Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,2-Dichloro-1-(3,3,6-trimethyl-9-oxo-1,5-diazabicyclo[4.3.0]nonan-5-yl)ethanone

Ying Fu and Fei Ye*

College of Science, Northeast Agricultural University, Harbin 150030, People's Republic of China Correspondence e-mail: yefei@neau.edu.cn

Received 27 June 2011; accepted 7 July 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.129; data-to-parameter ratio = 21.0.

In the title molecule, C₁₂H₁₈Cl₂N₂O₂, the six-membered ring is in a chair conformation and the five-membered ring is in an envelope conformation. In the crystal, weak intermolecular bifurcated $(C-H)_2 \cdots O$ hydrogen bonds connect molecules into chains along [010].

Related literature

For synthetic applications of 1,5-diazabicyclo compounds, see: Hutton & Bartlett (2007); Koptelov et al. (2011); Taylor et al. (2010). For the bioactivity of N-dichloroacety diazabicyclo derivatives, see: Burton et al. (1994); Hatzios (2004); Loniovereror (1993). For the synthetic procedure, see: Sun & Ye (2010).

Experimental

Crystal data

C12H18Cl2N2O2 V = 1419.6 (4) Å³ $M_r = 293.18$ Z = 4Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation a = 9.4442 (18) Å $\mu = 0.45 \text{ mm}^$ b = 14.116(3)Å T = 298 Kc = 11.7555 (16) Å $0.42 \times 0.40 \times 0.28 \text{ mm}$ $\beta = 115.067 \ (11)^{\circ}$

Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.832, T_{\max} = 0.884$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ 166 parameters $wR(F^2) = 0.129$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.33 \text{ e } \text{\AA}^{-3}$ S = 1.04 $\Delta \rho_{\rm min} = -0.48 \text{ e} \text{ Å}^{-3}$ 3492 reflections

10829 measured reflections

 $R_{\rm int} = 0.027$

3492 independent reflections

2556 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$ \begin{array}{c} \hline C1 - H1 \cdots O2^{i} \\ C3 - H3B \cdots O2^{i} \end{array} $	0.98	2.23	3.200 (3)	170
	0.97	2.50	3.390 (2)	153

Symmetry code: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We thank the Heilongjiang Province Foundation for Young Scholars (QC2009C44) for generously supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5271).

References

- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burton, J. D., Maness, E. P., Monks, D. W. & Robinson, D. K. (1994). Pestic. Biochem. Phys. 48, 163-172.

Hatzios, K. K. (2004). Weed Sci. 52, 454-467.

- Hutton, C. A. & Bartlett, P. A. (2007). J. Org. Chem. 72, 6865-6872.
- Koptelov, Y. B., Saik, S. P., Molchanov, A. P. & Selivanov, S. I. (2011). Russ. J. Org. Chem. 47, 421-432.

Loniovereror, G. L. (1993). Weed Res. 33, 311-318.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Sun, T. F. & Ye, F. (2010). Chem. Online, 73, 669-672.
- Taylor, J. E., Jones, M. D., Williams, J. M. J. & Bull, S. D. (2010). Org. Lett. 12, 5740-5743.

supporting information

Acta Cryst. (2011). E67, o2020 [doi:10.1107/S1600536811027176]

2,2-Dichloro-1-(3,3,6-trimethyl-9-oxo-1,5-diazabicyclo[4.3.0]nonan-5yl)ethanone

Ying Fu and Fei Ye

S1. Comment

1,5-Diazabicyclo compounds are important synthetic targets due to their biological activity (Hutton & Bartlett, 2007, Koptelov *et al.*, 2011) and catalytic activity (Taylor *et al.*, 2010). It was discovered that *N*-dichloroacetyl-1,5-diazabicyclo compounds act as herbicide safeners and these compounds have drawn widespread attention in agricultural biochemistry (Burton *et al.*, 1994, Hatzios, 2004, Loniovereror, 1993). As a part of our ongoing investigation on the bioactivities of safeners we have determined the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. In the crystal, weak interolecular bifurcated (C— H_{2} ···O hydrogen bonds connect molecules into one-dimensional chains along [010]. (Fig. 2).

S2. Experimental

The title compound was prepared according to the literature procedure (Sun *et al.*, 2010). The single-crystal suitable for X-ray structural analysis was obtained by slow evaporation of a solution of the title compound in petroleum ether and ethyl acetate at room temperature.

S3. Refinement

All H atoms were initially located in a difference Fourier map. The C—H atoms were then constrained to an ideal geometry, with C—H distances of 0.96-98 Å, and $U_{iso}(H) = 1.2 \cdot 1.5 U_{eq}(C)$. There is a relatively short H···H contact ca. 1.87Å. This appears to be influenced by the hydrogen bonding.

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.

Figure 2

Part of the crystal structure showing the weak intermolecular C—H…O hydrogen bonds as dashed lines.

2,2-Dichloro-1-(3,3,6-trimethyl-9-oxo-1,5-diazabicyclo[4.3.0]nonan-5-yl)ethanone

Crystal data	
$C_{12}H_{18}Cl_2N_2O_2$	F(000) = 616
$M_r = 293.18$	$D_{\rm x} = 1.372 \ {\rm Mg \ m^{-3}}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 3515 reflections
a = 9.4442 (18) Å	$\theta = 2.4 - 27.1^{\circ}$
b = 14.116 (3) Å	$\mu = 0.45 \text{ mm}^{-1}$
c = 11.7555 (16) Å	T = 298 K
$\beta = 115.067 \ (11)^{\circ}$	Block, colourless
V = 1419.6 (4) Å ³	$0.42 \times 0.40 \times 0.28 \text{ mm}$
Z = 4	

Data collection

Bruker SMART CCD	10829 measured reflections
diffractometer	3492 independent reflections
Radiation source: fine-focus sealed tube	2556 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.027$
φ and ω scans	$\theta_{max} = 28.3^\circ$, $\theta_{min} = 2.4^\circ$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$
(<i>SADABS</i> ; Sheldrick, 1996)	$k = -18 \rightarrow 18$
$T_{\min} = 0.832, T_{\max} = 0.884$	$l = -9 \rightarrow 15$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.129$	neighbouring sites
S = 1.04	H-atom parameters constrained
3492 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0683P)^2 + 0.2384P]$
166 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.33$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.48$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2

are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C11	0.38732 (6)	-0.01048 (4)	0.34216 (5)	0.05901 (18)	
C12	0.21200 (7)	-0.01735 (4)	0.07141 (6)	0.0696 (2)	
01	0.43042 (15)	-0.18995 (10)	0.24212 (16)	0.0618 (4)	
O2	0.06902 (18)	-0.54370 (10)	0.24058 (16)	0.0638 (4)	
N1	0.17907 (15)	-0.24099 (9)	0.17670 (13)	0.0342 (3)	
N2	0.10521 (16)	-0.40443 (10)	0.15860 (14)	0.0388 (3)	
C1	0.2408 (2)	-0.07096 (12)	0.21585 (17)	0.0419 (4)	
H1	0.1428	-0.0703	0.2257	0.050*	
C2	0.29300 (19)	-0.17366 (12)	0.21273 (17)	0.0399 (4)	
C3	0.01328 (18)	-0.21728 (12)	0.09737 (15)	0.0364 (4)	
H3A	-0.0029	-0.2147	0.0102	0.044*	
H3B	-0.0089	-0.1549	0.1205	0.044*	
C4	-0.10098 (18)	-0.28847 (12)	0.10984 (15)	0.0366 (4)	
C5	-0.2656 (2)	-0.26170 (16)	0.0151 (2)	0.0581 (5)	
H5A	-0.2699	-0.2615	-0.0679	0.087*	
H5B	-0.2913	-0.1998	0.0346	0.087*	

H5C	-0.3392	-0.3070	0.0193	0.087*
C6	-0.0909 (2)	-0.28828 (14)	0.24271 (18)	0.0485 (4)
H6A	-0.1645	-0.3329	0.2480	0.073*
H6B	-0.1148	-0.2261	0.2627	0.073*
H6C	0.0128	-0.3057	0.3011	0.073*
C7	-0.0579 (2)	-0.38544 (12)	0.07744 (17)	0.0419 (4)
H7A	-0.1235	-0.4337	0.0893	0.050*
H7B	-0.0742	-0.3866	-0.0098	0.050*
C8	0.22976 (19)	-0.33990 (11)	0.16558 (16)	0.0367 (4)
C9	0.2611 (2)	-0.34929 (15)	0.04896 (19)	0.0516 (5)
H9A	0.2991	-0.4119	0.0457	0.077*
H9B	0.3380	-0.3035	0.0525	0.077*
H9C	0.1660	-0.3384	-0.0247	0.077*
C10	0.3679 (2)	-0.37342 (13)	0.28688 (18)	0.0477 (4)
H10A	0.4655	-0.3695	0.2784	0.057*
H10B	0.3763	-0.3353	0.3582	0.057*
C11	0.3290 (2)	-0.47623 (14)	0.3029 (2)	0.0531 (5)
H11A	0.3784	-0.5195	0.2666	0.064*
H11B	0.3628	-0.4917	0.3909	0.064*
C12	0.1545 (2)	-0.48091 (12)	0.23385 (19)	0.0454 (4)

Atomic displacement parameters $(Å^2)$

-		* *22		* 12	T T 2	
	U^{μ}	U^{22}	U^{ss}	U^{12}	U^{13}	U^{23}
Cl1	0.0585 (3)	0.0609 (3)	0.0632 (3)	-0.0227 (2)	0.0313 (3)	-0.0199 (2)
Cl2	0.0747 (4)	0.0676 (4)	0.0629 (4)	0.0028 (3)	0.0257 (3)	0.0219 (3)
01	0.0345 (7)	0.0509 (8)	0.0934 (12)	-0.0021 (6)	0.0206 (7)	-0.0014 (7)
O2	0.0683 (9)	0.0460 (7)	0.0921 (12)	0.0003 (7)	0.0483 (9)	0.0128 (8)
N1	0.0325 (7)	0.0336 (6)	0.0362 (7)	-0.0005 (5)	0.0141 (6)	-0.0005 (5)
N2	0.0405 (8)	0.0346 (7)	0.0426 (8)	-0.0015 (6)	0.0189 (6)	-0.0034 (6)
C1	0.0399 (9)	0.0389 (9)	0.0505 (10)	-0.0074 (7)	0.0226 (8)	-0.0032 (8)
C2	0.0360 (9)	0.0392 (8)	0.0431 (9)	-0.0025 (7)	0.0156 (8)	-0.0012 (7)
C3	0.0345 (8)	0.0391 (8)	0.0329 (8)	0.0000 (6)	0.0116 (7)	0.0019 (7)
C4	0.0336 (8)	0.0387 (8)	0.0359 (8)	-0.0028 (6)	0.0133 (7)	-0.0029 (7)
C5	0.0363 (10)	0.0621 (12)	0.0633 (13)	-0.0026 (9)	0.0089 (9)	0.0008 (10)
C6	0.0567 (11)	0.0495 (10)	0.0487 (11)	-0.0041 (8)	0.0313 (9)	-0.0047 (8)
C7	0.0418 (9)	0.0404 (9)	0.0412 (9)	-0.0073 (7)	0.0153 (8)	-0.0097 (7)
C8	0.0367 (8)	0.0344 (8)	0.0414 (9)	-0.0001 (6)	0.0189 (7)	-0.0026 (7)
C9	0.0573 (11)	0.0563 (11)	0.0524 (11)	0.0039 (9)	0.0342 (10)	-0.0030 (9)
C10	0.0419 (10)	0.0461 (10)	0.0507 (11)	0.0072 (8)	0.0153 (9)	0.0024 (8)
C11	0.0530 (11)	0.0509 (11)	0.0594 (12)	0.0123 (9)	0.0278 (10)	0.0129 (9)
C12	0.0565 (11)	0.0381 (9)	0.0533 (11)	0.0051 (8)	0.0345 (10)	0.0008 (8)

Geometric parameters (Å, °)

Cl1—C1	1.7627 (18)	C5—H5B	0.9600
Cl2—C1	1.7715 (19)	С5—Н5С	0.9600
O1—C2	1.215 (2)	С6—Н6А	0.9600

O2—C12	1.224 (2)	С6—Н6В	0.9600
N1—C2	1.362 (2)	С6—Н6С	0.9600
N1—C3	1.482 (2)	C7—H7A	0.9700
N1—C8	1.499 (2)	С7—Н7В	0.9700
N2—C12	1.348 (2)	С8—С9	1.526 (2)
N2—C7	1.452 (2)	C8—C10	1.544 (2)
N2—C8	1.462 (2)	С9—Н9А	0.9600
C1—C2	1.537 (2)	С9—Н9В	0.9600
C1—H1	0.9800	C9—H9C	0.9600
C3—C4	1 527 (2)	C10—C11	1 528 (3)
C3—H3A	0.9700	C10—H10A	0.9700
C3—H3B	0.9700	C10—H10B	0.9700
C4 C7	1,522 (2)		1 400 (3)
$C_4 = C_7$	1.522(2) 1.524(2)	C11_H11A	1.499(3)
C_{4}	1.524(2) 1.528(2)		0.9700
C4 - C3	1.328 (2)	СП—ППВ	0.9700
С5—нза	0.9600		
C2 N1 C2	121.54(12)		100 5
$C_2 = N_1 = C_3$	121.54 (13)		109.5
C2—NI—C8	115.95 (13)	Н6А—С6—Н6С	109.5
C3—NI—C8	116.53 (12)	H6B - C6 - H6C	109.5
C12—N2—C7	123.66 (15)	N2	108.86 (13)
C12—N2—C8	114.61 (15)	N2—C7—H7A	109.9
C7—N2—C8	121.72 (14)	С4—С7—Н7А	109.9
C2—C1—Cl1	109.38 (12)	N2—C7—H7B	109.9
C2—C1—Cl2	107.50 (13)	С4—С7—Н7В	109.9
Cl1—C1—Cl2	110.34 (9)	H7A—C7—H7B	108.3
C2—C1—H1	109.9	N2—C8—N1	107.82 (13)
Cl1—C1—H1	109.9	N2—C8—C9	110.68 (14)
Cl2—C1—H1	109.9	N1—C8—C9	110.48 (14)
O1—C2—N1	124.36 (16)	N2—C8—C10	101.88 (14)
O1—C2—C1	119.10 (15)	N1-C8-C10	112.40 (13)
N1—C2—C1	116.54 (14)	C9—C8—C10	113.16 (15)
N1—C3—C4	113.10(13)	С8—С9—Н9А	109.5
N1—C3—H3A	109.0	С8—С9—Н9В	109.5
С4—С3—НЗА	109.0	H9A—C9—H9B	109.5
N1—C3—H3B	109.0	С8—С9—Н9С	109.5
C4—C3—H3B	109.0	Н9А—С9—Н9С	109.5
НЗА—СЗ—НЗВ	107.8	Н9В—С9—Н9С	109.5
C7—C4—C6	110.55 (14)	C11—C10—C8	104.57 (15)
C7—C4—C3	107.05 (14)	C11—C10—H10A	110.8
$C_{6}-C_{4}-C_{3}$	110,96 (14)	C8 - C10 - H10A	110.8
C7-C4-C5	109 74 (15)	C11 - C10 - H10B	110.8
$C_{6}-C_{4}-C_{5}$	110 41 (16)	C8-C10-H10B	110.8
C_{3} C_{4} C_{5}	108.05 (15)	H10A - C10 - H10B	108.9
C4-C5-H5A	100.05 (15)	C12 - C11 - C10	104.01 (15)
C4_C5_H5B	109.5	C12-C11-H11A	111.0
H_{Δ}	109.5	C10-C11-H11A	111.0
CA C5 H5C	109.5	$C_{12} = C_{11} = H_{11}$	111.0
	107.5	012-011-111D	111.0

supporting information

H5A—C5—H5C	109.5	C10-C11-H11B	111.0
H5B—C5—H5C	109.5	H11A—C11—H11B	109.0
C4—C6—H6A	109.5	O2—C12—N2	124.68 (19)
С4—С6—Н6В	109.5	O2—C12—C11	126.95 (18)
Н6А—С6—Н6В	109.5	N2-C12-C11	108.34 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C1—H1…O2 ⁱ	0.98	2.23	3.200 (3)	170
C3—H3 <i>B</i> ···O2 ⁱ	0.97	2.50	3.390 (2)	153

Symmetry code: (i) -x, y+1/2, -z+1/2.