn1 and Sn2 atoms are coordinated by two butyl groups in equatorial positions, an O atom of the bridging benzoate anion and two oxido-bridged O atoms whereas the Sn3 and Sn4 atoms are coordinated by two butyl groups in equatorial positions, an O atom of the monodentate benzoate anion, an O atom of the bridging benzoate anion and one oxo-bridged O atom. In the crystal structure, the molecules are linked into two-dimensional planes parallel to (0 0 1) plane (Fig. 3) by intermolecular N—H…O and C—H…O hydrogen bonds (Table 1). The crystal structure is further stabilized by the Cg1...Cg2 interaction of 3.6489 (11) Å, -1 + x, *y*, *z* (Cg1 and Cg2 are centroids of benzene ring C2–C7 and C16–C21). Intramolecular N—H…O and C—H…O hydrogen bonds (Table 1) stabilize the molecular structure.

#### **S2. Experimental**

The title complex was prepared from a 1:1 molar mixture of dibutyltin(IV) oxide (0.50 g, 2 mmole) and 2-amino-5-nitrobenzoic acid (0.36 g, 2 mmole) in ethanol (50 ml). The resulting mixture was heated under reflux for two hours. A clear yellow transparent solution was isolated by filtration and kept in a bottle. After four days, yellow solids (0.61 g, 73.0% yield) were collected. Melting point: 240.7–241.5 °C. Analysis for  $C_{60}H_{92}N_8O_{18}Sn_4$ : C, 42.74; H, 5.79; N, 6.57; Sn, 27.98%. Calculated for  $C_{60}H_{92}N_8O_{18}Sn_4$ : C, 42.66; H, 5.49; N, 6.64; Sn, 28.12%. FTIR as KBr disc (cm<sup>-1</sup>):  $\nu$ (NH<sub>2</sub>) 3457, 3344, 3314;  $\nu$ (C—H) aromatic 3059,  $\nu$ (C—H) saturated 2956, 2926, 2870;  $\nu$ (COO)<sub>as</sub> 1622,  $\nu$ (COO)<sub>s</sub> 1310,  $\nu$ (NO<sub>2</sub>) 1537,  $\nu$ (Sn—O—Sn) 630,  $\nu$ (Sn—C) 531,  $\nu$ (Sn—O) 391. <sup>1</sup>H-NMR (p.p.m.) (*d*<sub>6</sub>-DMSO):  $\delta$ : benzene protons 6.92 (d, 9.3 Hz, 4H); 8.12 (dd, 2.4 Hz, 9.2 Hz, 4H); 8.72 (s, 4H); butyl, CH<sub>3</sub> 0.84 (t, 7.3 Hz, 12H); 0.90 (t, 7.3 Hz, 12H); CH<sub>2</sub> 1.28–1.43 (m, 32H); CH<sub>2</sub> 1.64–1.80 (m, 16H). <sup>13</sup>C-NMR (p.p.m.) (*d*<sub>6</sub>-DMSO):  $\delta$ : benzene carbons 112.27, 116.50, 128.49, 129.47, 135.55, 156.49; butyl 13.71, 13.91, 26.09, 26.77, 27.02, 27.29, 29.90; COO 172.11. <sup>119</sup>Sn-NMR (p.p.m.) (*d*<sub>6</sub>-DMSO):  $\delta$ : -173.87, -213.71.

#### **S3. Refinement**

All hydrogen atoms were positioned geomatrically (C—H = 0.95–0.99 Å) and refined using a riding model, with  $U_{iso}$ (H) = 1.2 or 1.5 $U_{eq}$ (C). A rotating-group model was applied for methyl groups. Two of the butyl groups are disordered over two positions with refined site-occupancy ratios of 0.510 (4):0.490 (4) and 0.860 (5):0.140 (5) (Fig. 2). The same  $U_{ij}$  parameters was used for atom pair C50X/C52X. The C49X, C50X, C51X and C52X atoms were refined isotropically. The maximum and minimum residual electron density peaks of 2.67 and -1.48 e Å<sup>-3</sup> were located 0.66 and 0.53 Å, respectively, from atom Sn3 . Four reflections, (7 -5 22), (-2 16 18), (5 -15 14) and (0 0 2), were omitted.



#### Figure 1

The molecular structure of the title compound, with 50% probability ellipsoids for non-H atoms. Minor disorder components were omitted for clarity.



### Figure 2

The molecular structure of the title compound without hydrogen atoms, showing all disorder components. Hydrogen atoms are omitted for clarity.



### Figure 3

The crystal structure of the title compound, showing a two-dimensional plane parallel to the (0 0 1) plane. Hydrogen atoms not involved in hydrogen bonds (dashed lines) and minor disorder components are omitted for clarity.

### Bis( $\mu_2$ -2-amino-5-nitrobenzoato)bis(2-amino-5-nitrobenzoato)octabutyldi- $\mu_3$ -oxido-tetratin(IV)

| Crystal data                          |                                                       |
|---------------------------------------|-------------------------------------------------------|
| $[Sn_4(C_4H_9)_8(C_7H_5N_2O_4)_4O_2]$ | $\gamma = 65.631 \ (1)^{\circ}$                       |
| $M_r = 1688.18$                       | V = 3519.49 (8) Å <sup>3</sup>                        |
| Triclinic, P1                         | Z = 2                                                 |
| Hall symbol: -P 1                     | F(000) = 1704                                         |
| a = 14.3292 (2) Å                     | $D_{\rm x} = 1.593 {\rm ~Mg} {\rm ~m}^{-3}$           |
| b = 15.3691 (2)  Å                    | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| c = 18.2096 (2) Å                     | Cell parameters from 9105 reflections                 |
| $\alpha = 80.289 \ (1)^{\circ}$       | $\theta = 2.3 - 34.5^{\circ}$                         |
| $\beta = 74.982 \ (1)^{\circ}$        | $\mu = 1.47 \text{ mm}^{-1}$                          |
|                                       |                                                       |

T = 100 KBlock, yellow

Data collection

| Duiu conection                                          |                                                                 |
|---------------------------------------------------------|-----------------------------------------------------------------|
| Bruker SMART APEXII CCD area-detector<br>diffractometer | 110407 measured reflections<br>29672 independent reflections    |
| Radiation source: fine-focus sealed tube                | 23074 reflections with $I > 2\sigma(I)$                         |
| Graphite monochromator                                  | $R_{\rm int} = 0.030$                                           |
| $\varphi$ and $\omega$ scans                            | $\theta_{\rm max} = 34.7^\circ, \ \theta_{\rm min} = 1.2^\circ$ |
| Absorption correction: multi-scan                       | $h = -21 \rightarrow 22$                                        |
| (SADABS; Bruker, 2009)                                  | $k = -24 \rightarrow 24$                                        |
| $T_{\min} = 0.554, \ T_{\max} = 0.899$                  | <i>l</i> = −29→29                                               |
| Refinement                                              |                                                                 |
| Refinement on $F^2$                                     | Secondary atom site location: difference Fourier                |
| Least-squares matrix: full                              | map                                                             |
| $R[F^2 > 2\sigma(F^2)] = 0.032$                         | Hydrogen site location: inferred from                           |
| $wR(F^2) = 0.073$                                       | neighbouring sites                                              |
| S = 1.04                                                | H atoms treated by a mixture of independent                     |
| 29672 reflections                                       | and constrained refinement                                      |
| 906 parameters                                          | $w = 1/[\sigma^2(F_o^2) + (0.0254P)^2 + 2.328P]$                |
| 0 restraints                                            | where $P = (F_o^2 + 2F_c^2)/3$                                  |
| Primary atom site location: structure-invariant         | $(\Lambda/\sigma)_{\rm max} = 0.003$                            |

 $0.45 \times 0.19 \times 0.07 \text{ mm}$ 

direct methods

### Special details Experimental.

**Experimental**. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

 $\Delta \rho_{\rm max} = 2.67 \text{ e} \text{ Å}^{-3}$ 

 $\Delta \rho_{\rm min} = -1.48 \ {\rm e} \ {\rm \AA}^{-3}$ 

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x            | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|-----|--------------|--------------|--------------|-----------------------------|-----------|
| Sn1 | 0.615883 (9) | 0.312195 (8) | 0.235446 (7) | 0.01671 (3)                 |           |
| Sn2 | 0.844716 (8) | 0.170539 (8) | 0.276260 (7) | 0.01463 (3)                 |           |
| Sn3 | 0.726881 (9) | 0.058100 (8) | 0.183349 (8) | 0.01861 (3)                 |           |
| Sn4 | 0.737168 (9) | 0.429485 (8) | 0.317647 (7) | 0.01379 (2)                 |           |
| 01  | 0.72397 (9)  | 0.17492 (8)  | 0.22430 (8)  | 0.0187 (2)                  |           |
| O2  | 0.73553 (9)  | 0.30762 (8)  | 0.28821 (7)  | 0.0172 (2)                  |           |
| 03  | 0.54677 (10) | 0.12840 (9)  | 0.19435 (8)  | 0.0225 (3)                  |           |
| O4  | 0.52363 (11) | 0.28179 (10) | 0.16622 (10) | 0.0287 (3)                  |           |
| 05  | 0.06846 (11) | 0.48611 (11) | 0.12433 (10) | 0.0354 (4)                  |           |
| O6  | 0.20536 (12) | 0.51919 (10) | 0.11020 (9)  | 0.0289 (3)                  |           |
| O7  | 0.89082 (10) | 0.00652 (9)  | 0.19418 (8)  | 0.0192 (2)                  |           |

| 08       | 0.88365 (10)               | -0.11355 (10)              | 0.14687 (8)                | 0.0242 (3)      |
|----------|----------------------------|----------------------------|----------------------------|-----------------|
| 09       | 1.21758 (12)               | -0.00267 (10)              | 0.22356 (9)                | 0.0292 (3)      |
| O10      | 1.35710 (11)               | -0.13356 (11)              | 0.21556 (9)                | 0.0318 (3)      |
| 011      | 0.92936 (10)               | 0.20281 (9)                | 0.35023 (7)                | 0.0187 (2)      |
| 012      | 0.91575 (10)               | 0.35208 (9)                | 0.31013 (8)                | 0.0190 (2)      |
| 013      | 1.24913 (12)               | -0.04123 (10)              | 0.39659 (9)                | 0.0298 (3)      |
| 014      | 1.39161 (12)               | -0.01430 (11)              | 0.37262 (10)               | 0.0353 (4)      |
| 015      | 0.57450 (9)                | 0.48247 (9)                | 0.30492 (7)                | 0.0176 (2)      |
| 016      | 0 58029 (10)               | 0.60183(9)                 | 0.35400(7)                 | 0.0195(2)       |
| 017      | 0.24990(12)                | 0.00103())<br>0.48413(11)  | 0.33100(7)<br>0.27848(10)  | 0.0193(2)       |
| 018      | 0.24990(12)<br>0.10145(12) | 0.40413(11)<br>0.50088(12) | 0.27646(10)<br>0.31533(11) | 0.0312(3)       |
| N1       | 0.10143(12)                | 0.59900(12)<br>0.46123(12) | 0.51555(11)<br>0.12102(10) | 0.0307(4)       |
| NI<br>N2 | 0.10209(12)                | 0.40123(12)                | 0.12192(10)                | 0.0223(3)       |
| NZ       | 0.39/13(13)                | 0.0/3/1(11)                | 0.18058 (10)               | 0.0211 (3)      |
| N3       | 1.26428 (12)               | -0.08903 (12)              | 0.211/9 (9)                | 0.0211 (3)      |
| N4       | 1.04704 (14)               | -0.28197 (12)              | 0.14185 (11)               | 0.0248 (3)      |
| N5       | 1.29631 (13)               | 0.01373 (12)               | 0.37831 (10)               | 0.0235 (3)      |
| N6       | 1.07285 (13)               | 0.40233 (12)               | 0.31479 (10)               | 0.0212 (3)      |
| N7       | 0.19774 (13)               | 0.56302 (12)               | 0.30606 (10)               | 0.0254 (3)      |
| N8       | 0.40377 (14)               | 0.75500 (12)               | 0.39207 (10)               | 0.0229 (3)      |
| C1       | 0.49264 (14)               | 0.21414 (13)               | 0.17427 (11)               | 0.0194 (3)      |
| C2       | 0.38675 (13)               | 0.23784 (12)               | 0.15991 (10)               | 0.0155 (3)      |
| C3       | 0.32634 (13)               | 0.33358 (12)               | 0.14445 (10)               | 0.0166 (3)      |
| H3A      | 0.3545                     | 0.3807                     | 0.1409                     | 0.020*          |
| C4       | 0.22574 (13)               | 0.36082 (12)               | 0.13420 (10)               | 0.0181 (3)      |
| C5       | 0.18189 (14)               | 0.29339 (14)               | 0.13872 (11)               | 0.0208 (3)      |
| H5A      | 0.1122                     | 0.3131                     | 0.1322                     | 0.025*          |
| C6       | 0.24094 (14)               | 0.19865 (13)               | 0.15260 (11)               | 0.0197 (3)      |
| H6A      | 0.2121                     | 0.1525                     | 0.1542                     | 0.024*          |
| C7       | 0.34398(13)                | 0.16758 (12)               | 0.16469(10)                | 0.0163(3)       |
| C8       | 0.93483(13)                | -0.07913(12)               | 0.17050(11)                | 0.0181(3)       |
| C0       | 1.04682 (13)               | -0.13/31(12)               | 0.17266 (10)               | 0.0161(3)       |
| C10      | 1.04002(13)                | -0.08855(12)               | 0.17200(10)<br>0.10018(10) | 0.0103(3)       |
|          | 1.10550 (15)               | -0.0220                    | 0.19018 (10)               | 0.0104(3)       |
| C11      | 1.0070                     | 0.0229<br>0.12702 (12)     | 0.2007<br>0.10242 (10)     | $0.020^{\circ}$ |
|          | 1.20830 (13)               | -0.13/92(13)               | 0.19243 (10)               | 0.0178(3)       |
| C12      | 1.26059 (14)               | -0.23398 (13)              | 0.1/5//(11)                | 0.0214 (4)      |
| HI2A     | 1.3328                     | -0.2668                    | 0.1/68                     | 0.026*          |
| C13      | 1.20658 (15)               | -0.28020 (13)              | 0.15796 (11)               | 0.0222 (4)      |
| H13A     | 1.2423                     | -0.3453                    | 0.1461                     | 0.027*          |
| C14      | 1.09805 (14)               | -0.23306 (12)              | 0.15676 (10)               | 0.0185 (3)      |
| C15      | 0.96620 (13)               | 0.26731 (12)               | 0.33423 (10)               | 0.0156 (3)      |
| C16      | 1.07532 (13)               | 0.24094 (12)               | 0.34266 (10)               | 0.0153 (3)      |
| C17      | 1.13392 (13)               | 0.14435 (12)               | 0.35820 (10)               | 0.0164 (3)      |
| H17A     | 1.1025                     | 0.0990                     | 0.3653                     | 0.020*          |
| C18      | 1.23695 (14)               | 0.11414 (13)               | 0.36337 (10)               | 0.0193 (3)      |
| C19      | 1.28521 (14)               | 0.17921 (14)               | 0.35424 (11)               | 0.0219 (4)      |
| H19A     | 1.3565                     | 0.1573                     | 0.3577                     | 0.026*          |
| C20      | 1.22869 (14)               | 0.27455 (14)               | 0.34031 (11)               | 0.0202 (3)      |
| H20A     | 1.2607                     | 0.3189                     | 0.3359                     | 0.024*          |

| <b>C2</b> 1    | 1 1 2 2 2 4 (1 2)      |                        | 0.00005 (1.0)        |                 |                      |
|----------------|------------------------|------------------------|----------------------|-----------------|----------------------|
| C21            | 1.12296 (13)           | 0.308/3 (13)           | 0.33225 (10)         | 0.0164 (3)      |                      |
| C22            | 0.52883 (13)           | 0.56598 (12)           | 0.33300 (10)         | 0.0159 (3)      |                      |
| C23            | 0.41350 (13)           | 0.61543 (12)           | 0.34005 (10)         | 0.0155 (3)      |                      |
| C24            | 0.35931 (14)           | 0.57013 (12)           | 0.31860 (10)         | 0.0178 (3)      |                      |
| H24A           | 0.3967                 | 0.5097                 | 0.2974               | 0.021*          |                      |
| C25            | 0.25170 (14)           | 0.61226 (13)           | 0.32779 (11)         | 0.0192 (3)      |                      |
| C26            | 0.19400 (14)           | 0.70151 (14)           | 0.35846 (11)         | 0.0225 (4)      |                      |
| H26A           | 0.1198                 | 0.7294                 | 0.3651               | 0.027*          |                      |
| C27            | 0.24589 (14)           | 0.74797 (13)           | 0.37865 (11)         | 0.0216 (4)      |                      |
| H27A           | 0.2070                 | 0.8089                 | 0.3988               | 0.026*          |                      |
| C28            | 0.35682 (13)           | 0.70719 (12)           | 0.37021 (10)         | 0.0173 (3)      |                      |
| C29            | 0.64551 (14)           | 0.39952 (12)           | 0.13608 (11)         | 0.0191 (3)      |                      |
| H29A           | 0 7014                 | 0.4193                 | 0 1404               | 0.023*          |                      |
| H29R           | 0.6729                 | 0.3602                 | 0.0916               | 0.023*          |                      |
| C30            | 0.5729<br>0.55173 (14) | 0.48939(13)            | 0.12021(11)          | 0.0201(3)       |                      |
| H30A           | 0.5282                 | 0.5325                 | 0.1618               | 0.0201 (5)      |                      |
| 1130A<br>1130A | 0.3282                 | 0.3323                 | 0.1018               | 0.024           |                      |
| C21            | 0.4933<br>0.57772 (16) | 0.4/11<br>0.54200 (12) | 0.1197               | $0.024^{\circ}$ |                      |
|                | 0.57775 (10)           | 0.54309 (13)           | 0.04414 (11)         | 0.0228 (4)      |                      |
|                | 0.0420                 | 0.5558                 | 0.0419               | 0.027*          |                      |
| HSIB           | 0.3923                 | 0.5030                 | 0.0021               | 0.027*          |                      |
| C32            | 0.48907 (18)           | 0.63928 (15)           | 0.03270 (12)         | 0.0308 (5)      |                      |
| H32A           | 0.5051                 | 0.6668                 | -0.0193              | 0.046*          |                      |
| H32B           | 0.4818                 | 0.6829                 | 0.0693               | 0.046*          |                      |
| H32C           | 0.4234                 | 0.6299                 | 0.0407               | 0.046*          |                      |
| C33            | 0.5020 (6)             | 0.2954 (5)             | 0.3247 (3)           | 0.0172 (10)     | 0.510 (4)            |
| H33A           | 0.4337                 | 0.3458                 | 0.3175               | 0.021*          | 0.510 (4)            |
| H33B           | 0.4989                 | 0.2329                 | 0.3219               | 0.021*          | 0.510 (4)            |
| C34            | 0.5145 (3)             | 0.2996 (3)             | 0.4045 (2)           | 0.0198 (8)      | 0.510 (4)            |
| H34A           | 0.4913                 | 0.3674                 | 0.4151               | 0.024*          | 0.510 (4)            |
| H34B           | 0.5895                 | 0.2669                 | 0.4068               | 0.024*          | 0.510 (4)            |
| C35            | 0.4506 (3)             | 0.2521 (3)             | 0.4662 (2)           | 0.0222 (8)      | 0.510 (4)            |
| H35A           | 0.4445                 | 0.2726                 | 0.5165               | 0.027*          | 0.510 (4)            |
| H35B           | 0.3790                 | 0.2753                 | 0.4566               | 0.027*          | 0.510 (4)            |
| C36            | 0.4977 (4)             | 0.1437 (3)             | 0.4690 (3)           | 0.0334 (11)     | 0.510 (4)            |
| H36A           | 0.4505                 | 0.1185                 | 0.5066               | 0.050*          | 0.510 (4)            |
| H36B           | 0.5657                 | 0.1197                 | 0.4837               | 0.050*          | 0.510 (4)            |
| H36C           | 0.5074                 | 0.1226                 | 0.4187               | 0.050*          | 0.510 (4)            |
| C33X           | 0.5016 (6)             | 0.3117 (5)             | 0.3451 (4)           | 0.0197 (11)     | 0.490 (4)            |
| H33C           | 0 5049                 | 0.3525                 | 0 3802               | 0.024*          | 0 490 (4)            |
| H33D           | 0.4297                 | 0.3390                 | 0.3354               | 0.024*          | 0.190(1)<br>0.490(4) |
| C34X           | 0.5250(3)              | 0.2105 (3)             | 0.3824(2)            | 0.021           | 0.190(1)<br>0.490(4) |
| H34C           | 0.5250 (5)             | 0.1820                 | 0.3024 (2)           | 0.0204 (0)      | 0.490(4)             |
| H34C           | 0.5970                 | 0.1329                 | 0.3903               | 0.025           | 0.490(4)             |
| C25V           | 0.3207                 | 0.1/07                 | 0.3773<br>0.4586 (2) | 0.023           | 0.400 (4)            |
| U33A           | 0.4502 (4)             | 0.2008 (3)             | 0.4056               | 0.0240 (9)      | 0.490 (4)            |
|                | 0.4002                 | 0.2408                 | 0.4930               | 0.030*          | 0.490 (4)            |
| H35D           | 0.3/70                 | 0.2404                 | 0.451/               | 0.030*          | 0.490 (4)            |
| U36X           | 0.4675 (4)             | 0.1043 (3)             | 0.4908 (3)           | 0.0313 (10)     | 0.490 (4)            |
| H36D           | 0.4142                 | 0.1051                 | 0.5373               | 0.047*          | 0.490 (4)            |

| H36E | 0.5373       | 0.0728       | 0.5027                 | 0.047*             | 0.490 (4) |
|------|--------------|--------------|------------------------|--------------------|-----------|
| H36F | 0.4620       | 0.0691       | 0.4530                 | 0.047*             | 0.490 (4) |
| C37  | 0.96067 (14) | 0.18908 (13) | 0.18150 (10)           | 0.0191 (3)         |           |
| H37A | 0.9601       | 0.2535       | 0.1824                 | 0.023*             |           |
| H37B | 1.0300       | 0.1419       | 0.1897                 | 0.023*             |           |
| C38  | 0.95222 (16) | 0.17938 (15) | 0.10179 (11)           | 0.0244 (4)         |           |
| H38A | 0.8778       | 0.2104       | 0.0978                 | 0.029*             |           |
| H38B | 0.9770       | 0.1107       | 0.0936                 | 0.029*             |           |
| C39  | 1.01647 (16) | 0.22486 (15) | 0.03967 (11)           | 0.0261 (4)         |           |
| H39A | 1.0870       | 0.2042       | 0.0507                 | 0.031*             |           |
| H39B | 1.0255       | 0.2008       | -0.0099                | 0.031*             |           |
| C40  | 0.96720 (18) | 0.33400 (15) | 0.03267 (12)           | 0.0296 (4)         |           |
| H40A | 1.0127       | 0.3583       | -0.0075                | 0.044*             |           |
| H40B | 0.9588       | 0.3586       | 0.0812                 | 0.044*             |           |
| H40C | 0.8985       | 0.3552       | 0.0198                 | 0.044*             |           |
| C41  | 0.82967 (14) | 0.06716 (13) | 0.36786 (11)           | 0.0199(3)          |           |
| H41A | 0 7955       | 0.0998       | 0.4159                 | 0.024*             |           |
| H41B | 0.7838       | 0.0382       | 0.3588                 | 0.024*             |           |
| C42  | 0.93581 (15) | -0.01281(13) | 0.37689 (11)           | 0.0240(4)          |           |
| H42A | 0.9678       | -0.0476      | 0.3298                 | 0.029*             |           |
| H42B | 0.9830       | 0.0168       | 0.3826                 | 0.029*             |           |
| C43  | 0.92831(17)  | -0.08493(14) | 0.44502(11)            | 0.0259(4)          |           |
| H43A | 1 0000       | -0.1274      | 0.4516                 | 0.031*             |           |
| H43R | 0.8913       | -0.0497      | 0.4916                 | 0.031*             |           |
| C44  | 0.8716(2)    | -0.14621(16) | 0.43712(14)            | 0.031<br>0.0355(5) |           |
| H44A | 0.8760       | -0 1949      | 0.4799                 | 0.053*             |           |
| H44B | 0.9043       | -0.1776      | 0 3891                 | 0.053*             |           |
| H44C | 0 7979       | -0.1057      | 0.4373                 | 0.053*             |           |
| C45  | 0.68765(15)  | -0.03894(13) | 0.27141 (12)           | 0.0231 (4)         |           |
| H45A | 0 7491       | -0.0768      | 0 2947                 | 0.028*             |           |
| H45B | 0.6299       | -0.0020      | 0.3115                 | 0.028*             |           |
| C46  | 0.65399 (16) | -0.10772(13) | 0.24266 (13)           | 0.0256 (4)         |           |
| H46A | 0.5888       | -0.0700      | 0.2237                 | 0.031*             |           |
| H46B | 0 7090       | -0.1400      | 0 1992                 | 0.031*             |           |
| C47  | 0.63512 (16) | -0.18382(14) | 0.30332(13)            | 0.0287(4)          |           |
| H47A | 0 5859       | -0.1518      | 0.3490                 | 0.034*             |           |
| H47B | 0.6013       | -0.2171      | 0.2837                 | 0.034*             |           |
| C48  | 0.7341(2)    | -0.25768(16) | 0.2057<br>0.32661 (15) | 0.0371(5)          |           |
| H48A | 0.7178       | -0.3086      | 0.3605                 | 0.056*             |           |
| H48R | 0.7624       | -0.2270      | 0.3533                 | 0.056*             |           |
| H48C | 0.7862       | -0.2852      | 0.2811                 | 0.056*             |           |
| C49  | 0.75241 (19) | 0.2052       | 0.2011<br>0.06048 (14) | 0.026 (5)          | 0.860 (5) |
| H49A | 0.6955       | 0.1512       | 0.0495                 | 0.0240 (5)         | 0.860(5)  |
| H49C | 0.8190       | 0.0998       | 0.0434                 | 0.030*             | 0.860(5)  |
| C50  | 0.75720 (19) | 0.01522 (19) | 0.01225 (14)           | 0.0287 (6)         | 0.860(5)  |
| H50A | 0.7807       | 0.0332       | -0.0421                | 0.034*             | 0.860(5)  |
| H50R | 0.2007       | -0.0473      | 0.0254                 | 0.034*             | 0.860(5)  |
| C51  | 0.6545(2)    | 0.0774(17)   | 0.0234                 | 0.0274 (6)         | 0.860(5)  |
| 0.51 | 0.03 + 3(2)  | 0.002/4(1/)  | 0.02170 (13)           | 0.0274(0)          | 0.000 (3) |

| H51A           | 0.6681                 | -0.0519      | -0.0073                | 0.033*          | 0.860 (5) |
|----------------|------------------------|--------------|------------------------|-----------------|-----------|
| H51B           | 0.6298                 | -0.0135      | 0.0760                 | 0.033*          | 0.860 (5) |
| C52            | 0.5679 (2)             | 0.0905 (2)   | -0.00562 (17)          | 0.0287 (6)      | 0.860 (5) |
| H52A           | 0.5055                 | 0.0764       | 0.0004                 | 0.043*          | 0.860 (5) |
| H52B           | 0.5917                 | 0.1077       | -0.0595                | 0.043*          | 0.860 (5) |
| H52C           | 0.5507                 | 0.1441       | 0.0247                 | 0.043*          | 0.860 (5) |
| C49X           | 0.7335 (13)            | 0.0636 (12)  | 0.0793 (9)             | 0.023 (3)*      | 0.140 (5) |
| H49B           | 0.6881                 | 0.1290       | 0.0633                 | 0.028*          | 0.140 (5) |
| H49D           | 0.8063                 | 0.0527       | 0.0520                 | 0.028*          | 0.140 (5) |
| C50X           | 0.7001 (13)            | -0.0089 (11) | 0.0539 (9)             | 0.029 (3)*      | 0.140 (5) |
| H50C           | 0.7556                 | -0.0734      | 0.0588                 | 0.035*          | 0.140 (5) |
| H50D           | 0.6357                 | -0.0093      | 0.0905                 | 0.035*          | 0.140 (5) |
| C51X           | 0.6803 (13)            | 0.0057 (12)  | -0.0225 (10)           | 0.030 (4)*      | 0.140 (5) |
| H51C           | 0.6740                 | -0.0521      | -0.0342                | 0.035*          | 0.140 (5) |
| H51D           | 0.7410                 | 0.0134       | -0.0596                | 0.035*          | 0.140 (5) |
| C52X           | 0.5818 (17)            | 0.0924 (16)  | -0.0327(11)            | 0.029 (3)*      | 0.140 (5) |
| H52D           | 0.5658                 | 0.0920       | -0.0818                | 0.043*          | 0.140 (5) |
| H52E           | 0.5928                 | 0.1509       | -0.0316                | 0.043*          | 0.140(5)  |
| H52F           | 0 5231                 | 0.0903       | 0.0086                 | 0.043*          | 0.140(5)  |
| C53            | 0.71291 (16)           | 0.41534(15)  | 0.43874(11)            | 0.0243(4)       | 0.110 (0) |
| Н53А           | 0.6413                 | 0.4169       | 0.4599                 | 0.029*          |           |
| H53B           | 0.7628                 | 0.3516       | 0.4540                 | 0.029*          |           |
| C54            | 0.72566 (16)           | 0.49149 (16) | 0.47538(11)            | 0.023 (4)       |           |
| H54A           | 0.6736                 | 0.5551       | 0.4623                 | 0.0275 (4)      |           |
| H54R           | 0.7096                 | 0.4794       | 0.5315                 | 0.033*          |           |
| C55            | 0.7090<br>0.83427 (17) | 0.49452 (16) | 0.3513                 | 0.033           |           |
| U55 A          | 0.83427(17)            | 0.49452 (10) | 0.45111 (15)           | 0.0299 (4)      |           |
| 1155A<br>1155D | 0.8477                 | 0.3130       | 0.3938                 | 0.030*          |           |
| ПЈЈБ<br>С56    | 0.0071<br>0.8491 (2)   | 0.4293       | 0.4390<br>0.40380 (14) | $0.030^{\circ}$ |           |
|                | 0.8481(2)              | 0.50420 (19) | 0.49580 (14)           | 0.0392 (0)      |           |
|                | 0.9191                 | 0.3035       | 0.4735                 | 0.039           |           |
| HOOB           | 0.8574                 | 0.5451       | 0.3485                 | 0.059*          |           |
| HSOC           | 0.7968                 | 0.6290       | 0.4851                 | 0.059*          |           |
| 057            | 0.79555 (14)           | 0.50760 (13) | 0.22150 (10)           | 0.0197 (3)      |           |
| H5/A           | 0.8425                 | 0.5299       | 0.2375                 | 0.024*          |           |
| H5/B           | 0.8397                 | 0.4617       | 0.1821                 | 0.024*          |           |
| C58            | 0.71941 (15)           | 0.59374 (12) | 0.18323 (10)           | 0.0193 (3)      |           |
| H58A           | 0.6764                 | 0.6423       | 0.2208                 | 0.023*          |           |
| H58B           | 0.6716                 | 0.5734       | 0.1663                 | 0.023*          |           |
| C59            | 0.77550 (18)           | 0.63886 (16) | 0.11475 (12)           | 0.0310 (5)      |           |
| H59A           | 0.8171                 | 0.5906       | 0.0767                 | 0.037*          |           |
| H59B           | 0.8248                 | 0.6573       | 0.1316                 | 0.037*          |           |
| C60            | 0.7005 (2)             | 0.72705 (16) | 0.07678 (13)           | 0.0352 (5)      |           |
| H60A           | 0.7410                 | 0.7555       | 0.0357                 | 0.053*          |           |
| H60B           | 0.6567                 | 0.7740       | 0.1147                 | 0.053*          |           |
| H60C           | 0.6559                 | 0.7082       | 0.0556                 | 0.053*          |           |
| H1N2           | 0.363 (2)              | 0.0372 (19)  | 0.1916 (15)            | 0.038 (7)*      |           |
| H2N2           | 0.456 (2)              | 0.0581 (17)  | 0.1905 (13)            | 0.026 (6)*      |           |
| H1N4           | 1.078 (2)              | -0.340 (2)   | 0.1326 (15)            | 0.040 (8)*      |           |
|                |                        |              |                        |                 |           |

| H2N4 | 0.980 (2)   | -0.2534 (19) | 0.1430 (15) | 0.038 (7)* |
|------|-------------|--------------|-------------|------------|
| H1N6 | 1.013 (2)   | 0.4218 (19)  | 0.3087 (15) | 0.036 (7)* |
| H2N6 | 1.1052 (18) | 0.4383 (17)  | 0.3072 (13) | 0.022 (6)* |
| H1N8 | 0.471 (2)   | 0.733 (2)    | 0.3835 (17) | 0.052 (9)* |
| H2N8 | 0.3716 (19) | 0.8117 (18)  | 0.3995 (13) | 0.026 (6)* |
|      |             |              |             |            |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| Sn1 | 0.01106 (5) | 0.00921 (5) | 0.03082 (6) | -0.00378 (4) | -0.00783 (4) | 0.00106 (4)  |
| Sn2 | 0.01039 (5) | 0.00965 (5) | 0.02354 (6) | -0.00362 (4) | -0.00501 (4) | 0.00118 (4)  |
| Sn3 | 0.01384 (5) | 0.01048 (5) | 0.03358 (7) | -0.00422 (4) | -0.00888 (5) | -0.00213 (4) |
| Sn4 | 0.01225 (5) | 0.01044 (5) | 0.01863 (5) | -0.00414 (4) | -0.00414 (4) | -0.00019 (4) |
| 01  | 0.0132 (5)  | 0.0096 (5)  | 0.0352 (7)  | -0.0031 (4)  | -0.0103 (5)  | -0.0016 (5)  |
| O2  | 0.0122 (5)  | 0.0095 (5)  | 0.0300 (7)  | -0.0029 (4)  | -0.0071 (5)  | -0.0009 (5)  |
| O3  | 0.0150 (6)  | 0.0129 (6)  | 0.0412 (8)  | -0.0047 (5)  | -0.0108 (5)  | -0.0001 (5)  |
| O4  | 0.0239 (7)  | 0.0152 (6)  | 0.0561 (10) | -0.0105 (5)  | -0.0225 (7)  | 0.0039 (6)   |
| 05  | 0.0163 (7)  | 0.0268 (8)  | 0.0557 (10) | -0.0004 (6)  | -0.0130 (7)  | 0.0038 (7)   |
| O6  | 0.0260 (7)  | 0.0141 (6)  | 0.0465 (9)  | -0.0047 (5)  | -0.0120 (7)  | -0.0034 (6)  |
| O7  | 0.0150 (6)  | 0.0118 (5)  | 0.0305 (7)  | -0.0029 (5)  | -0.0072 (5)  | -0.0028 (5)  |
| 08  | 0.0184 (6)  | 0.0190 (6)  | 0.0383 (8)  | -0.0052 (5)  | -0.0114 (6)  | -0.0070 (6)  |
| 09  | 0.0282 (7)  | 0.0197 (7)  | 0.0452 (9)  | -0.0120 (6)  | -0.0137 (7)  | 0.0000 (6)   |
| O10 | 0.0183 (7)  | 0.0346 (8)  | 0.0457 (9)  | -0.0115 (6)  | -0.0109 (6)  | -0.0014 (7)  |
| 011 | 0.0170 (6)  | 0.0166 (6)  | 0.0257 (6)  | -0.0091 (5)  | -0.0081 (5)  | 0.0027 (5)   |
| O12 | 0.0148 (5)  | 0.0136 (5)  | 0.0292 (7)  | -0.0051 (5)  | -0.0077 (5)  | 0.0010 (5)   |
| O13 | 0.0268 (7)  | 0.0164 (6)  | 0.0403 (9)  | -0.0028 (6)  | -0.0073 (6)  | -0.0010 (6)  |
| O14 | 0.0189 (7)  | 0.0288 (8)  | 0.0527 (10) | 0.0016 (6)   | -0.0157 (7)  | -0.0049 (7)  |
| O15 | 0.0135 (5)  | 0.0126 (5)  | 0.0245 (6)  | -0.0029 (4)  | -0.0040 (5)  | -0.0013 (5)  |
| 016 | 0.0149 (6)  | 0.0186 (6)  | 0.0253 (6)  | -0.0057 (5)  | -0.0052 (5)  | -0.0030 (5)  |
| O17 | 0.0296 (8)  | 0.0225 (7)  | 0.0483 (9)  | -0.0140 (6)  | -0.0121 (7)  | -0.0035 (6)  |
| O18 | 0.0198 (7)  | 0.0330 (9)  | 0.0632 (11) | -0.0131 (6)  | -0.0149 (7)  | -0.0009 (8)  |
| N1  | 0.0182 (7)  | 0.0172 (7)  | 0.0284 (8)  | -0.0021 (6)  | -0.0064 (6)  | -0.0019 (6)  |
| N2  | 0.0176 (7)  | 0.0142 (7)  | 0.0353 (9)  | -0.0083 (6)  | -0.0099 (6)  | 0.0012 (6)   |
| N3  | 0.0179 (7)  | 0.0217 (8)  | 0.0257 (8)  | -0.0104 (6)  | -0.0060 (6)  | 0.0025 (6)   |
| N4  | 0.0228 (8)  | 0.0132 (7)  | 0.0401 (10) | -0.0026 (6)  | -0.0136 (7)  | -0.0065 (7)  |
| N5  | 0.0187 (7)  | 0.0214 (8)  | 0.0262 (8)  | -0.0006 (6)  | -0.0086 (6)  | -0.0039 (6)  |
| N6  | 0.0181 (7)  | 0.0163 (7)  | 0.0325 (9)  | -0.0092 (6)  | -0.0075 (6)  | -0.0002 (6)  |
| N7  | 0.0213 (8)  | 0.0211 (8)  | 0.0379 (9)  | -0.0120 (7)  | -0.0109 (7)  | 0.0047 (7)   |
| N8  | 0.0176 (7)  | 0.0150 (7)  | 0.0351 (9)  | -0.0025 (6)  | -0.0075 (7)  | -0.0068 (6)  |
| C1  | 0.0143 (7)  | 0.0143 (7)  | 0.0312 (9)  | -0.0056 (6)  | -0.0076 (7)  | -0.0013 (7)  |
| C2  | 0.0132 (7)  | 0.0138 (7)  | 0.0206 (8)  | -0.0055 (6)  | -0.0040 (6)  | -0.0023 (6)  |
| C3  | 0.0155 (7)  | 0.0133 (7)  | 0.0222 (8)  | -0.0054 (6)  | -0.0058 (6)  | -0.0021 (6)  |
| C4  | 0.0151 (7)  | 0.0149 (7)  | 0.0225 (8)  | -0.0026 (6)  | -0.0062 (6)  | -0.0017 (6)  |
| C5  | 0.0142 (7)  | 0.0215 (8)  | 0.0284 (9)  | -0.0075 (7)  | -0.0081 (7)  | 0.0007 (7)   |
| C6  | 0.0164 (8)  | 0.0193 (8)  | 0.0274 (9)  | -0.0099 (7)  | -0.0069 (7)  | -0.0002 (7)  |
| C7  | 0.0144 (7)  | 0.0163 (7)  | 0.0191 (8)  | -0.0067 (6)  | -0.0040 (6)  | -0.0011 (6)  |
| C8  | 0.0143 (7)  | 0.0135 (7)  | 0.0253 (8)  | -0.0031 (6)  | -0.0058 (6)  | -0.0018 (6)  |
| C9  | 0.0146 (7)  | 0.0119 (7)  | 0.0207 (8)  | -0.0020 (6)  | -0.0050 (6)  | -0.0018 (6)  |

| C10  | 0.0155 (7)               | 0.0135 (7)             | 0.0198 (8)             | -0.0056 (6)  | -0.0040 (6)  | 0.0002 (6)   |
|------|--------------------------|------------------------|------------------------|--------------|--------------|--------------|
| C11  | 0.0153 (7)               | 0.0175 (8)             | 0.0206 (8)             | -0.0067 (6)  | -0.0047 (6)  | 0.0012 (6)   |
| C12  | 0.0150 (8)               | 0.0193 (8)             | 0.0266 (9)             | -0.0031 (7)  | -0.0060 (7)  | -0.0002 (7)  |
| C13  | 0.0189 (8)               | 0.0143 (8)             | 0.0299 (9)             | -0.0008 (7)  | -0.0076 (7)  | -0.0031 (7)  |
| C14  | 0.0195 (8)               | 0.0123 (7)             | 0.0230 (8)             | -0.0037 (6)  | -0.0076 (6)  | -0.0013 (6)  |
| C15  | 0.0123 (7)               | 0.0147 (7)             | 0.0201 (8)             | -0.0051 (6)  | -0.0045 (6)  | -0.0003 (6)  |
| C16  | 0.0129 (7)               | 0.0151 (7)             | 0.0190 (7)             | -0.0057 (6)  | -0.0046 (6)  | -0.0012 (6)  |
| C17  | 0.0153 (7)               | 0.0149 (7)             | 0.0194 (8)             | -0.0054 (6)  | -0.0051 (6)  | -0.0016 (6)  |
| C18  | 0.0152 (7)               | 0.0176 (8)             | 0.0230 (8)             | -0.0027(6)   | -0.0066 (6)  | -0.0021(6)   |
| C19  | 0.0143 (7)               | 0.0263 (9)             | 0.0260 (9)             | -0.0068 (7)  | -0.0067 (7)  | -0.0033(7)   |
| C20  | 0.0157 (8)               | 0.0220 (8)             | 0.0258 (9)             | -0.0092(7)   | -0.0048 (6)  | -0.0031(7)   |
| C21  | 0.0144 (7)               | 0.0182 (8)             | 0.0183 (7)             | -0.0074 (6)  | -0.0030(6)   | -0.0031(6)   |
| C22  | 0.0132(7)                | 0.0140(7)              | 0.0179(7)              | -0.0038(6)   | -0.0033(6)   | 0.0013 (6)   |
| C23  | 0.0135(7)                | 0.0129(7)              | 0.0191(7)              | -0.0044(6)   | -0.0045(6)   | 0.0014 (6)   |
| C24  | 0.0177 (8)               | 0.0135(7)              | 0.0217 (8)             | -0.0065(6)   | -0.0046(6)   | 0.0020 (6)   |
| C25  | 0.0171(8)                | 0.0171(8)              | 0.0261(9)              | -0.0086(6)   | -0.0076(7)   | 0.0020(0)    |
| C26  | 0.0142(8)                | 0.0203(8)              | 0.0201(9)              | -0.0054(7)   | -0.0047(7)   | 0.0021(7)    |
| C27  | 0.0161(8)                | 0.0203(0)<br>0.0162(8) | 0.0300(9)              | -0.0032(6)   | -0.0046(7)   | -0.0039(7)   |
| C28  | 0.0148(7)                | 0.0102(0)              | 0.0214(8)              | -0.0032(6)   | -0.0040(6)   | -0.0010(6)   |
| C29  | 0.0180(8)                | 0.0146(7)              | 0.0261(9)              | -0.0055(6)   | -0.0077(7)   | -0.0004(6)   |
| C30  | 0.0100(0)                | 0.0110(7)              | 0.0261(9)<br>0.0262(9) | -0.0000(0)   | -0.0070(7)   | 0.0005 (6)   |
| C31  | 0.0262(9)                | 0.0182(8)              | 0.0233(9)              | -0.0082(7)   | -0.0060(7)   | 0.0005(7)    |
| C32  | 0.0332(11)               | 0.0211(9)              | 0.0283(10)             | -0.0042(8)   | -0.0045(8)   | 0.0035 (8)   |
| C33  | 0.0352(11)<br>0.0161(17) | 0.0211(3)              | 0.0203(10)             | -0.0074(17)  | -0.002(2)    | 0.0000(17)   |
| C34  | 0.0210(16)               | 0.0211(17)             | 0.0200(17)             | -0.0113(14)  | -0.002(13)   | -0.0035(13)  |
| C35  | 0.0237(18)               | 0.024(2)               | 0.0185(17)             | -0.0107(16)  | -0.0014(13)  | -0.0003(15)  |
| C36  | 0.048(3)                 | 0.025(2)               | 0.027(2)               | -0.015(2)    | -0.0102(19)  | 0.0028 (17)  |
| C33X | 0.0125(17)               | 0.015(2)               | 0.027(3)               | -0.0027(17)  | 0.000 (2)    | -0.0018(19)  |
| C34X | 0.0197(17)               | 0.0153(16)             | 0.0261(19)             | -0.0076(14)  | -0.0041(14)  | 0.0003 (13)  |
| C35X | 0.029 (2)                | 0.023 (2)              | 0.024 (2)              | -0.0128(19)  | -0.0037(16)  | -0.0020(17)  |
| C36X | 0.042(3)                 | 0.029(2)               | 0.023(2)               | -0.018(2)    | -0.0073(18)  | 0.0080 (17)  |
| C37  | 0.0159 (7)               | 0.0184 (8)             | 0.0232 (8)             | -0.0077(6)   | -0.0038(6)   | 0.0009 (6)   |
| C38  | 0.0261 (9)               | 0.0242 (9)             | 0.0258 (9)             | -0.0123(8)   | -0.0068(7)   | -0.0006(7)   |
| C39  | 0.0259 (9)               | 0.0293 (10)            | 0.0224 (9)             | -0.0108(8)   | -0.0044(7)   | -0.0011(7)   |
| C40  | 0.0320 (11)              | 0.0278 (10)            | 0.0268 (10)            | -0.0112(9)   | -0.0062(8)   | 0.0028 (8)   |
| C41  | 0.0183 (8)               | 0.0154 (8)             | 0.0258 (9)             | -0.0079 (6)  | -0.0028(7)   | 0.0000 (6)   |
| C42  | 0.0213 (9)               | 0.0173 (8)             | 0.0274 (9)             | -0.0047 (7)  | -0.0040 (7)  | 0.0051 (7)   |
| C43  | 0.0295 (10)              | 0.0203 (9)             | 0.0247 (9)             | -0.0088 (8)  | -0.0053 (8)  | 0.0034 (7)   |
| C44  | 0.0478 (14)              | 0.0263 (11)            | 0.0368(12)             | -0.0204(10)  | -0.0106(10)  | 0.0049 (9)   |
| C45  | 0.0204 (8)               | 0.0138 (8)             | 0.0357 (10)            | -0.0073 (7)  | -0.0064 (7)  | -0.0011 (7)  |
| C46  | 0.0223 (9)               | 0.0145 (8)             | 0.0440 (12)            | -0.0087(7)   | -0.0133 (8)  | 0.0014 (8)   |
| C47  | 0.0264 (10)              | 0.0191 (9)             | 0.0417 (12)            | -0.0128(8)   | -0.0005 (9)  | -0.0051 (8)  |
| C48  | 0.0464 (14)              | 0.0229 (10)            | 0.0499 (14)            | -0.0176 (10) | -0.0225 (11) | 0.0072 (10)  |
| C49  | 0.0230 (11)              | 0.0272 (12)            | 0.0259 (11)            | -0.0132 (10) | -0.0089 (9)  | 0.0069 (10)  |
| C50  | 0.0261 (12)              | 0.0307 (13)            | 0.0248 (11)            | -0.0045 (10) | -0.0083 (9)  | -0.0031 (9)  |
| C51  | 0.0390 (14)              | 0.0191 (10)            | 0.0268 (13)            | -0.0118 (10) | -0.0105 (10) | -0.0019 (9)  |
| C52  | 0.0288 (13)              | 0.0296 (13)            | 0.0300 (14)            | -0.0127 (10) | -0.0084 (12) | -0.0011 (12) |
| C53  | 0.0228 (9)               | 0.0287 (10)            | 0.0202 (8)             | -0.0104 (8)  | -0.0058 (7)  | 0.0043 (7)   |
|      | × /                      | × /                    | × /                    | × /          | × /          | × /          |

| C54 | 0.0264 (10) | 0.0369 (11) | 0.0170 (8)  | -0.0103 (9)  | -0.0048(7)   | -0.0025 (8)  |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C55 | 0.0274 (10) | 0.0309 (11) | 0.0320 (11) | -0.0074 (9)  | -0.0096 (8)  | -0.0086 (9)  |
| C56 | 0.0389 (13) | 0.0441 (14) | 0.0408 (13) | -0.0135 (11) | -0.0174 (11) | -0.0114 (11) |
| C57 | 0.0194 (8)  | 0.0172 (8)  | 0.0222 (8)  | -0.0086 (7)  | -0.0033 (6)  | 0.0021 (6)   |
| C58 | 0.0232 (8)  | 0.0140 (7)  | 0.0219 (8)  | -0.0090 (7)  | -0.0060 (7)  | 0.0019 (6)   |
| C59 | 0.0355 (11) | 0.0275 (10) | 0.0287 (10) | -0.0159 (9)  | -0.0051 (9)  | 0.0087 (8)   |
| C60 | 0.0564 (15) | 0.0239 (10) | 0.0293 (11) | -0.0204 (10) | -0.0145 (10) | 0.0088 (8)   |

Geometric parameters (Å, °)

| Sn1—O1   | 2.0436 (12) | С33—Н33А  | 0.9900    |
|----------|-------------|-----------|-----------|
| Sn1—C33  | 2.050 (7)   | С33—Н33В  | 0.9900    |
| Sn1—C29  | 2.1234 (18) | C34—C35   | 1.541 (5) |
| Sn1—O2   | 2.1445 (12) | C34—H34A  | 0.9900    |
| Sn1—C33X | 2.232 (7)   | C34—H34B  | 0.9900    |
| Sn1—O4   | 2.2643 (14) | C35—C36   | 1.516 (6) |
| Sn1—Sn2  | 3.2970 (2)  | С35—Н35А  | 0.9900    |
| Sn2—O2   | 2.0474 (12) | С35—Н35В  | 0.9900    |
| Sn2—C41  | 2.1343 (18) | С36—Н36А  | 0.9800    |
| Sn2—C37  | 2.1351 (17) | С36—Н36В  | 0.9800    |
| Sn2—O1   | 2.1504 (12) | С36—Н36С  | 0.9800    |
| Sn2—O11  | 2.2583 (13) | C33X—C34X | 1.525 (8) |
| Sn3—C49X | 1.861 (16)  | С33Х—Н33С | 0.9900    |
| Sn3—O1   | 2.0384 (12) | C33X—H33D | 0.9900    |
| Sn3—C45  | 2.1283 (19) | C34X—C35X | 1.527 (6) |
| Sn3—C49  | 2.176 (3)   | C34X—H34C | 0.9900    |
| Sn3—O7   | 2.1992 (12) | C34X—H34D | 0.9900    |
| Sn3—O3   | 2.3178 (13) | C35X—C36X | 1.526 (6) |
| Sn4—O2   | 2.0439 (12) | C35X—H35C | 0.9900    |
| Sn4—C53  | 2.1293 (19) | C35X—H35D | 0.9900    |
| Sn4—C57  | 2.1370 (17) | C36X—H36D | 0.9800    |
| Sn4—O15  | 2.1908 (12) | С36Х—Н36Е | 0.9800    |
| Sn4—O12  | 2.3115 (12) | C36X—H36F | 0.9800    |
| O3—C1    | 1.270 (2)   | C37—C38   | 1.524 (3) |
| O4—C1    | 1.263 (2)   | С37—Н37А  | 0.9900    |
| O5—N1    | 1.233 (2)   | С37—Н37В  | 0.9900    |
| O6—N1    | 1.237 (2)   | C38—C39   | 1.530 (3) |
| O7—C8    | 1.297 (2)   | C38—H38A  | 0.9900    |
| O8—C8    | 1.250 (2)   | C38—H38B  | 0.9900    |
| O9—N3    | 1.243 (2)   | C39—C40   | 1.525 (3) |
| O10—N3   | 1.234 (2)   | С39—Н39А  | 0.9900    |
| O11—C15  | 1.265 (2)   | С39—Н39В  | 0.9900    |
| O12—C15  | 1.268 (2)   | C40—H40A  | 0.9800    |
| O13—N5   | 1.241 (2)   | C40—H40B  | 0.9800    |
| O14—N5   | 1.232 (2)   | C40—H40C  | 0.9800    |
| O15—C22  | 1.301 (2)   | C41—C42   | 1.539 (3) |
| O16—C22  | 1.243 (2)   | C41—H41A  | 0.9900    |
| O17—N7   | 1.243 (2)   | C41—H41B  | 0.9900    |

| O18—N7              | 1.233 (2)            | C42—C43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.531 (3) |
|---------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| N1—C4               | 1.444 (2)            | C42—H42A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9900    |
| N2—C7               | 1.346 (2)            | C42—H42B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9900    |
| N2—H1N2             | 0.85 (3)             | C43—C44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.519 (3) |
| N2—H2N2             | 0.83 (2)             | C43—H43A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9900    |
| N3—C11              | 1.437 (2)            | C43—H43B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9900    |
| N4—C14              | 1.341 (2)            | C44—H44A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800    |
| N4—H1N4             | 0.85 (3)             | C44—H44B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800    |
| N4—H2N4             | 0.87(3)              | C44 - H44C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9800    |
| N5-C18              | 1440(2)              | $C_{45}$ $C_{46}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.537(3)  |
| N6-C21              | 1.110(2)<br>1.341(2) | $C_{45}$ H45A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.9900    |
| N6H1N6              | 0.82(3)              | C45—H45R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9900    |
| N6 H2N6             | 0.82(3)              | C46 C47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.527(3)  |
| N7 C25              | 0.03(2)<br>1 430(2)  | $C_{40} = C_{47}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.527(5)  |
| N/                  | 1.439(2)<br>1.240(2) | $C_{46}$ $H_{46}$ $H_{46}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9900    |
|                     | 1.340(2)             | C40— $H40B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9900    |
|                     | 0.80 (3)             | C47 - C48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.517 (5) |
| N8—H2N8             | 0.82(2)              | C47—H47A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9900    |
| C1 = C2             | 1.490 (2)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9900    |
| C2—C3               | 1.389 (2)            | C48—H48A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800    |
| C2—C7               | 1.427 (2)            | C48—H48B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800    |
| C3—C4               | 1.380 (2)            | C48—H48C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800    |
| С3—НЗА              | 0.9500               | C49—C50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.529 (4) |
| C4—C5               | 1.399 (3)            | C49—H49A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9900    |
| C5—C6               | 1.367 (3)            | C49—H49C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9900    |
| С5—Н5А              | 0.9500               | C50—C51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.524 (4) |
| C6—C7               | 1.417 (2)            | C50—H50A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9900    |
| С6—Н6А              | 0.9500               | C50—H50B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9900    |
| C8—C9               | 1.481 (2)            | C51—C52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.522 (4) |
| C9—C10              | 1.390 (2)            | C51—H51A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9900    |
| C9—C14              | 1.430 (2)            | C51—H51B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9900    |
| C10—C11             | 1.385 (2)            | С52—Н52А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800    |
| C10—H10A            | 0.9500               | С52—Н52В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800    |
| C11—C12             | 1.398 (3)            | С52—Н52С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800    |
| C12—C13             | 1.368 (3)            | C49X—C50X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.55 (2)  |
| C12—H12A            | 0.9500               | C49X—H49B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9900    |
| C13—C14             | 1.424 (3)            | C49X—H49D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9900    |
| С13—Н13А            | 0.9500               | C50X—C51X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.46 (2)  |
| C15-C16             | 1 488 (2)            | C50X - H50C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9900    |
| C16 - C17           | 1 394 (2)            | C50X - H50D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9900    |
| C16-C21             | 1 428 (2)            | $C_{51}X - C_{52}X$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.52(3)   |
| C17 - C18           | 1.120(2)<br>1.377(2) | $C_{51X}$ H51C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9900    |
| C17 H17A            | 0.9500               | C51X H51D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9900    |
| C18 $C19$           | 1,400 (3)            | C52X H52D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9900    |
| $C_{10} - C_{10}$   | 1.700 (3)            | C52X H52E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9000    |
| $C_{19} = C_{20}$   | 0.0500               | C52X H52E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.2000    |
| C19—П19А<br>C20—C21 | 1 422 (2)            | $C_{2}A - \Pi_{2}ZF$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.7000    |
| $C_{20} = U_{20}$   | 1.423 (2)            | $C_{33}$ $C_{53}$ $C$ | 1.333 (3) |
| C20—H20A            | 0.900                | Сээ—НэзА                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9900    |
| 022-023             | 1.48/(2)             | Сээ—Нэзв                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9900    |

| C23—C24      | 1.391 (2)   | C54—C55        | 1.522 (3) |
|--------------|-------------|----------------|-----------|
| C23—C28      | 1.427 (2)   | С54—Н54А       | 0.9900    |
| C24—C25      | 1.380 (2)   | C54—H54B       | 0.9900    |
| C24—H24A     | 0.9500      | C55—C56        | 1.525 (3) |
| C25—C26      | 1.400 (3)   | С55—Н55А       | 0.9900    |
| C26—C27      | 1.366 (3)   | С55—Н55В       | 0.9900    |
| C26—H26A     | 0.9500      | C56—H56A       | 0.9800    |
| C27—C28      | 1.424 (2)   | С56—Н56В       | 0.9800    |
| С27—Н27А     | 0.9500      | С56—Н56С       | 0.9800    |
| C29—C30      | 1.527 (2)   | C57—C58        | 1.523 (2) |
| С29—Н29А     | 0.9900      | С57—Н57А       | 0.9900    |
| С29—Н29В     | 0.9900      | С57—Н57В       | 0.9900    |
| C30—C31      | 1.530 (3)   | C58—C59        | 1.527 (3) |
| С30—Н30А     | 0.9900      | C58—H58A       | 0.9900    |
| С30—Н30В     | 0.9900      | C58—H58B       | 0.9900    |
| C31—C32      | 1.525 (3)   | C59—C60        | 1.528 (3) |
| C31—H31A     | 0.9900      | C59—H59A       | 0.9900    |
| C31—H31B     | 0.9900      | C59—H59B       | 0.9900    |
| C32—H32A     | 0.9800      | C60—H60A       | 0.9800    |
| С32—Н32В     | 0.9800      | C60—H60B       | 0.9800    |
| C32—H32C     | 0.9800      | C60—H60C       | 0.9800    |
| C33—C34      | 1.526 (6)   |                |           |
|              |             |                |           |
| O1—Sn1—C33   | 102.26 (19) | C34—C33—Sn1    | 116.7 (4) |
| O1—Sn1—C29   | 109.79 (6)  | С34—С33—Н33А   | 108.1     |
| C33—Sn1—C29  | 144.4 (2)   | Sn1—C33—H33A   | 108.1     |
| O1—Sn1—O2    | 76.44 (5)   | С34—С33—Н33В   | 108.1     |
| C33—Sn1—O2   | 104.49 (17) | Sn1—C33—H33B   | 108.1     |
| C29—Sn1—O2   | 97.91 (6)   | H33A—C33—H33B  | 107.3     |
| O1—Sn1—C33X  | 106.93 (18) | C33—C34—C35    | 112.0 (4) |
| C33—Sn1—C33X | 11.9 (2)    | C33—C34—H34A   | 109.2     |
| C29—Sn1—C33X | 143.02 (19) | C35—C34—H34A   | 109.2     |
| O2—Sn1—C33X  | 94.69 (18)  | C33—C34—H34B   | 109.2     |
| O1—Sn1—O4    | 89.08 (5)   | C35—C34—H34B   | 109.2     |
| C33—Sn1—O4   | 82.72 (16)  | H34A—C34—H34B  | 107.9     |
| C29—Sn1—O4   | 82.63 (6)   | C36—C35—C34    | 113.9 (3) |
| O2—Sn1—O4    | 164.84 (5)  | С36—С35—Н35А   | 108.8     |
| C33X—Sn1—O4  | 93.80 (17)  | С34—С35—Н35А   | 108.8     |
| O1—Sn1—Sn2   | 39.34 (3)   | С36—С35—Н35В   | 108.8     |
| C33—Sn1—Sn2  | 107.5 (2)   | С34—С35—Н35В   | 108.8     |
| C29—Sn1—Sn2  | 107.14 (5)  | H35A—C35—H35B  | 107.7     |
| O2—Sn1—Sn2   | 37.11 (3)   | C34X—C33X—Sn1  | 111.2 (4) |
| C33X—Sn1—Sn2 | 103.85 (19) | C34X—C33X—H33C | 109.4     |
| O4—Sn1—Sn2   | 128.23 (4)  | Sn1—C33X—H33C  | 109.4     |
| O2—Sn2—C41   | 116.69 (6)  | C34X—C33X—H33D | 109.4     |
| O2—Sn2—C37   | 102.20 (6)  | Sn1—C33X—H33D  | 109.4     |
| C41—Sn2—C37  | 139.14 (7)  | H33C—C33X—H33D | 108.0     |
| O2—Sn2—O1    | 76.23 (5)   | C33X—C34X—C35X | 113.1 (4) |
|              |             |                |           |

| C41—Sn2—O1          | 97.59 (6)   | C33X—C34X—H34C                | 109.0       |
|---------------------|-------------|-------------------------------|-------------|
| C37—Sn2—O1          | 103.59 (6)  | C35X—C34X—H34C                | 109.0       |
| O2—Sn2—O11          | 87.60 (5)   | C33X—C34X—H34D                | 109.0       |
| C41—Sn2—O11         | 83.03 (6)   | C35X—C34X—H34D                | 109.0       |
| C37—Sn2—O11         | 86.75 (6)   | H34C—C34X—H34D                | 107.8       |
| 01—Sn2—011          | 162.25 (5)  | C36X—C35X—C34X                | 112.2 (4)   |
| O2—Sn2—Sn1          | 39.19 (3)   | C36X—C35X—H35C                | 109.2       |
| C41—Sn2—Sn1         | 111.68 (5)  | C34X—C35X—H35C                | 109.2       |
| C37—Sn2—Sn1         | 106.18 (5)  | C36X—C35X—H35D                | 109.2       |
| O1— $Sn2$ — $Sn1$   | 37.04 (3)   | C34X—C35X—H35D                | 109.2       |
| O11— $Sn2$ — $Sn1$  | 126.47 (3)  | H35C—C35X—H35D                | 107.9       |
| C49X—Sn3—O1         | 117.0 (5)   | C35X—C36X—H36D                | 109.5       |
| C49X—Sn3—C45        | 128.7 (6)   | C35X—C36X—H36E                | 109.5       |
| 01— $Sn3$ — $C45$   | 112.74 (7)  | H36D—C36X—H36E                | 109.5       |
| C49X— $Sn3$ — $C49$ | 14.3 (5)    | C35X—C36X—H36F                | 109.5       |
| $\Omega_1$ —Sn3—C49 | 103.90 (8)  | H36D—C36X—H36F                | 109.5       |
| C45 = Sn3 = C49     | 142.79 (9)  | $H_{36E}$ $C_{36X}$ $H_{36E}$ | 109.5       |
| C49X = Sn3 = 07     | 1050(5)     | $C_{38}$ $C_{37}$ $S_{n2}$    | 118 39 (13) |
| 01— $Sn3$ — $07$    | 79.83 (5)   | C38—C37—H37A                  | 107 7       |
| C45 = Sn3 = 07      | 94 91 (6)   | Sn2—C37—H37A                  | 107.7       |
| C49 = Sn3 = O7      | 97.73 (7)   | C38—C37—H37B                  | 107.7       |
| C49X - Sn3 - O3     | 85.3 (5)    | Sn2—C37—H37B                  | 107.7       |
| $01-Sn^3-O^3$       | 90.46 (5)   | H37A—C37—H37B                 | 107.1       |
| $C45 = Sn^3 = O^3$  | 82.56 (6)   | $C_{37}$ $C_{38}$ $C_{39}$    | 112.21 (16) |
| C49—Sn3—O3          | 91.11 (7)   | C37—C38—H38A                  | 109.2       |
| 07—Sn3—O3           | 168.18 (5)  | C39—C38—H38A                  | 109.2       |
| 02—Sn4—C53          | 105.16 (7)  | С37—С38—Н38В                  | 109.2       |
| O2—Sn4—C57          | 112.18 (6)  | C39—C38—H38B                  | 109.2       |
| C53—Sn4—C57         | 140.54 (8)  | H38A—C38—H38B                 | 107.9       |
| O2—Sn4—O15          | 80.07 (5)   | C40—C39—C38                   | 113.81 (17) |
| C53—Sn4—O15         | 99.69 (6)   | С40—С39—Н39А                  | 108.8       |
| C57—Sn4—O15         | 98.85 (6)   | С38—С39—Н39А                  | 108.8       |
| O2—Sn4—O12          | 89.13 (5)   | С40—С39—Н39В                  | 108.8       |
| C53—Sn4—O12         | 89.47 (6)   | С38—С39—Н39В                  | 108.8       |
| C57—Sn4—O12         | 79.01 (6)   | H39A—C39—H39B                 | 107.7       |
| O15—Sn4—O12         | 167.33 (5)  | С39—С40—Н40А                  | 109.5       |
| Sn3—O1—Sn1          | 133.09 (6)  | С39—С40—Н40В                  | 109.5       |
| Sn3—O1—Sn2          | 123.16 (6)  | H40A—C40—H40B                 | 109.5       |
| Sn1—O1—Sn2          | 103.62 (5)  | С39—С40—Н40С                  | 109.5       |
| Sn4—O2—Sn2          | 133.50 (6)  | H40A—C40—H40C                 | 109.5       |
| Sn4—O2—Sn1          | 121.48 (6)  | H40B—C40—H40C                 | 109.5       |
| Sn2—O2—Sn1          | 103.70 (5)  | C42—C41—Sn2                   | 112.73 (12) |
| C1—O3—Sn3           | 127.34 (12) | C42—C41—H41A                  | 109.0       |
| C1—O4—Sn1           | 130.17 (13) | Sn2—C41—H41A                  | 109.0       |
| C8—O7—Sn3           | 105.06 (11) | C42—C41—H41B                  | 109.0       |
| C15—O11—Sn2         | 124.96 (11) | Sn2—C41—H41B                  | 109.0       |
| C15—O12—Sn4         | 128.32 (11) | H41A—C41—H41B                 | 107.8       |
| C22—O15—Sn4         | 105.22 (11) | C43—C42—C41                   | 113.99 (16) |
|                     |             |                               |             |

| O5—N1—O6     | 122.51 (16) | C43—C42—H42A  | 108.8       |
|--------------|-------------|---------------|-------------|
| O5—N1—C4     | 118.98 (17) | C41—C42—H42A  | 108.8       |
| O6—N1—C4     | 118.51 (15) | C43—C42—H42B  | 108.8       |
| C7—N2—H1N2   | 117.9 (18)  | C41—C42—H42B  | 108.8       |
| C7—N2—H2N2   | 116.8 (17)  | H42A—C42—H42B | 107.6       |
| H1N2—N2—H2N2 | 123 (2)     | C44—C43—C42   | 113.81 (18) |
| O10—N3—O9    | 122.07 (17) | C44—C43—H43A  | 108.8       |
| O10—N3—C11   | 119.24 (16) | C42—C43—H43A  | 108.8       |
| O9—N3—C11    | 118.69 (15) | C44—C43—H43B  | 108.8       |
| C14—N4—H1N4  | 121.5 (19)  | C42—C43—H43B  | 108.8       |
| C14—N4—H2N4  | 119.3 (18)  | H43A—C43—H43B | 107.7       |
| H1N4—N4—H2N4 | 119 (3)     | C43—C44—H44A  | 109.5       |
| O14—N5—O13   | 122.57 (17) | C43—C44—H44B  | 109.5       |
| O14—N5—C18   | 118.92 (18) | H44A—C44—H44B | 109.5       |
| O13—N5—C18   | 118.51 (16) | C43—C44—H44C  | 109.5       |
| C21—N6—H1N6  | 119.1 (19)  | H44A—C44—H44C | 109.5       |
| C21—N6—H2N6  | 119.1 (16)  | H44B—C44—H44C | 109.5       |
| H1N6—N6—H2N6 | 122 (2)     | C46—C45—Sn3   | 112.88 (14) |
| O18—N7—O17   | 121.85 (18) | C46—C45—H45A  | 109.0       |
| O18—N7—C25   | 119.37 (17) | Sn3—C45—H45A  | 109.0       |
| O17—N7—C25   | 118.78 (16) | C46—C45—H45B  | 109.0       |
| C28—N8—H1N8  | 119 (2)     | Sn3—C45—H45B  | 109.0       |
| C28—N8—H2N8  | 119.4 (17)  | H45A—C45—H45B | 107.8       |
| H1N8—N8—H2N8 | 118 (3)     | C47—C46—C45   | 113.72 (18) |
| O4—C1—O3     | 123.22 (16) | C47—C46—H46A  | 108.8       |
| O4—C1—C2     | 117.46 (15) | C45—C46—H46A  | 108.8       |
| O3—C1—C2     | 119.32 (16) | C47—C46—H46B  | 108.8       |
| C3—C2—C7     | 119.34 (15) | C45—C46—H46B  | 108.8       |
| C3—C2—C1     | 117.60 (15) | H46A—C46—H46B | 107.7       |
| C7—C2—C1     | 123.00 (15) | C48—C47—C46   | 113.82 (18) |
| C4—C3—C2     | 120.50 (16) | C48—C47—H47A  | 108.8       |
| С4—С3—НЗА    | 119.8       | С46—С47—Н47А  | 108.8       |
| С2—С3—НЗА    | 119.8       | C48—C47—H47B  | 108.8       |
| C3—C4—C5     | 121.30 (16) | C46—C47—H47B  | 108.8       |
| C3—C4—N1     | 119.43 (16) | H47A—C47—H47B | 107.7       |
| C5—C4—N1     | 119.22 (16) | C47—C48—H48A  | 109.5       |
| C6—C5—C4     | 118.96 (16) | C47—C48—H48B  | 109.5       |
| С6—С5—Н5А    | 120.5       | H48A—C48—H48B | 109.5       |
| С4—С5—Н5А    | 120.5       | C47—C48—H48C  | 109.5       |
| C5—C6—C7     | 121.66 (17) | H48A—C48—H48C | 109.5       |
| С5—С6—Н6А    | 119.2       | H48B—C48—H48C | 109.5       |
| С7—С6—Н6А    | 119.2       | C50—C49—Sn3   | 116.96 (18) |
| N2—C7—C6     | 119.03 (16) | С50—С49—Н49А  | 108.1       |
| N2—C7—C2     | 122.75 (16) | Sn3—C49—H49A  | 108.1       |
| C6—C7—C2     | 118.22 (15) | С50—С49—Н49С  | 108.1       |
| O8—C8—O7     | 120.61 (16) | Sn3—C49—H49C  | 108.1       |
| O8—C8—C9     | 121.48 (16) | H49A—C49—H49C | 107.3       |
| O7—C8—C9     | 117.90 (16) | C51—C50—C49   | 115.3 (2)   |
|              |             |               |             |

| C10—C9—C14                  | 119.38 (16) | С51—С50—Н50А   | 108.4       |
|-----------------------------|-------------|----------------|-------------|
| С10—С9—С8                   | 119.00 (15) | С49—С50—Н50А   | 108.4       |
| C14—C9—C8                   | 121.61 (16) | C51—C50—H50B   | 108.4       |
| C11—C10—C9                  | 120.51 (16) | C49—C50—H50B   | 108.4       |
| C11—C10—H10A                | 119.7       | H50A—C50—H50B  | 107.5       |
| C9—C10—H10A                 | 119.7       | C52—C51—C50    | 114.2 (2)   |
| C10—C11—C12                 | 121.17 (17) | С52—С51—Н51А   | 108.7       |
| C10-C11-N3                  | 119.22 (16) | C50—C51—H51A   | 108.7       |
| C12—C11—N3                  | 119.61 (16) | С52—С51—Н51В   | 108.7       |
| C13—C12—C11                 | 119.26 (17) | C50—C51—H51B   | 108.7       |
| C13—C12—H12A                | 120.4       | H51A—C51—H51B  | 107.6       |
| C11—C12—H12A                | 120.4       | C50X—C49X—Sn3  | 115.6 (12)  |
| C12—C13—C14                 | 121.54 (17) | C50X—C49X—H49B | 108.4       |
| С12—С13—Н13А                | 119.2       | Sn3—C49X—H49B  | 108.4       |
| C14—C13—H13A                | 119.2       | C50X—C49X—H49D | 108.4       |
| N4—C14—C13                  | 119.67 (16) | Sn3—C49X—H49D  | 108.4       |
| N4—C14—C9                   | 122.22 (17) | H49B—C49X—H49D | 107.4       |
| C13—C14—C9                  | 118.10 (17) | C51X—C50X—C49X | 118.2 (14)  |
| O11—C15—O12                 | 123.40 (15) | C51X-C50X-H50C | 107.8       |
| O11—C15—C16                 | 117.83 (15) | C49X—C50X—H50C | 107.8       |
| O12—C15—C16                 | 118.76 (15) | C51X—C50X—H50D | 107.8       |
| C17—C16—C21                 | 119.43 (15) | C49X—C50X—H50D | 107.8       |
| C17—C16—C15                 | 117.28 (15) | H50C-C50X-H50D | 107.1       |
| C21—C16—C15                 | 123.23 (15) | C50X—C51X—C52X | 113.3 (15)  |
| C18—C17—C16                 | 120.49 (16) | C50X—C51X—H51C | 108.9       |
| С18—С17—Н17А                | 119.8       | C52X—C51X—H51C | 108.9       |
| С16—С17—Н17А                | 119.8       | C50X—C51X—H51D | 108.9       |
| C17—C18—C19                 | 121.23 (17) | C52X—C51X—H51D | 108.9       |
| C17—C18—N5                  | 119.42 (17) | H51C—C51X—H51D | 107.7       |
| C19—C18—N5                  | 119.35 (16) | C51X—C52X—H52D | 109.5       |
| C20—C19—C18                 | 119.31 (17) | C51X—C52X—H52E | 109.5       |
| С20—С19—Н19А                | 120.3       | H52D—C52X—H52E | 109.5       |
| С18—С19—Н19А                | 120.3       | C51X—C52X—H52F | 109.5       |
| C19—C20—C21                 | 121.41 (17) | H52D—C52X—H52F | 109.5       |
| С19—С20—Н20А                | 119.3       | H52E—C52X—H52F | 109.5       |
| C21—C20—H20A                | 119.3       | C54—C53—Sn4    | 115.86 (13) |
| N6—C21—C20                  | 118.95 (16) | С54—С53—Н53А   | 108.3       |
| N6—C21—C16                  | 122.97 (16) | Sn4—C53—H53A   | 108.3       |
| C20—C21—C16                 | 118.07 (16) | С54—С53—Н53В   | 108.3       |
| 016-022-015                 | 120.67 (15) | Sn4—C53—H53B   | 108.3       |
| 016-C22-C23                 | 121.77 (16) | H53A—C53—H53B  | 107.4       |
| 015-C22-C23                 | 117.55 (15) | C55—C54—C53    | 114.43 (17) |
| C24—C23—C28                 | 119.26 (16) | С55—С54—Н54А   | 108.7       |
| $C_{24}$ $C_{23}$ $C_{22}$  | 119.27 (15) | C53—C54—H54A   | 108.7       |
| C28—C23—C22                 | 121.45 (16) | C55—C54—H54B   | 108.7       |
| C25—C24—C23                 | 120.59 (16) | C53—C54—H54B   | 108.7       |
| C25—C24—H24A                | 119.7       | H54A—C54—H54B  | 107.6       |
| $C_{23}$ $C_{24}$ $H_{24A}$ | 119.7       | C54—C55—C56    | 113.45 (19) |
|                             |             |                |             |

| C24—C25—C26      | 121.30 (17) | C54—C55—H55A   | 108.9        |
|------------------|-------------|----------------|--------------|
| C24—C25—N7       | 119.29 (17) | С56—С55—Н55А   | 108.9        |
| C26—C25—N7       | 119.41 (16) | C54—C55—H55B   | 108.9        |
| C27—C26—C25      | 119.04 (17) | С56—С55—Н55В   | 108.9        |
| С27—С26—Н26А     | 120.5       | H55A—C55—H55B  | 107.7        |
| C25—C26—H26A     | 120.5       | C55—C56—H56A   | 109.5        |
| C26—C27—C28      | 121.58 (17) | C55—C56—H56B   | 109.5        |
| С26—С27—Н27А     | 119.2       | H56A—C56—H56B  | 109.5        |
| С28—С27—Н27А     | 119.2       | C55—C56—H56C   | 109.5        |
| N8—C28—C27       | 119.23 (16) | H56A—C56—H56C  | 109.5        |
| N8—C28—C23       | 122.54 (16) | H56B—C56—H56C  | 109.5        |
| C27—C28—C23      | 118.22 (16) | C58—C57—Sn4    | 119.96 (12)  |
| C30-C29-Sn1      | 115.88 (12) | С58—С57—Н57А   | 107.3        |
| С30—С29—Н29А     | 108.3       | Sn4—C57—H57A   | 107.3        |
| Sn1—C29—H29A     | 108.3       | С58—С57—Н57В   | 107.3        |
| C30—C29—H29B     | 108.3       | Sn4—C57—H57B   | 107.3        |
| Sn1—C29—H29B     | 108.3       | H57A—C57—H57B  | 106.9        |
| H29A—C29—H29B    | 107.4       | C57—C58—C59    | 112.36 (16)  |
| C29—C30—C31      | 112.29 (15) | C57—C58—H58A   | 109.1        |
| С29—С30—Н30А     | 109.1       | C59—C58—H58A   | 109.1        |
| C31—C30—H30A     | 109.1       | C57—C58—H58B   | 109.1        |
| C29—C30—H30B     | 109.1       | C59—C58—H58B   | 109.1        |
| C31—C30—H30B     | 109.1       | H58A—C58—H58B  | 107.9        |
| H30A—C30—H30B    | 107.9       | C58—C59—C60    | 113.17 (19)  |
| C32—C31—C30      | 112.46 (16) | C58—C59—H59A   | 108.9        |
| C32—C31—H31A     | 109.1       | C60—C59—H59A   | 108.9        |
| C30—C31—H31A     | 109.1       | C58—C59—H59B   | 108.9        |
| C32—C31—H31B     | 109.1       | C60—C59—H59B   | 108.9        |
| C30—C31—H31B     | 109.1       | H59A—C59—H59B  | 107.8        |
| H31A—C31—H31B    | 107.8       | C59—C60—H60A   | 109.5        |
| C31—C32—H32A     | 109.5       | C59—C60—H60B   | 109.5        |
| C31—C32—H32B     | 109.5       | H60A—C60—H60B  | 109.5        |
| H32A—C32—H32B    | 109.5       | С59—С60—Н60С   | 109.5        |
| C31—C32—H32C     | 109.5       | H60A—C60—H60C  | 109.5        |
| H32A—C32—H32C    | 109.5       | H60B—C60—H60C  | 109.5        |
| H32B—C32—H32C    | 109.5       |                |              |
|                  |             |                |              |
| O1—Sn1—Sn2—O2    | -179.19 (8) | Sn3—O7—C8—C9   | -178.59 (13) |
| C33—Sn1—Sn2—O2   | -91.07 (16) | O8—C8—C9—C10   | 171.89 (17)  |
| C29—Sn1—Sn2—O2   | 80.28 (8)   | O7—C8—C9—C10   | -8.3 (3)     |
| C33X—Sn1—Sn2—O2  | -79.27 (17) | O8—C8—C9—C14   | -7.8(3)      |
| O4—Sn1—Sn2—O2    | 174.41 (8)  | O7—C8—C9—C14   | 172.08 (16)  |
| O1—Sn1—Sn2—C41   | -73.09(8)   | C14—C9—C10—C11 | -0.1 (3)     |
| C33—Sn1—Sn2—C41  | 15.03 (16)  | C8—C9—C10—C11  | -179.78 (16) |
| C29—Sn1—Sn2—C41  | -173.62 (8) | C9—C10—C11—C12 | 1.3 (3)      |
| O2—Sn1—Sn2—C41   | 106.10 (8)  | C9—C10—C11—N3  | -179.12 (16) |
| C33X—Sn1—Sn2—C41 | 26.83 (17)  | O10—N3—C11—C10 | 178.31 (17)  |
| O4—Sn1—Sn2—C41   | -79.49 (8)  | O9—N3—C11—C10  | -2.3 (3)     |
|                  |             |                |              |

| O1—Sn1—Sn2—C37   | 91.25 (8)    | O10—N3—C11—C12  | -2.1 (3)     |
|------------------|--------------|-----------------|--------------|
| C33—Sn1—Sn2—C37  | 179.37 (16)  | O9—N3—C11—C12   | 177.28 (17)  |
| C29—Sn1—Sn2—C37  | -9.28 (7)    | C10-C11-C12-C13 | -0.9 (3)     |
| O2—Sn1—Sn2—C37   | -89.56 (8)   | N3-C11-C12-C13  | 179.52 (17)  |
| C33X—Sn1—Sn2—C37 | -168.83 (17) | C11—C12—C13—C14 | -0.7 (3)     |
| O4—Sn1—Sn2—C37   | 84.85 (7)    | C12—C13—C14—N4  | -177.46 (19) |
| C33—Sn1—Sn2—O1   | 88.12 (16)   | C12—C13—C14—C9  | 1.8 (3)      |
| C29—Sn1—Sn2—O1   | -100.53 (8)  | C10—C9—C14—N4   | 177.86 (18)  |
| O2—Sn1—Sn2—O1    | 179.19 (8)   | C8—C9—C14—N4    | -2.5 (3)     |
| C33X—Sn1—Sn2—O1  | 99.92 (17)   | C10-C9-C14-C13  | -1.4(3)      |
| O4—Sn1—Sn2—O1    | -6.40 (8)    | C8—C9—C14—C13   | 178.28 (17)  |
| O1—Sn1—Sn2—O11   | -170.64 (7)  | Sn2—O11—C15—O12 | 46.4 (2)     |
| C33—Sn1—Sn2—O11  | -82.52 (16)  | Sn2—O11—C15—C16 | -132.19 (13) |
| C29—Sn1—Sn2—O11  | 88.83 (7)    | Sn4—O12—C15—O11 | 18.1 (3)     |
| O2—Sn1—Sn2—O11   | 8.55 (7)     | Sn4—O12—C15—C16 | -163.34 (11) |
| C33X—Sn1—Sn2—O11 | -70.72 (16)  | O11—C15—C16—C17 | 8.0 (2)      |
| O4—Sn1—Sn2—O11   | -177.04 (6)  | O12-C15-C16-C17 | -170.66 (16) |
| C49X—Sn3—O1—Sn1  | 67.5 (6)     | O11—C15—C16—C21 | -174.90 (16) |
| C45—Sn3—O1—Sn1   | -99.67 (10)  | O12-C15-C16-C21 | 6.5 (3)      |
| C49—Sn3—O1—Sn1   | 73.72 (11)   | C21—C16—C17—C18 | -0.1 (3)     |
| O7—Sn3—O1—Sn1    | 169.24 (10)  | C15—C16—C17—C18 | 177.10 (16)  |
| O3—Sn3—O1—Sn1    | -17.54 (10)  | C16—C17—C18—C19 | 0.8 (3)      |
| C49X—Sn3—O1—Sn2  | -117.4 (6)   | C16—C17—C18—N5  | -179.03 (16) |
| C45—Sn3—O1—Sn2   | 75.44 (9)    | O14—N5—C18—C17  | 170.25 (18)  |
| C49—Sn3—O1—Sn2   | -111.18 (9)  | O13—N5—C18—C17  | -9.9 (3)     |
| O7—Sn3—O1—Sn2    | -15.65 (7)   | O14—N5—C18—C19  | -9.6 (3)     |
| O3—Sn3—O1—Sn2    | 157.57 (8)   | O13—N5—C18—C19  | 170.24 (18)  |
| C33—Sn1—O1—Sn3   | 73.10 (19)   | C17—C18—C19—C20 | 0.3 (3)      |
| C29—Sn1—O1—Sn3   | -91.06 (10)  | N5-C18-C19-C20  | -179.79 (17) |
| O2—Sn1—O1—Sn3    | 175.28 (11)  | C18—C19—C20—C21 | -2.2 (3)     |
| C33X—Sn1—O1—Sn3  | 84.4 (2)     | C19—C20—C21—N6  | -176.64 (18) |
| O4—Sn1—O1—Sn3    | -9.24 (10)   | C19—C20—C21—C16 | 2.9 (3)      |
| Sn2—Sn1—O1—Sn3   | 175.78 (13)  | C17—C16—C21—N6  | 177.84 (17)  |
| C33—Sn1—O1—Sn2   | -102.68 (17) | C15-C16-C21-N6  | 0.8 (3)      |
| C29—Sn1—O1—Sn2   | 93.15 (7)    | C17—C16—C21—C20 | -1.6 (2)     |
| O2—Sn1—O1—Sn2    | -0.50 (5)    | C15—C16—C21—C20 | -178.71 (16) |
| C33X—Sn1—O1—Sn2  | -91.34 (18)  | Sn4—O15—C22—O16 | 5.59 (19)    |
| O4—Sn1—O1—Sn2    | 174.98 (6)   | Sn4—O15—C22—C23 | -173.41 (12) |
| O2—Sn2—O1—Sn3    | -175.80 (9)  | O16—C22—C23—C24 | -177.31 (16) |
| C41—Sn2—O1—Sn3   | -60.08 (9)   | O15—C22—C23—C24 | 1.7 (2)      |
| C37—Sn2—O1—Sn3   | 84.73 (9)    | O16—C22—C23—C28 | 1.0 (3)      |
| O11—Sn2—O1—Sn3   | -150.90 (12) | O15—C22—C23—C28 | 179.99 (15)  |
| Sn1—Sn2—O1—Sn3   | -176.32 (12) | C28—C23—C24—C25 | -1.4 (3)     |
| O2—Sn2—O1—Sn1    | 0.53 (5)     | C22—C23—C24—C25 | 176.97 (16)  |
| C41—Sn2—O1—Sn1   | 116.24 (7)   | C23—C24—C25—C26 | 0.3 (3)      |
| C37—Sn2—O1—Sn1   | -98.95 (7)   | C23—C24—C25—N7  | -179.13 (16) |
| O11—Sn2—O1—Sn1   | 25.42 (19)   | O18—N7—C25—C24  | 178.88 (18)  |
| C53—Sn4—O2—Sn2   | -80.21 (10)  | O17—N7—C25—C24  | -1.0 (3)     |
|                  |              |                 |              |

| C57—Sn4—O2—Sn2  | 86.76 (10)   | O18—N7—C25—C26      | -0.6 (3)     |
|-----------------|--------------|---------------------|--------------|
| O15—Sn4—O2—Sn2  | -177.66 (10) | O17—N7—C25—C26      | 179.57 (18)  |
| O12—Sn4—O2—Sn2  | 9.00 (9)     | C24—C25—C26—C27     | 0.8 (3)      |
| C53—Sn4—O2—Sn1  | 115.23 (8)   | N7—C25—C26—C27      | -179.73 (18) |
| C57—Sn4—O2—Sn1  | -77.80 (8)   | C25—C26—C27—C28     | -0.9 (3)     |
| O15—Sn4—O2—Sn1  | 17.79 (7)    | C26—C27—C28—N8      | -178.89 (19) |
| O12—Sn4—O2—Sn1  | -155.55 (7)  | C26—C27—C28—C23     | -0.2 (3)     |
| C41—Sn2—O2—Sn4  | 101.35 (10)  | C24—C23—C28—N8      | 179.97 (17)  |
| C37—Sn2—O2—Sn4  | -65.76 (10)  | C22—C23—C28—N8      | 1.7 (3)      |
| O1—Sn2—O2—Sn4   | -166.98 (10) | C24—C23—C28—C27     | 1.3 (3)      |
| O11—Sn2—O2—Sn4  | 20.39 (9)    | C22—C23—C28—C27     | -176.99 (16) |
| Sn1—Sn2—O2—Sn4  | -166.48 (13) | O1—Sn1—C29—C30      | 155.96 (12)  |
| C41—Sn2—O2—Sn1  | -92.16 (8)   | C33—Sn1—C29—C30     | 3.2 (3)      |
| C37—Sn2—O2—Sn1  | 100.72 (7)   | O2—Sn1—C29—C30      | -125.67 (13) |
| O1—Sn2—O2—Sn1   | -0.50 (5)    | C33X—Sn1—C29—C30    | -16.9 (3)    |
| O11—Sn2—O2—Sn1  | -173.13 (6)  | O4—Sn1—C29—C30      | 69.62 (13)   |
| O1—Sn1—O2—Sn4   | 169.06 (8)   | Sn2—Sn1—C29—C30     | -162.57 (12) |
| C33—Sn1—O2—Sn4  | -91.54 (19)  | Sn1—C29—C30—C31     | -174.93 (13) |
| C29—Sn1—O2—Sn4  | 60.51 (8)    | C29—C30—C31—C32     | -172.63 (17) |
| C33X—Sn1—O2—Sn4 | -84.64 (18)  | O1—Sn1—C33—C34      | 88.2 (4)     |
| O4—Sn1—O2—Sn4   | 151.52 (17)  | C29—Sn1—C33—C34     | -117.9 (4)   |
| Sn2—Sn1—O2—Sn4  | 168.53 (11)  | O2—Sn1—C33—C34      | 9.3 (4)      |
| O1—Sn1—O2—Sn2   | 0.53 (5)     | C33X—Sn1—C33—C34    | -26.2 (14)   |
| C33—Sn1—O2—Sn2  | 99.93 (19)   | O4—Sn1—C33—C34      | 175.7 (4)    |
| C29—Sn1—O2—Sn2  | -108.02 (7)  | Sn2—Sn1—C33—C34     | 47.8 (4)     |
| C33X—Sn1—O2—Sn2 | 106.83 (18)  | Sn1—C33—C34—C35     | -159.7 (3)   |
| O4—Sn1—O2—Sn2   | -17.0 (2)    | C33—C34—C35—C36     | 74.7 (5)     |
| C49X—Sn3—O3—C1  | -71.8 (6)    | O1—Sn1—C33X—C34X    | -4.3 (4)     |
| O1—Sn3—O3—C1    | 45.20 (16)   | C33—Sn1—C33X—C34X   | 64.2 (16)    |
| C45—Sn3—O3—C1   | 158.08 (17)  | C29—Sn1—C33X—C34X   | 168.7 (2)    |
| C49—Sn3—O3—C1   | -58.71 (17)  | O2—Sn1—C33X—C34X    | -81.5 (4)    |
| O7—Sn3—O3—C1    | 79.8 (3)     | O4—Sn1—C33X—C34X    | 85.9 (4)     |
| O1—Sn1—O4—C1    | 51.15 (17)   | Sn2—Sn1—C33X—C34X   | -45.0 (4)    |
| C33—Sn1—O4—C1   | -51.3 (3)    | Sn1—C33X—C34X—C35X  | 178.7 (3)    |
| C29—Sn1—O4—C1   | 161.25 (18)  | C33X—C34X—C35X—C36X | 173.9 (4)    |
| O2—Sn1—O4—C1    | 68.2 (3)     | O2—Sn2—C37—C38      | -91.62 (14)  |
| C33X—Sn1—O4—C1  | -55.8 (2)    | C41—Sn2—C37—C38     | 106.11 (16)  |
| Sn2—Sn1—O4—C1   | 55.21 (18)   | O1—Sn2—C37—C38      | -13.05 (15)  |
| C49X—Sn3—O7—C8  | -63.8 (6)    | O11—Sn2—C37—C38     | -178.45 (14) |
| O1—Sn3—O7—C8    | -179.24 (12) | Sn1—Sn2—C37—C38     | -51.34 (15)  |
| C45—Sn3—O7—C8   | 68.50 (12)   | Sn2—C37—C38—C39     | 161.63 (13)  |
| C49—Sn3—O7—C8   | -76.41 (13)  | C37—C38—C39—C40     | -74.9 (2)    |
| O3—Sn3—O7—C8    | 145.6 (2)    | O2—Sn2—C41—C42      | -149.51 (13) |
| O2—Sn2—O11—C15  | -60.74 (14)  | C37—Sn2—C41—C42     | 11.0 (2)     |
| C41—Sn2—O11—C15 | -178.00 (14) | O1—Sn2—C41—C42      | 132.12 (14)  |
| C37—Sn2—O11—C15 | 41.63 (14)   | O11—Sn2—C41—C42     | -65.76 (14)  |
| O1—Sn2—O11—C15  | -84.9 (2)    | Sn1—Sn2—C41—C42     | 167.68 (12)  |
| Sn1—Sn2—O11—C15 | -66.14 (14)  | Sn2—C41—C42—C43     | 176.64 (14)  |

| O2—Sn4—O12—C15  | -42.71 (15)  | C41—C42—C43—C44     | 67.4 (2)     |
|-----------------|--------------|---------------------|--------------|
| C53—Sn4—O12—C15 | 62.47 (16)   | C49X—Sn3—C45—C46    | -4.4 (6)     |
| C57—Sn4—O12—C15 | -155.51 (16) | O1—Sn3—C45—C46      | 160.89 (12)  |
| O15—Sn4—O12—C15 | -74.1 (3)    | C49—Sn3—C45—C46     | -8.4 (2)     |
| O2—Sn4—O15—C22  | 168.90 (11)  | O7—Sn3—C45—C46      | -118.09 (13) |
| C53—Sn4—O15—C22 | 65.04 (12)   | O3—Sn3—C45—C46      | 73.53 (13)   |
| C57—Sn4—O15—C22 | -79.97 (11)  | Sn3—C45—C46—C47     | 174.73 (13)  |
| O12—Sn4—O15—C22 | -159.18 (18) | C45—C46—C47—C48     | -69.0 (2)    |
| Sn1—O4—C1—O3    | -38.2 (3)    | C49X—Sn3—C49—C50    | -22 (2)      |
| Sn1—O4—C1—C2    | 141.23 (14)  | O1—Sn3—C49—C50      | -179.25 (16) |
| Sn3—O3—C1—O4    | -22.1 (3)    | C45—Sn3—C49—C50     | -9.4 (3)     |
| Sn3—O3—C1—C2    | 158.50 (12)  | O7—Sn3—C49—C50      | 99.38 (17)   |
| O4—C1—C2—C3     | -4.8 (3)     | O3—Sn3—C49—C50      | -88.50 (17)  |
| O3—C1—C2—C3     | 174.61 (17)  | Sn3—C49—C50—C51     | 67.5 (2)     |
| O4—C1—C2—C7     | 177.97 (17)  | C49—C50—C51—C52     | 64.9 (3)     |
| O3—C1—C2—C7     | -2.6 (3)     | O1—Sn3—C49X—C50X    | -161.1 (9)   |
| C7—C2—C3—C4     | 0.4 (3)      | C45—Sn3—C49X—C50X   | 3.6 (14)     |
| C1—C2—C3—C4     | -176.93 (17) | C49—Sn3—C49X—C50X   | 174 (3)      |
| C2—C3—C4—C5     | -0.3 (3)     | O7—Sn3—C49X—C50X    | 112.8 (11)   |
| C2-C3-C4-N1     | 176.96 (16)  | O3—Sn3—C49X—C50X    | -73.0 (11)   |
| O5—N1—C4—C3     | -169.13 (18) | Sn3—C49X—C50X—C51X  | 166.1 (12)   |
| O6—N1—C4—C3     | 10.1 (3)     | C49X—C50X—C51X—C52X | -70 (2)      |
| O5—N1—C4—C5     | 8.2 (3)      | O2—Sn4—C53—C54      | 171.92 (13)  |
| O6—N1—C4—C5     | -172.65 (18) | C57—Sn4—C53—C54     | 11.1 (2)     |
| C3—C4—C5—C6     | -0.9 (3)     | O15—Sn4—C53—C54     | -105.84 (14) |
| N1-C4-C5-C6     | -178.09 (17) | O12—Sn4—C53—C54     | 82.96 (14)   |
| C4—C5—C6—C7     | 1.9 (3)      | Sn4—C53—C54—C55     | -60.8 (2)    |
| C5—C6—C7—N2     | 177.84 (18)  | C53—C54—C55—C56     | -174.58 (18) |
| C5—C6—C7—C2     | -1.8 (3)     | O2—Sn4—C57—C58      | 99.39 (14)   |
| C3—C2—C7—N2     | -178.98 (17) | C53—Sn4—C57—C58     | -100.64 (17) |
| C1—C2—C7—N2     | -1.8 (3)     | O15—Sn4—C57—C58     | 16.56 (15)   |
| C3—C2—C7—C6     | 0.6 (3)      | O12—Sn4—C57—C58     | -176.11 (15) |
| C1—C2—C7—C6     | 177.74 (17)  | Sn4—C57—C58—C59     | -178.80 (14) |
| Sn3—O7—C8—O8    | 1.2 (2)      | C57—C58—C59—C60     | -178.49 (18) |

# Hydrogen-bond geometry (Å, °)

| D—H···A                               | D—H      | H···A    | D····A    | D—H···A |
|---------------------------------------|----------|----------|-----------|---------|
| N2—H1 <i>N</i> 2····O9 <sup>i</sup>   | 0.86 (3) | 2.32 (3) | 3.122 (3) | 157 (3) |
| N2—H2 <i>N</i> 2···O3                 | 0.84 (3) | 2.02 (3) | 2.684 (3) | 135 (2) |
| N4—H1 <i>N</i> 4····O6 <sup>ii</sup>  | 0.84 (3) | 2.20 (3) | 3.002 (2) | 160 (3) |
| N4—H2 <i>N</i> 4···O8                 | 0.87 (3) | 2.02 (3) | 2.675 (2) | 131 (3) |
| N6—H1 <i>N</i> 6···O12                | 0.82 (3) | 2.07 (3) | 2.688 (3) | 132 (2) |
| N6—H2 <i>N</i> 6…O17 <sup>iii</sup>   | 0.83 (3) | 2.36 (3) | 3.152 (3) | 158 (2) |
| N6—H2 <i>N</i> 6···O18 <sup>iii</sup> | 0.83 (3) | 2.49 (2) | 3.229 (3) | 149 (2) |
| N8—H1 <i>N</i> 8…O16                  | 0.86 (3) | 2.03 (3) | 2.674 (2) | 131 (3) |
| N8—H2 <i>N</i> 8····O13 <sup>iv</sup> | 0.82 (3) | 2.22 (3) | 2.998 (2) | 160 (3) |
| C6—H6A····O9 <sup>i</sup>             | 0.95     | 2.48     | 3.261 (2) | 139     |

| C13—H13A····O6 <sup>ii</sup>         | 0.95 | 2.57 | 3.350 (2) | 140 |
|--------------------------------------|------|------|-----------|-----|
| C20—H20A···O17 <sup>iii</sup>        | 0.95 | 2.54 | 3.338 (3) | 142 |
| C43—H43 <i>B</i> ···O13 <sup>v</sup> | 0.99 | 2.58 | 3.544 (3) | 164 |
| C50—H50 <i>B</i> ···O8               | 0.99 | 2.56 | 3.304 (3) | 131 |
| C54—H54A…O16                         | 0.99 | 2.51 | 3.210 (3) | 128 |
| C58—H58A····O16                      | 0.99 | 2.58 | 3.221 (2) | 123 |

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*+1, *y*-1, *z*; (iii) *x*+1, *y*, *z*; (iv) *x*-1, *y*+1, *z*; (v) -*x*+2, -*y*, -*z*+1.