organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

A triclinic polymorph of 3-nitroanilinium chloride

S. Thangarasu,^a S. Athimoolam^{b*} and S. Asath Bahadur^a

^aDepartment of Physics, Kalasalingam University, Anand Nagar, Krishnan Koil 626 190, India, and ^bDepartment of Physics, University College of Engineering Nagercoil, Anna University of Technology Tirunelveli, Nagercoil 629 004, India Correspondence e-mail: athi81s@yahoo.co.in

Received 12 July 2011; accepted 19 July 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.039; wR factor = 0.139; data-to-parameter ratio = 11.8.

The asymmetric unit of the title compound, $C_6H_7N_2O_2^+\cdot Cl^-$, contains two independent ion pairs. A monoclinic form of the title compound with only one ion pair in the asymmetric unit has been reported previously [Ploug-Sørensen & Andersen (1986). *Acta Cryst.* C42, 1813–1815]. In the crystal of the title compound, the components are linked into layers parallel to (001) by intermolecular $N-H\cdots Cl$ hydrogen bonds, with alternating hydrophilic and hydrophobic regions.

Related literature

For the monoclinic polymorph of the title compound, see: Ploug-Sørensen & Andersen (1986). For the applications of nitroanilines, see: Jain *et al.* (2005); Teng & Garito (1983). For information on polymorphism, see: Davey (2003); Li *et al.* (2001); Rodríguez-Spong *et al.* (2004). For hydrogen-bond motifs, see: Etter *et al.*, (1990).

Experimental

Crystal data	
$C_{6}H_{7}N_{2}O_{2}^{+}\cdot Cl^{-}$ $M_{r} = 174.59$ Triclinic, $P\overline{1}$ a = 6.9936 (8) Å -7.8609 (0) Å	c = 14.6708 (16) Å $\alpha = 87.079 (19)^{\circ}$ $\beta = 81.813 (19)^{\circ}$ $\gamma = 73.597 (17)^{\circ}$ V = 76577 (15) Å
b = 7.8608 (9) Å	V = 765.77 (15)

Z = 4Mo $K\alpha$ radiation $\mu = 0.45 \text{ mm}^{-1}$

Data collection

Bruker SMART APEX CCD diffractometer 5204 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.139$ S = 1.222640 reflections 223 parameters 2640 independent reflections

 $0.21 \times 0.18 \times 0.13~\text{mm}$

T = 293 K

2348 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.028$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.34~e~{\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.28~e~{\rm \AA}^{-3} \end{split}$$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N12-H12A\cdots Cl2^{i}$	0.93 (4)	2.28 (4)	3.164 (4)	161 (3)
$N12 - H12B \cdot \cdot \cdot Cl2^{ii}$	0.86 (4)	2.35 (4)	3.204 (4)	170 (3)
$N12 - H12C \cdot \cdot \cdot Cl1^{iii}$	0.85 (4)	2.68 (4)	3.445 (5)	151 (3)
$N12-H12C\cdots Cl1^{iv}$	0.85 (4)	2.69 (4)	3.221 (3)	123 (3)
$N22 - H22A \cdots Cl1$	0.86 (4)	2.33 (4)	3.174 (4)	166 (3)
$N22 - H22B \cdot \cdot \cdot Cl2$	0.84 (4)	2.40 (4)	3.218 (4)	165 (3)
$N22 - H22C \cdot \cdot \cdot Cl1^v$	0.93 (4)	2.21 (4)	3.138 (3)	170 (3)

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x - 1, y, z; (iii) x, y + 1, z; (iv) -x, -y + 1, -z; (v) -x + 1, -y, -z.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXTL/PC* (Sheldrick, 2008).

ST and SAB sincerely thank the Vice-Chancellor and the Management of Kalasalingam University, Anand Nagar, Krishnan Koil for their support and encouragement. SA thanks the Vice Chancellor of Anna University of Technology, Tirunelveli, for his support and encouragement.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5286).

References

Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Davey, R. J. (2003). Chem. Commun. pp. 1463-1467.

- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. Jain, A. K., Mehta, S. C. & Shrivastava, N. M. (2005). Ind. J. Pharmacol. 37, 395–396.
- Li, N., Shanks, R. A. & Murphy, D. M. (2001). J. Cryst. Growth, 224, 128-133.
- Ploug-Sørensen, G. & Andersen, E. K. (1986). Acta Cryst. C42, 1813-1815.
- Rodríguez-Spong, B., Price, C. P., Jayasankar, A., Matzger, A. J. & Rodríguez-
- Hornedo, N. (2004). Adv. Drug Del. Rev. 56, 241–274.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Spek, A. L. (2009). Acta Cryst. D65, 148–155.
- Teng, C. C. & Garito, A. F. (1983). *Phys. Rev.* B28, 6766–6773.

supporting information

Acta Cryst. (2011). E67, o2124 [doi:10.1107/S1600536811029072]

A triclinic polymorph of 3-nitroanilinium chloride

S. Thangarasu, S. Athimoolam and S. Asath Bahadur

S1. Comment

Nitroanilines belong to the so-called push–pull molecules due to the intramolecular charge transfer (ICT) from the $-NH_2$ electron-donor group, through the phenyl ring, to the electron-acceptor $-NO_2$ group. 4-Nitroaniline and 3-nitroaniline serve as the reference compounds in both, experimental and computational studies on optical nonlinearity (Teng & Garito, 1983). Also 3-Nitroaniline and its derivatives are biologically important compounds owing to the production of significant hypoglycemic as well as antihyperglycemic effects in normal and alloxan-induced diabetic rabbits (Jain *et al.*, 2005). Organic molecules including most of pharmaceutical compounds are prone to polymorphic formation in the solid state. Variations in crystallization environment (*e.g.*, solvent, temperature, using as additives and concentration), can cause the same molecules to pack differently and form different crystal lattices or polymorphs (Davey, 2003). As a result, the physical, chemical and mechanical properties of crystals can be dramatically affected (Li *et al.*, 2001). It is now widely appreciated that the occurrence of polymorphism in molecular crystalline solids impacts on the production of fine chemical products such as pharmaceuticals, pigments and photographic couplers (Rodríguez-Spong *et al.*, 2004).

The title compound, (I), crystallizes with two crystallographically independent 3-nitroanilinium cations and two chloride anions in the asymmetric unit of the triclic unit cell, with the spacegroup $P\overline{1}$. A monoclinic form with space group $P2_1/c$ has been previously reported by Ploug-Sørensen & Andersen (1986). In the title compound the nitro groups of the cations are twisted from the plane of the aromatic rings by 0.32 (3) and 7.1 (3)°. The protonation on the N atom of the cations are confirmed from the elongated C—N bond distances.

The crystal packing, is stabilized through intermolecular N—H···Cl interactions, as shown in Fig. 2 and hydrogen bond parameters are listed in Table 1. All ammonium H atoms of the cations are involved in the hydrogen bonds with the chloride anions. The cations and anions are connected to form $R_4^2(8)$ ring motifs (Etter *et al.*, 1990). Overall, the components are linked into two-dimensional layers parallel to (001) by the intermolecular N—H···Cl hydrogen bonds. This type of aggregation forms alternating hydrophilic and hydrophobic regions.

S2. Experimental

The title compound, (I), was crystallized from an aqueous mixture of 3-nitroaniline and hydrochloric acid in the stochiometric ratio of 1:1 at room temperature, by the technique of slow evaporation.

S3. Refinement

The H atoms, which participate in hydrogen bonds, were located in difference Fourier maps and then refined isotropically [N-H = 0.84 (4) - 0.93 (4)Å]. H atoms bonded to C atoms were treated in a riding-model approximation, with d(C-H) = 0.93 Å and $U_{iso}(H)=1.2 U_{eq}(C)$.

Figure 1

The molecular structure of the title compound with 50% displacement ellipsoids. H-bonds are shown as dashed lines.

Figure 2

Packing diagram of the title compound viewed down the *a*-axis. H-bonds are shown as dashed lines.

3-nitroanilinium chloride

Crystal data C₆H₇N₂O₂⁺·Cl⁻ $M_r = 174.59$ Triclinic, *P*I Hall symbol: -P 1 a = 6.9936 (8) Å b = 7.8608 (9) Å c = 14.6708 (16) Å a = 87.079 (19)° $\beta = 81.813$ (19)° $\gamma = 73.597$ (17)°

 $V = 765.77 (15) \text{ Å}^{3}$ Z = 4 F(000) = 360 $D_{x} = 1.514 \text{ Mg m}^{-3}$ $D_{m} = 1.49 (1) \text{ Mg m}^{-3}$ $D_{m} \text{ measured by flotation technique using a liquid-mixture of xylene and bromoform Mo Ka radiation, <math>\lambda = 0.71073 \text{ Å}$ Cell parameters from 2545 reflections $\theta = 2.7-24.9^{\circ}$

$\mu = 0.45 \text{ mm}^{-1}$	Block, colourless
T = 293 K	$0.21 \times 0.18 \times 0.13 \text{ mm}$
Data collection	
 Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans 5204 measured reflections 2640 independent reflections 	2348 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.7^{\circ}$ $h = -8 \rightarrow 8$ $k = -9 \rightarrow 9$ $l = -16 \rightarrow 17$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.139$ S = 1.22 2640 reflections 223 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0689P)^2 + 0.295P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.34$ e Å ⁻³
	$\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of $F^{2^{}}$ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on $F^{2^{}}$, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative $F^{2^{}}$. The threshold expression of $F^{2^{}} > \sigma(F^{2^{}})$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on $F^{2^{}}$ are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C11	0.1251 (3)	0.4363 (3)	0.31823 (15)	0.0340 (5)	
C12	0.0920 (3)	0.4668 (3)	0.22728 (16)	0.0343 (5)	
H12	0.0690	0.3805	0.1926	0.041*	
C13	0.0947 (3)	0.6318 (3)	0.19058 (15)	0.0329 (5)	
C14	0.1270 (4)	0.7610 (3)	0.24223 (17)	0.0407 (6)	
H14	0.1277	0.8712	0.2161	0.049*	
C15	0.1582 (4)	0.7248 (3)	0.33299 (18)	0.0450 (6)	
H15	0.1794	0.8115	0.3680	0.054*	
C16	0.1582 (4)	0.5611 (3)	0.37241 (16)	0.0402 (6)	
H16	0.1798	0.5359	0.4333	0.048*	
N11	0.1259 (3)	0.2612 (3)	0.35946 (15)	0.0443 (5)	
N12	0.0565 (4)	0.6733 (4)	0.09503 (14)	0.0433 (5)	
011	0.0976 (3)	0.1510 (2)	0.31125 (15)	0.0622 (6)	

O12	0.1539 (4)	0.2351 (3)	0.43994 (14)	0.0702 (6)
H12A	0.155 (6)	0.594 (5)	0.057 (3)	0.074 (11)*
H12B	-0.057 (6)	0.654 (5)	0.090 (2)	0.062 (10)*
H12C	0.041 (5)	0.780 (6)	0.078 (2)	0.066 (10)*
C21	0.6344 (3)	0.1548 (3)	0.33773 (16)	0.0390 (5)
C22	0.6145 (3)	0.2222 (3)	0.24981 (16)	0.0359 (5)
H22	0.6194	0.3373	0.2343	0.043*
C23	0.5868 (3)	0.1109 (3)	0.18579 (15)	0.0346 (5)
C24	0.5814 (4)	-0.0610 (3)	0.20828 (18)	0.0418 (6)
H24	0.5615	-0.1333	0.1644	0.050*
C25	0.6059 (4)	-0.1238 (3)	0.29679 (19)	0.0483 (6)
H25	0.6046	-0.2398	0.3119	0.058*
C26	0.6322 (4)	-0.0168 (4)	0.36326 (18)	0.0467 (6)
H26	0.6479	-0.0586	0.4230	0.056*
N21	0.6556 (3)	0.2741 (4)	0.40805 (15)	0.0525 (6)
N22	0.5575 (4)	0.1777 (3)	0.09240 (14)	0.0415 (5)
O21	0.6745 (3)	0.4197 (3)	0.38419 (14)	0.0624 (6)
O22	0.6531 (5)	0.2192 (4)	0.48732 (15)	0.0940 (9)
H22A	0.443 (6)	0.170 (4)	0.081 (2)	0.060 (9)*
H22B	0.565 (5)	0.282 (6)	0.082 (2)	0.066 (10)*
H22C	0.653 (5)	0.099 (5)	0.052 (2)	0.064 (10)*
C11	0.16411 (10)	0.07512 (8)	0.06132 (4)	0.0449 (2)
C12	0.66659 (10)	0.55025 (8)	0.07206 (4)	0.0456 (2)

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0354 (11)	0.0281 (11)	0.0384 (12)	-0.0096 (9)	-0.0047 (9)	0.0038 (9)
0.0376 (11)	0.0300 (11)	0.0375 (12)	-0.0115 (9)	-0.0070 (9)	-0.0025 (9)
0.0366 (11)	0.0342 (12)	0.0294 (11)	-0.0105 (9)	-0.0082 (9)	0.0015 (9)
0.0536 (14)	0.0324 (12)	0.0421 (13)	-0.0198 (11)	-0.0116 (10)	0.0032 (10)
0.0637 (16)	0.0397 (14)	0.0403 (13)	-0.0232 (12)	-0.0165 (11)	-0.0025 (10)
0.0499 (13)	0.0425 (14)	0.0311 (12)	-0.0144 (11)	-0.0124 (10)	0.0004 (10)
0.0487 (12)	0.0341 (11)	0.0473 (12)	-0.0100 (9)	-0.0027 (9)	0.0072 (9)
0.0573 (15)	0.0438 (14)	0.0309 (11)	-0.0155 (11)	-0.0120 (10)	0.0033 (10)
0.0871 (15)	0.0324 (10)	0.0710 (14)	-0.0237 (10)	-0.0098 (11)	0.0011 (9)
0.1004 (17)	0.0584 (13)	0.0515 (13)	-0.0222 (12)	-0.0179 (11)	0.0240 (10)
0.0371 (12)	0.0486 (15)	0.0345 (12)	-0.0157 (10)	-0.0079 (9)	-0.0003 (10)
0.0393 (12)	0.0351 (12)	0.0375 (12)	-0.0162 (10)	-0.0070 (9)	-0.0008 (10)
0.0371 (11)	0.0364 (12)	0.0327 (12)	-0.0133 (9)	-0.0069 (9)	0.0005 (9)
0.0460 (13)	0.0338 (13)	0.0485 (14)	-0.0153 (10)	-0.0058 (10)	-0.0041 (10)
0.0528 (15)	0.0341 (13)	0.0586 (17)	-0.0151 (11)	-0.0074 (12)	0.0091 (12)
0.0460 (13)	0.0542 (17)	0.0400 (13)	-0.0152 (12)	-0.0088 (10)	0.0128 (12)
0.0545 (13)	0.0720 (17)	0.0382 (12)	-0.0250 (12)	-0.0122 (9)	-0.0082 (11)
0.0571 (14)	0.0388 (13)	0.0344 (11)	-0.0197 (11)	-0.0118 (10)	-0.0009 (9)
0.0782 (14)	0.0563 (13)	0.0612 (13)	-0.0270 (11)	-0.0155 (10)	-0.0136 (10)
0.148 (3)	0.122 (2)	0.0384 (12)	-0.071 (2)	-0.0319 (13)	0.0052 (13)
0.0625 (4)	0.0418 (4)	0.0377 (4)	-0.0221 (3)	-0.0173 (3)	0.0055 (3)
	U^{11} 0.0354 (11) 0.0376 (11) 0.0366 (11) 0.0536 (14) 0.0637 (16) 0.0499 (13) 0.0487 (12) 0.0573 (15) 0.0871 (15) 0.1004 (17) 0.0371 (12) 0.0373 (12) 0.0371 (11) 0.0460 (13) 0.0528 (15) 0.0460 (13) 0.0545 (13) 0.0545 (13) 0.0571 (14) 0.0782 (14) 0.148 (3) 0.0625 (4)	U^{11} U^{22} $0.0354 (11)$ $0.0281 (11)$ $0.0376 (11)$ $0.0300 (11)$ $0.0366 (11)$ $0.0302 (12)$ $0.0536 (14)$ $0.0324 (12)$ $0.0637 (16)$ $0.0397 (14)$ $0.0499 (13)$ $0.0425 (14)$ $0.0499 (13)$ $0.0425 (14)$ $0.0487 (12)$ $0.0341 (11)$ $0.0573 (15)$ $0.0438 (14)$ $0.0871 (15)$ $0.0324 (10)$ $0.1004 (17)$ $0.0584 (13)$ $0.0371 (12)$ $0.0486 (15)$ $0.0393 (12)$ $0.0351 (12)$ $0.0371 (11)$ $0.0364 (12)$ $0.0460 (13)$ $0.0338 (13)$ $0.0528 (15)$ $0.0341 (13)$ $0.0545 (13)$ $0.0720 (17)$ $0.0571 (14)$ $0.0388 (13)$ $0.0782 (14)$ $0.0563 (13)$ $0.148 (3)$ $0.122 (2)$ $0.0625 (4)$ $0.0418 (4)$	U^{11} U^{22} U^{33} $0.0354 (11)$ $0.0281 (11)$ $0.0384 (12)$ $0.0376 (11)$ $0.0300 (11)$ $0.0375 (12)$ $0.0366 (11)$ $0.0342 (12)$ $0.0294 (11)$ $0.0536 (14)$ $0.0324 (12)$ $0.0421 (13)$ $0.0637 (16)$ $0.0397 (14)$ $0.0403 (13)$ $0.0499 (13)$ $0.0425 (14)$ $0.0311 (12)$ $0.0487 (12)$ $0.0341 (11)$ $0.0473 (12)$ $0.0573 (15)$ $0.0438 (14)$ $0.0309 (11)$ $0.0871 (15)$ $0.0324 (10)$ $0.0710 (14)$ $0.1004 (17)$ $0.0584 (13)$ $0.0515 (13)$ $0.0371 (12)$ $0.0486 (15)$ $0.0345 (12)$ $0.0371 (12)$ $0.0364 (12)$ $0.0327 (12)$ $0.0460 (13)$ $0.0338 (13)$ $0.0485 (14)$ $0.0528 (15)$ $0.0341 (13)$ $0.0586 (17)$ $0.0460 (13)$ $0.0542 (17)$ $0.0386 (17)$ $0.0545 (13)$ $0.0720 (17)$ $0.0382 (12)$ $0.0571 (14)$ $0.0388 (13)$ $0.0444 (11)$ $0.0782 (14)$ $0.0563 (13)$ $0.0612 (13)$ $0.148 (3)$ $0.122 (2)$ $0.0384 (12)$ $0.0625 (4)$ $0.0418 (4)$ $0.0377 (4)$	U^{11} U^{22} U^{33} U^{12} 0.0354 (11)0.0281 (11)0.0384 (12) -0.0096 (9)0.0376 (11)0.0300 (11)0.0375 (12) -0.0115 (9)0.0366 (11)0.0342 (12)0.0294 (11) -0.0105 (9)0.0536 (14)0.0324 (12)0.0421 (13) -0.0198 (11)0.0637 (16)0.0397 (14)0.0403 (13) -0.0232 (12)0.0499 (13)0.0425 (14)0.0311 (12) -0.0144 (11)0.0487 (12)0.0341 (11)0.0473 (12) -0.0100 (9)0.0573 (15)0.0438 (14)0.0309 (11) -0.0237 (10)0.1004 (17)0.0584 (13)0.0515 (13) -0.0222 (12)0.0371 (12)0.0486 (15)0.0345 (12) -0.0157 (10)0.0393 (12)0.0351 (12) 0.0375 (12) -0.0162 (10)0.0371 (11)0.0364 (12) 0.0327 (12) -0.0153 (10)0.0528 (15) 0.0341 (13) 0.0586 (17) -0.0153 (10)0.0528 (15) 0.0341 (13) 0.0586 (17) -0.0151 (11)0.0460 (13) 0.0720 (17) 0.0382 (12) -0.0250 (12) 0.0571 (14) 0.0388 (13) 0.0441 (11) -0.0270 (11) 0.148 (3) 0.122 (2) 0.0384 (12) -0.021 (3)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

CID	0.0646(4)	0.0259 (4)	0.0422 (4)	0.0214 (2)	0.0147(2)	0.0000 (2)			
	0.0040 (4)	0.0338 (4)	0.0433 (4)	-0.0214 (3)	-0.0147 (3)	0.0000 (3)			
Geon	Geometric parameters (Å, °)								
C11-	C16	1.381 (4)		C21—C22		1.380 (4)			
C11-	C12	1.384 (4)		C21—C26		1.385 (4)			
C11-	—N11	1.473 (3)		C21—N21		1.478 (4)			
C12-	C13	1.383 (3)		C22—C23		1.384 (3)			
C12-	-H12	0.9300		С22—Н22		0.9300			
C13-	C14	1.383 (3)		C23—C24		1.384 (4)			
C13-	—N12	1.468 (3)		C23—N22		1.463 (3)			
C14-	C15	1.382 (4)		C24—C25		1.382 (4)			
C14-	-H14	0.9300		C24—H24		0.9300			
C15-	C16	1.383 (4)		C25—C26		1.383 (4)			
C15-	-H15	0.9300		С25—Н25		0.9300			
C16-	-H16	0.9300		C26—H26		0.9300			
N11-	011	1.221 (3)		N21—O21		1.217 (3)			
N11-	012	1.222 (3)	1	N21—O22		1.219 (3)			
N12-	-H12A	0.93 (4)		N22—H22A		0.86 (4)			
N12-	—H12B	0.86 (4)		N22—H22B		0.84 (4)			
N12-	—H12C	0.85 (4)		N22—H22C		0.93 (4)			
C16-		123.5 (2)	1	C22—C21—C26		123.4 (2)			
C16-		118.2 (2)		C22-C21-N21		117.8 (2)			
C12-		118.3 (2)		C26—C21—N21		118.9 (2)			
C13-		116.7 (2)		C21—C22—C23		117.0 (2)			
C13-	—С12—Н12	121.6		C21—C22—H22		121.5			
C11-	C12H12	121.6		С23—С22—Н22		121.5			
C12-	C13C14	121.8 (2)		C24—C23—C22		121.8 (2)			
C12-		119.2 (2)		C24—C23—N22		118.9 (2)			
C14-		118.9 (2)		C22—C23—N22		119.2 (2)			
C15-	C13	119.3 (2)		C25—C24—C23		119.2 (2)			
C15-		120.3		C25—C24—H24		120.4			
C13-		120.3		C23—C24—H24		120.4			
C14-	C15C16	120.8 (2)		C24—C25—C26		121.1 (2)			
C14-		119.6		C24—C25—H25		119.5			
C16-		119.6		С26—С25—Н25		119.5			
C11-	C16C15	117.8 (2)		C25—C26—C21		117.6 (2)			
C11-	—С16—Н16	121.1		C25—C26—H26		121.2			
C15-		121.1		C21—C26—H26		121.2			
011-	N11O12	123.8 (2)		O21—N21—O22		123.9 (2)			
011-		118.0 (2)		O21—N21—C21		118.9 (2)			
012-		118.2 (2)		O22—N21—C21		117.2 (3)			
C13-		108 (2)		C23—N22—H22A		109 (2)			
C13-	N12H12B	107 (2)		C23—N22—H22B		115 (2)			
H12A	A—N12—H12B	107 (3)		H22A—N22—H22	В	110 (3)			
C13-	N12H12C	116 (2)		C23—N22—H22C		107 (2)			
H12A	A—N12—H12C	113 (3)		H22A—N22—H22	С	105 (3)			

supporting information

supporting information

H12B—N12—H12C	104 (3)	H22B—N22—H22C	110 (3)
C16—C11—C12—C13	0.5 (3)	C26—C21—C22—C23	1.4 (4)
N11-C11-C12-C13	-179.22 (19)	N21—C21—C22—C23	-177.5 (2)
C11—C12—C13—C14	-0.6 (3)	C21—C22—C23—C24	-0.7 (3)
C11—C12—C13—N12	-178.8 (2)	C21—C22—C23—N22	177.8 (2)
C12—C13—C14—C15	0.3 (4)	C22—C23—C24—C25	-0.5 (4)
N12-C13-C14-C15	178.4 (2)	N22—C23—C24—C25	-179.0 (2)
C13—C14—C15—C16	0.2 (4)	C23—C24—C25—C26	1.1 (4)
C12—C11—C16—C15	-0.1 (4)	C24—C25—C26—C21	-0.4(4)
N11-C11-C16-C15	179.7 (2)	C22—C21—C26—C25	-0.9 (4)
C14—C15—C16—C11	-0.3 (4)	N21—C21—C26—C25	178.0 (2)
C16—C11—N11—O11	-179.6 (2)	C22—C21—N21—O21	-7.2 (3)
C12-C11-N11-O11	0.1 (3)	C26—C21—N21—O21	173.9 (2)
C16—C11—N11—O12	0.7 (3)	C22—C21—N21—O22	172.9 (3)
C12—C11—N11—O12	-179.5 (2)	C26—C21—N21—O22	-6.0 (4)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N12—H12A····Cl2 ⁱ	0.93 (4)	2.28 (4)	3.164 (4)	161 (3)
N12—H12B····Cl2 ⁱⁱ	0.86 (4)	2.35 (4)	3.204 (4)	170 (3)
N12—H12C···Cl1 ⁱⁱⁱ	0.85 (4)	2.68 (4)	3.445 (5)	151 (3)
N12—H12C···Cl1 ^{iv}	0.85 (4)	2.69 (4)	3.221 (3)	123 (3)
N22—H22A···Cl1	0.86 (4)	2.33 (4)	3.174 (4)	166 (3)
N22—H22 <i>B</i> ···Cl2	0.84 (4)	2.40 (4)	3.218 (4)	165 (3)
N22—H22 C ···Cl1 ^v	0.93 (4)	2.21 (4)	3.138 (3)	170 (3)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) *x*-1, *y*, *z*; (iii) *x*, *y*+1, *z*; (iv) -*x*, -*y*+1, -*z*; (v) -*x*+1, -*y*, -*z*.