organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Phenyl bis(m-tolylamido)phosphinate

Mehrdad Pourayoubi,^a* Hossein Eshtiagh-Hosseini,^a Monireh Negari^a and Marek Nečas^b

^aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran, and ^bDepartment of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, Brno CZ-61137, Czech Republic Correspondence e-mail: mehrdad_pourayoubi@yahoo.com

Received 14 June 2011; accepted 24 June 2011

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.002 Å; R factor = 0.022; wR factor = 0.062; data-to-parameter ratio = 12.4.

The P atom of the title compound, $C_{20}H_{21}N_2O_2P$, has a distorted tetrahedral configuration; the bond angles at P are in the range 96.11 (6)–117.32 (8)°. The N atom exhibits sp^2 character. In the crystal, molecules are connected *via* N–H···O hydrogen bonds into bands along the *a* axis, consisting of $R_2^2(8)$ rings.

Related literature

For background to compounds having a P(=O)(O)(N)(N) skeleton, see: Sabbaghi *et al.* (2010). For bond lengths in related structures, see: Ghadimi *et al.* (2009); Rudd *et al.* (1996). For graph-set notation, see Bernstein *et al.* (1995).

Experimental

Crvstal data

$C_{20}H_{21}N_2O_2P$	a = 10.1930 (2) Å
$M_r = 352.36$	b = 16.8789 (3) Å
Orthorhombic, <i>Pna</i> 2 ₁	c = 10.4588 (3) Å
Orthorhombic, <i>Pna</i> 2 ₁	c = 10.4588 (3) Å

 $V = 1799.40 (7) \text{ Å}^3$ Z = 4Mo *K*\alpha radiation

Data collection

Oxford Diffraction Xcalibur Sapphire2 diffractometer Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2009) $T_{\rm min} = 0.959, T_{\rm max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.022$ wR(F ²) = 0.062	H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.17 \text{ e } \text{\AA}^{-3}$
S = 1.05	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ \AA}^{-3}$
2819 reflections	Absolute structure: Flack (1983),
228 parameters	1140 Friedel pairs
1 restraint	Flack parameter: -0.04 (7)

 $\mu = 0.17 \text{ mm}^{-1}$

 $0.30 \times 0.30 \times 0.20 \text{ mm}$

20798 measured reflections

2819 independent reflections

2647 reflections with $I > 2\sigma(I)$

T = 120 K

 $R_{\rm int} = 0.018$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1B \cdots O1^{i}$ $N2 - H2A \cdots O2^{ii}$	0.88 0.88	2.14 2.53	2.9917 (16) 3.3929 (16)	162 166

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z$; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, z$.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2009); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *enCIFer* (Allen *et al.*, 2004).

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LD2017).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Ghadimi, S., Pourayoubi, M. & Ebrahimi Valmoozi, A. A. (2009). Z. Naturforsch. Teil B, 64, 565–569.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
- Rudd, M. D., Lindeman, S. V. & Husebye, S. (1996). Acta Chem. Scand. 50, 759–774.
- Sabbaghi, F., Mancilla Percino, T., Pourayoubi, M. & Leyva, M. A. (2010). Acta Cryst. E66, o1755.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, o1870 [doi:10.1107/S1600536811024846]

Phenyl bis(m-tolylamido)phosphinate

Mehrdad Pourayoubi, Hossein Eshtiagh-Hosseini, Monireh Negari and Marek Nečas

S1. Comment

Structure determination of the title compound, $P(O)[OC_6H_5][NHC_6H_4(m-CH_3)]_2$ (Fig. 1), was performed as a part of a project in our laboratory on the synthesis of compounds having a P(=O)(O)(N)(N) skeleton (Sabbaghi *et al.*, 2010). Single crystals of title compound were obtained from a mixture of CHCl₃/CH₃OH (4:1 ν/ν) after slow evaporation at room temperature.

The P=O (1.4692 (11) Å), P—O (1.5941 (12) Å) and P—N (1.6374 (15) Å & 1.6469 (13) Å) bond lengths are usual for this category of compounds (Ghadimi *et al.*, 2009). The P atom has a distorted tetrahedral configuration (Fig. 1), as it has been noted for the other phosphoramidates and their chalco-derivatives (Rudd *et al.*, 1996). The bond angles at the P atom vary in the range from 96.11 (6)°-117.32 (8)°. The C1—O2—P1, C7—N1—P1 and C14—N2—P1 angles are 120.49 (9)°, 127.29 (11)° and 130.85 (11)°, respectively.

Prior to the constrained refinement of the imino H atoms, we have tested a free refinement of these atoms localized from a difference Fourier map. The results suggested an almost perfect in-plane arrangement of both H atoms with the corresponding P,N,C atoms. Therefore, the imino groups were assigned a planar geometry to reduce the number of parameters and to maintain more appropriate N—H bond lengths.

One of the two N—H units adopts a *syn* orientation with respect to the phosphoryl group, while the other exists in an *anti* orientation.

In the crystal, each molecule is hydrogen-bonded to two adjacent molecules through N—H···O hydrogen bonds, building $R_2^2(8)$ rings (Bernstein *et al.*, 1995), and forming linear arrangements parallel to [100] (Fig. 2, Table 1).

S2. Experimental

To a solution of phenyl dichlorophosphate (2.35 mmol) in chloroform (15 ml), a solution of *meta*-toluidine (9.40 mmol) in chloroform (30 ml) was added at 273 K. After 4 h of stirring, the solvent was evaporated in vacuum. The solid was washed with distilled water. Single crystals, suitable for crystallography, were obtained from a solution of the title compound in chloroform and methanol (4:1) after slow evaporation at room temperature. IR (KBr, cm⁻¹): 3402, 3124, 2890, 2607, 1586, 1494, 1401, 1293, 1182, 1023, 946, 757.

S3. Refinement

Hydrogen atoms in phenyl and NH groups were positioned geometrically and refined as riding with their U_{iso} set to $1.2U_{eq}$ of the parent atoms. Hydrogen atoms in methyl groups were positioned geometrically and refined as rotating with their U_{iso} set to $1.5U_{eq}$ of the parent atoms.

Figure 1

The molecular structure of the title compound with ellipsoids shown at the 50% probability level.

Figure 2

Part of the crystal structure with hydrogen bonds shown as dotted lines (the C—H hydrogen atoms are omitted for clarity).

Phenyl bis(m-tolylamido)phosphinate

Crystal data	
$C_{20}H_{21}N_2O_2P$	$D_{\rm x} = 1.301 {\rm ~Mg} {\rm ~m}^{-3}$
$M_r = 352.36$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Orthorhombic, <i>Pna</i> 2 ₁	Cell parameters from 13732 reflections
a = 10.1930 (2) Å	$\theta = 3.0-27.2^{\circ}$
b = 16.8789 (3) Å	$\mu=0.17~\mathrm{mm}^{-1}$
c = 10.4588 (3) Å	T = 120 K
$V = 1799.40(7) \text{ Å}^3$	BLOCK, colourless
Z = 4	$0.30 \times 0.30 \times 0.20 \text{ mm}$
F(000) = 744	
Data collection	
Oxford Diffraction Xcalibur Sapphire2 diffractometer	Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)
Radiation source: Enhance (Mo) X-ray Source	$T_{\min} = 0.959, T_{\max} = 1.000$
Graphite monochromator	20798 measured reflections
Detector resolution: 8.4353 pixels mm ⁻¹	2819 independent reflections
ω scans	2647 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.018$	$k = -20 \rightarrow 20$
$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 3.0^\circ$	$l = -8 \rightarrow 12$
$h = -12 \rightarrow 12$	
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.022$	H-atom parameters constrained
$wR(F^2) = 0.062$	$w = 1/[\sigma^2(F_o^2) + (0.046P)^2]$
S = 1.05	where $P = (F_o^2 + 2F_c^2)/3$
2819 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
228 parameters	$\Delta ho_{ m max} = 0.17 \ { m e} \ { m \AA}^{-3}$
1 restraint	$\Delta \rho_{\min} = -0.23 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant	Absolute structure: Flack (1983), 1140 Friedel
direct methods	pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: -0.04 (7)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
P1	0.72349 (4)	0.24971 (2)	0.91839 (5)	0.01542 (11)	
01	0.61830 (10)	0.19795 (6)	0.96582 (11)	0.0194 (3)	
O2	0.82530 (10)	0.20973 (6)	0.82235 (12)	0.0184 (3)	
N1	0.83286 (12)	0.28002 (7)	1.02210 (16)	0.0179 (3)	
H1B	0.9156	0.2753	0.9993	0.022*	
N2	0.65260 (12)	0.32433 (7)	0.84411 (15)	0.0193 (3)	
H2A	0.5663	0.3236	0.8462	0.023*	
C1	0.78034 (13)	0.16622 (9)	0.71528 (18)	0.0171 (4)	
C2	0.76338 (16)	0.20366 (10)	0.60039 (19)	0.0240 (4)	
H2B	0.7740	0.2594	0.5937	0.029*	
C3	0.73032 (17)	0.15880 (11)	0.49380 (19)	0.0269 (4)	
H3A	0.7164	0.1839	0.4136	0.032*	
C4	0.71767 (15)	0.07733 (11)	0.5049 (2)	0.0268 (4)	
H4A	0.6978	0.0464	0.4315	0.032*	
C5	0.73373 (15)	0.04090 (10)	0.6218 (2)	0.0250 (4)	
H5A	0.7240	-0.0149	0.6287	0.030*	
C6	0.76376 (14)	0.08496 (10)	0.72845 (18)	0.0210 (4)	
H6A	0.7730	0.0603	0.8096	0.025*	
C7	0.80937 (15)	0.31292 (8)	1.14394 (17)	0.0167 (4)	
C8	0.68462 (15)	0.31324 (9)	1.19924 (19)	0.0217 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H8A	0.6124	0.2915	1.1538	0.026*
C9	0.66553 (16)	0.34526 (9)	1.32059 (18)	0.0230 (4)
C10	0.77167 (16)	0.37699 (9)	1.38620 (19)	0.0243 (4)
H10A	0.7595	0.3989	1.4690	0.029*
C11	0.89519 (16)	0.37666 (9)	1.33103 (18)	0.0240 (4)
H11A	0.9674	0.3985	1.3764	0.029*
C12	0.91464 (15)	0.34502 (9)	1.21091 (18)	0.0208 (4)
H12A	0.9998	0.3451	1.1740	0.025*
C13	0.53035 (17)	0.34519 (12)	1.3794 (2)	0.0357 (5)
H13A	0.5369	0.3315	1.4703	0.054*
H13B	0.4752	0.3061	1.3356	0.054*
H13C	0.4911	0.3979	1.3706	0.054*
C14	0.70709 (15)	0.38945 (9)	0.77755 (18)	0.0177 (4)
C15	0.62148 (15)	0.44120 (9)	0.71729 (17)	0.0198 (4)
H15A	0.5298	0.4319	0.7233	0.024*
C16	0.66624 (16)	0.50657 (9)	0.64807 (17)	0.0212 (4)
C17	0.80128 (15)	0.51933 (9)	0.64137 (18)	0.0219 (4)
H17A	0.8346	0.5635	0.5953	0.026*
C18	0.88614 (15)	0.46829 (9)	0.70120 (18)	0.0232 (4)
H18A	0.9778	0.4781	0.6959	0.028*
C19	0.84227 (15)	0.40269 (9)	0.76930 (18)	0.0201 (4)
H19A	0.9027	0.3677	0.8093	0.024*
C20	0.57089 (18)	0.55834 (10)	0.57636 (19)	0.0327 (5)
H20A	0.6048	0.6126	0.5728	0.049*
H20B	0.4860	0.5581	0.6204	0.049*
H20C	0.5598	0.5380	0.4893	0.049*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.01458 (18)	0.01538 (17)	0.0163 (2)	0.00013 (14)	0.0010 (2)	-0.00022 (17)
O1	0.0181 (5)	0.0198 (5)	0.0203 (7)	-0.0003 (4)	0.0018 (5)	0.0011 (5)
O2	0.0169 (5)	0.0202 (5)	0.0180 (7)	-0.0005 (4)	0.0004 (5)	-0.0025 (5)
N1	0.0127 (6)	0.0217 (6)	0.0195 (8)	0.0011 (5)	0.0024 (6)	-0.0030 (6)
N2	0.0130 (6)	0.0196 (6)	0.0253 (9)	-0.0001 (5)	0.0007 (6)	0.0031 (6)
C1	0.0131 (7)	0.0208 (7)	0.0175 (10)	0.0007 (6)	0.0014 (7)	-0.0034 (7)
C2	0.0274 (9)	0.0203 (8)	0.0242 (12)	0.0009 (6)	0.0020 (8)	-0.0008 (8)
C3	0.0280 (9)	0.0370 (10)	0.0158 (11)	0.0028 (8)	0.0005 (8)	0.0005 (9)
C4	0.0189 (8)	0.0329 (9)	0.0287 (12)	-0.0002 (7)	-0.0021 (8)	-0.0120 (9)
C5	0.0182 (8)	0.0197 (8)	0.0372 (13)	-0.0017 (6)	0.0017 (8)	-0.0078 (9)
C6	0.0182 (8)	0.0218 (8)	0.0231 (11)	-0.0003 (6)	0.0002 (7)	0.0024 (8)
C7	0.0198 (7)	0.0129 (7)	0.0174 (10)	0.0019 (6)	0.0017 (7)	0.0026 (7)
C8	0.0191 (8)	0.0210 (7)	0.0250 (11)	-0.0026 (6)	0.0013 (7)	-0.0013 (8)
C9	0.0257 (9)	0.0214 (8)	0.0220 (10)	-0.0005 (6)	0.0066 (8)	-0.0007 (8)
C10	0.0333 (9)	0.0197 (7)	0.0197 (12)	0.0007 (7)	0.0019 (8)	-0.0024 (7)
C11	0.0246 (8)	0.0235 (8)	0.0240 (11)	-0.0019 (6)	-0.0042 (8)	-0.0030 (8)
C12	0.0190 (8)	0.0212 (7)	0.0222 (10)	-0.0005 (6)	0.0009 (7)	0.0018 (7)
C13	0.0302 (10)	0.0449 (10)	0.0322 (13)	-0.0055 (8)	0.0109 (9)	-0.0121 (9)

supporting information

C14	0.0204 (8)	0.0161 (7)	0.0167 (10)	-0.0013 (6)	0.0022 (7)	-0.0024 (7)
C15	0.0159 (7)	0.0207 (7)	0.0229 (10)	0.0001 (6)	0.0026 (7)	-0.0005 (8)
C16	0.0254 (9)	0.0190 (7)	0.0190 (10)	0.0015 (6)	0.0038 (7)	-0.0015 (8)
C17	0.0269 (9)	0.0189 (8)	0.0198 (11)	-0.0057 (7)	0.0048 (8)	-0.0004 (8)
C18	0.0182 (8)	0.0232 (8)	0.0281 (12)	-0.0050 (6)	0.0036 (8)	-0.0038 (8)
C19	0.0164 (8)	0.0201 (7)	0.0240 (10)	0.0015 (6)	-0.0009 (7)	-0.0014 (7)
C20	0.0334 (10)	0.0279 (9)	0.0368 (13)	0.0033 (7)	0.0044 (9)	0.0118 (9)

Geometric parameters (Å, °)

	1 4(02 (11)	69 619	1 280 (2)
	1.4692 (11)	C9—C10	1.389 (2)
P1—O2	1.5941 (12)	C9—C13	1.509 (2)
P1—N1	1.6374 (15)	C10—C11	1.385 (2)
P1—N2	1.6469 (13)	C10—H10A	0.9500
O2—C1	1.416 (2)	C11—C12	1.379 (3)
N1—C7	1.410 (2)	C11—H11A	0.9500
N1—H1B	0.8800	C12—H12A	0.9500
N2—C14	1.415 (2)	C13—H13A	0.9800
N2—H2A	0.8800	С13—Н13В	0.9800
C1—C2	1.369 (3)	C13—H13C	0.9800
C1—C6	1.389 (2)	C14—C15	1.386 (2)
C2—C3	1.389 (3)	C14—C19	1.399 (2)
C2—H2B	0.9500	C15—C16	1.396 (2)
C3—C4	1.386 (3)	C15—H15A	0.9500
С3—НЗА	0.9500	C16—C17	1.395 (2)
C4—C5	1.378 (3)	C16—C20	1.507 (2)
C4—H4A	0.9500	C17—C18	1.372 (2)
C5—C6	1.375 (3)	C17—H17A	0.9500
C5—H5A	0.9500	C18—C19	1.390 (2)
C6—H6A	0.9500	C18—H18A	0.9500
C7—C12	1.391 (2)	C19—H19A	0.9500
C7—C8	1.397 (2)	C20—H20A	0.9800
С8—С9	1.393 (3)	С20—Н20В	0.9800
С8—Н8А	0.9500	С20—Н20С	0.9800
01 - P1 - 02	115.86 (6)	C11—C10—C9	120.06 (17)
01—P1—N1	117.32 (8)	C11—C10—H10A	120.0
02—P1—N1	96.11 (6)	C9—C10—H10A	120.0
01—P1—N2	107.09 (6)	C12-C11-C10	120.77 (16)
O2—P1—N2	108.19 (7)	C12—C11—H11A	119.6
N1—P1—N2	111.85 (7)	C10—C11—H11A	119.6
C1—O2—P1	120.49 (9)	C11—C12—C7	119.90 (15)
C7—N1—P1	127.29 (11)	C11—C12—H12A	120.0
C7—N1—H1B	116.4	C7—C12—H12A	120.0
P1—N1—H1B	116.4	C9—C13—H13A	109.5
C14—N2—P1	130.85 (11)	C9—C13—H13B	109.5
C14—N2—H2A	114.6	H13A—C13—H13B	109.5
P1—N2—H2A	114.6	С9—С13—Н13С	109.5

C2—C1—C6	121.86 (17)	H13A—C13—H13C	109.5
C2—C1—O2	119.73 (13)	H13B—C13—H13C	109.5
C6—C1—O2	118.25 (16)	C15—C14—C19	119.44 (15)
C1—C2—C3	118.92 (15)	C15—C14—N2	117.78 (13)
C1—C2—H2B	120.5	C19—C14—N2	122.77 (15)
С3—С2—Н2В	120.5	C14—C15—C16	121.87 (14)
C4—C3—C2	119.75 (18)	C14—C15—H15A	119.1
С4—С3—НЗА	120.1	C16—C15—H15A	119.1
С2—С3—НЗА	120.1	C17—C16—C15	118.07 (15)
C5—C4—C3	120.38 (18)	C17—C16—C20	121.46 (15)
C5—C4—H4A	119.8	C15—C16—C20	120.37 (14)
C3—C4—H4A	119.8	C18—C17—C16	120.14 (15)
C6—C5—C4	120.32 (15)	C18—C17—H17A	119.9
С6—С5—Н5А	119.8	C16—C17—H17A	119.9
С4—С5—Н5А	119.8	C17—C18—C19	122.08 (14)
C5—C6—C1	118.72 (17)	C17—C18—H18A	119.0
С5—С6—Н6А	120.6	C19—C18—H18A	119.0
С1—С6—Н6А	120.6	C18—C19—C14	118.40 (15)
C12—C7—C8	119.48 (16)	C18—C19—H19A	120.8
C12—C7—N1	118.51 (14)	C14—C19—H19A	120.8
C8—C7—N1	122.01 (15)	C16—C20—H20A	109.5
C9—C8—C7	120.39 (16)	C16—C20—H20B	109.5
С9—С8—Н8А	119.8	H20A—C20—H20B	109.5
С7—С8—Н8А	119.8	C16—C20—H20C	109.5
C10—C9—C8	119.41 (15)	H20A—C20—H20C	109.5
C10—C9—C13	120.67 (17)	H20B—C20—H20C	109.5
C8—C9—C13	119.92 (16)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1 <i>B</i> ···O1 ⁱ	0.88	2.14	2.9917 (16)	162
N2—H2A····O2 ⁱⁱ	0.88	2.53	3.3929 (16)	166

Symmetry codes: (i) *x*+1/2, *-y*+1/2, *z*; (ii) *x*-1/2, *-y*+1/2, *z*.