Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(Z)-3 α -(1,3-Dioxoisoindolin-2-yl)-17(20)pregnene

Yue Qi, Nan Qin and Hong-Quan Duan*

School of Pharmaceutical Sciences, Research Center of Basic Medical Scienses, Tianjin Medical University, Tianjin 300070, People's Republic of China Correspondence e-mail: duanhq@tijmu.edu.cn

Received 21 June 2011; accepted 11 July 2011

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.003 Å; R factor = 0.039; wR factor = 0.096; data-to-parameter ratio = 9.7.

The title compound, C₂₉H₃₇NO₂, crystallized with two independent molecules in an asymmetric unit in which the conformation of the cyclohexyl ring of the pregnene moiety bonded to the 3α -(1,3-dioxoisoindolin-2-yl)- ring system differs: in one molecule it is in a chair conformation, while in the other it exhibits a half-chair conformation. The other six-membered rings in the pregnene moiety are in chair conformations and the five-membered rings are in envelope forms in both molecules. In both molecules, the 3α -(1,3dioxoisoindolin-2-yl)- ring systems are individually approximately planar, with r.m.s. devtaions 0.0148 and 0.0264 Å. The structure is consolidated by intermolecular C-H···O hydrogen-bonding interactions involving the carbonyl O atoms and methyl, methylene and methylidyne groups, resulting in a two-dimensional structure.

Related literature

The title compound was synthesized from epiandrosterone, a pregnane alkaloid isolated from Pachysandra axillaris, a traditional chinese medicine. For the biological activity of Pachysandra axillaris, see: Sun et al. (2010). For the synthesis of the title compound, see: Batcho et al. (1981). For a related structure, see: Ishida et al. (1981). For the absolute structure, see: Pollard & Ahmed (1971).

Experimental

Crystal data

C ₂₉ H ₃₇ NO ₂	
$M_r = 431.60$	
Monoclinic, P2 ₁	
a = 7.5895 (10) Å	
b = 31.355 (3) Å	
c = 9.8912 (12) Å	
$\beta = 93.056 \ (6)^{\circ}$	

Data collection

```
Rigaku Saturn724 CCD
  diffractometer
Absorption correction: multi-scan
  (CrystalClear; Rigaku/MSC,
  2005)
  T_{\min} = 0.984, \ T_{\max} = 0.991
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.096$ S = 1.045642 reflections 583 parameters

V = 2350.4 (5) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 113 K $0.22 \times 0.20 \times 0.12 \text{ mm}$

17383 measured reflections 5642 independent reflections 5296 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.052$

1 restraint
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.26 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.27 \text{ e} \text{ Å}^{-3}$

lable I			
Hydrogen-bond	geometry	(Å.	0`

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1-H1B\cdots O2$	0.99	2.25	3.027 (3)	134
$C5-H5\cdots O4^{i}$	1.00	2.59	3.237 (3)	122
$C21 - H21C \cdots O3^{ii}$	0.98	2.60	3.501 (3)	153
$C31 - H31A \cdots O2^{iii}$	0.99	2.47	3.361 (3)	150

Symmetry codes: (i) x, y, z + 1; (ii) x - 1, y, z; (iii) x + 1, y, z - 1.

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

This work was supported by the National Natural Science Foundation of China (No. 81072540). The authors are grateful to the Central Laboratory of Nankai University for the data collection. Special thanks go to Dr Xie Chengzhi (School of Pharmaceutical Sciences, Tianjin Medical University) for his invaluable support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2421).

References

- Batcho, A. D., Berger, D. E., Davoust, S. G., Wovkulich, P. M. & Uskokovic, M. R. (1981). Helv. Chim. Acta, 64, 16-82.
- Ishida, T., Inoue, M., Harusawa, S., Hamada, Y. & Shioiri, T. (1981). Acta Cryst. B37, 1881-1884.
- Pollard, D. R. & Ahmed, F. R. (1971). Acta Cryst. B27, 1976-1982.
- Rigaku/MSC. (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sun, Y., Yan, Y. X., Chen, J. C., Lu, L., Zhang, X. M., Li, Y. & Qiu, M. H. (2010). Steroids, 75, 818-824.

supporting information

Acta Cryst. (2011). E67, o2065 [doi:10.1107/S1600536811027632]

(Z)-3α-(1,3-Dioxoisoindolin-2-yl)-17(20)-pregnene

Yue Qi, Nan Qin and Hong-Quan Duan

S1. Comment

The title compound was synthesized from epiandrosterone which is a pregnane alkaloids isolated from *Pachysandra axillaris*, a Traditional Chinese Medicine (TCM). The pregnane alkaloids from *Pachysandra axillaris* had been reported to be effective as anticancer (Sun *et al.*, 2010).

The title compound, crystallizes with two independent molecules in an asymmetric unit. The cyclohexyl rings (*A*) of the pregnene moiety bonded to the 3α -(1,3-dioxoisoindolin-2-yl)- ring system in both molecules differ in conformations; in one molecule (Fig. 1) it is in a chair conformation while in the other molecule (Fig. 2) it exhibits a half chair conformation. The conformations of the rings B–D in the two molecules are identical with six membered rings (B & C) in chair conformations and the five membered rings in envelope forms in both molecules. In both molecules, the 3α -(1,3-dioxoisoindolin-2-yl)- ring systems are individually planar with rms devtaions 0.0148 and 0.0264 Å. The structure is consolidated by intermolecular hydrogen bonding interactions of the type C—H…O involving carbonyl O atoms and methyl, methylene and methylidyne groups, resulting in a two-dimensional structure (Fig. 3).

S2. Experimental

The title compound was prepared by following a literature procedure (Batcho *et al.*, 1981). A solution of potassium tbutoxide (t-BuOK) (2.28 g, 20.0 mmol) in 15 ml THF was added to a suspension of Ph₃PEtBr (7.58 g, 20.0 mmol), in 25 ml dry THF, and was stirred for 1 h at room temperature. The mixture was refluxed for another 4 h after adding epiandrosterone (1.45 g, 5.0 mmol). The residue thus obtained was purified by recrystallization from MeOH to afford 1 (675.8 mg, 45%; Fig. 4). To a solution of 1 (86.9 mg, 0.287 mmol) and triphenylphosphine (85.1 mg, 0.324 mmol) in THF (12 ml), phthalimide (46.5 mg, 0.316 mmol) and diisopropyl azodicarboxylate (63.9 mg, 0.316 mmol) were added, and the mixture was stirred for 18 h at room temperature. The residue was purified by crystallization from MeOH to afford the title compound, 2 (78.0 mg, 63%) as a white solid. The crystals of 2 were obtained by slow evaporation of its solution using a mixed solvent MeOH/CH₂Cl₂ (1:1).

S3. Refinement

H atoms were placed at calculated positions with C—H = 0.95 Å (aryl), 0.98 (methylene), 0.99 (methyl) and 1.00 Å (methyne) and were refined in the riding-model approximation with $U_{iso} = 1.2-1.5$ times U_{eq} of the parent atoms. As the structure has no anomalous scatterer, an absolute structure could not be established in this analysis; the Friedel-pairs (3600) of reflections were merged.

Figure 1

One independent molecule in the asymmetric unit of the title compound, with 30% probability displacement ellipsoids.

Figure 2

The other independent molecule in the asymmetric unit of the title compound, with 30% probability displacement ellipsoids.

Figure 3

The packing of the title compound, showing the two-dimensional structure, with intermolecular hydrogen bonds (dashed lines); for clarity H atoms not involved in H-bonds have been omitted.

Figure 4

The scheme of synthesis of the title compound.

(Z)-3α-(1,3-Dioxoisoindolin-2-yl)-17 (20)-pregnene

Crystal data	
$C_{29}H_{37}NO_2$	a = 7.5895 (10) Å
$M_r = 431.60$	b = 31.355 (3) Å
Monoclinic, $P2_1$	c = 9.8912 (12) Å
Hall symbol: P 2yb	$\beta = 93.056 \ (6)^{\circ}$

 $V = 2350.4 (5) \text{ Å}^{3}$ Z = 4 F(000) = 936 $D_x = 1.220 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7024 reflections

Data collection

Rigaku Saturn724 CCD diffractometer Radiation source: rotating anode Multilayer monochromator Detector resolution: 14.22 pixels mm⁻¹ ω and φ scans Absorption correction: multi-scan (*CrystalClear*; Rigaku/MSC, 2005) $T_{\min} = 0.984, T_{\max} = 0.991$

Refinement

Rejinemeni	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from
$wR(F^2) = 0.096$	neighbouring sites
<i>S</i> = 1.04	H-atom parameters constrained
5642 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0522P)^2 + 0.1053P]$
583 parameters	where $P = (F_o^2 + 2F_c^2)/3$
1 restraint	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.26$ e Å ⁻³
direct methods	$\Delta ho_{\min} = -0.27 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\theta = 1.9 - 28.4^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$

Prism, colorless

 $0.22 \times 0.20 \times 0.12 \text{ mm}$

 $\theta_{\rm max} = 27.9^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$

17383 measured reflections

5642 independent reflections 5296 reflections with $I > 2\sigma(I)$

T = 113 K

 $R_{\rm int} = 0.052$

 $h = -9 \rightarrow 9$

 $k = -41 \rightarrow 35$

 $l = -12 \rightarrow 13$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and	isotropic or e	quivalent isotropic	displacement	parameters ($(Å^2)$)
	1	1 1	1	1 1	\ <i>/</i>	

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.0919 (2)	0.42410 (5)	0.94269 (15)	0.0332 (4)	
O2	-0.0642 (2)	0.30027 (5)	1.15244 (15)	0.0323 (4)	
03	0.6594 (2)	0.33129 (5)	0.49697 (15)	0.0363 (4)	
O4	0.4062 (2)	0.30622 (5)	0.07334 (14)	0.0282 (3)	
N1	-0.0051 (2)	0.35800 (5)	1.01138 (16)	0.0212 (3)	
N2	0.5259 (2)	0.30729 (5)	0.29473 (16)	0.0209 (3)	
C1	-0.2120 (3)	0.27009 (6)	0.8787 (2)	0.0226 (4)	
H1A	-0.3231	0.2561	0.8459	0.027*	
H1B	-0.1964	0.2647	0.9772	0.027*	
C2	-0.2298(3)	0.31824 (7)	0.8555 (2)	0.0245 (4)	

H2A	-0.3138	0.3296	0.9197	0.029*
H2B	-0.2824	0.3229	0.7629	0.029*
C3	-0.0590 (3)	0.34439 (6)	0.87136 (19)	0.0224 (4)
H3	-0.0820	0.3712	0.8188	0.027*
C4	0.0929 (3)	0.32200 (6)	0.80395 (19)	0.0222 (4)
H4A	0.0725	0.3237	0.7044	0.027*
H4B	0.2045	0.3371	0.8286	0.027*
C5	0.1118 (3)	0.27542 (6)	0.84529 (18)	0.0194 (4)
Н5	0.1287	0.2749	0.9462	0.023*
C6	0.2767 (3)	0.25537 (7)	0.78951 (19)	0.0218 (4)
H6A	0.2656	0.2555	0.6893	0.026*
H6B	0.3814	0.2726	0.8183	0.026*
C7	0.3024 (2)	0.20970 (6)	0.83963 (19)	0.0209 (4)
H7A	0.3314	0.2101	0.9384	0.025*
H7B	0.4033	0.1968	0.7951	0.025*
C8	0.1381 (2)	0.18215 (6)	0.81060 (19)	0.0188 (4)
H8	0.1181	0.1790	0.7103	0.023*
C9	-0.0256 (2)	0.20368 (6)	0.86728 (18)	0.0181 (4)
Н9	0.0025	0.2076	0.9664	0.022*
C10	-0.0571 (3)	0.24924 (6)	0.80799 (18)	0.0193 (4)
C11	-0.1900 (3)	0.17485 (7)	0.8555 (2)	0.0233 (4)
H11A	-0.2851	0.1884	0.9052	0.028*
H11B	-0.2312	0.1730	0.7591	0.028*
C12	-0.1595 (3)	0.12943 (7)	0.9107 (2)	0.0224 (4)
H12A	-0.1375	0.1306	1.0102	0.027*
H12B	-0.2667	0.1120	0.8909	0.027*
C13	-0.0016 (3)	0.10837 (6)	0.84645 (19)	0.0200 (4)
C14	0.1594 (2)	0.13797 (6)	0.87296 (18)	0.0192 (4)
H14	0.1701	0.1425	0.9732	0.023*
C15	0.3180 (3)	0.11070 (7)	0.8388 (2)	0.0252 (4)
H15A	0.4285	0.1218	0.8837	0.030*
H15B	0.3313	0.1095	0.7399	0.030*
C16	0.2700 (3)	0.06657 (7)	0.8955 (2)	0.0263 (4)
H16A	0.3051	0.0436	0.8336	0.032*
H16B	0.3308	0.0619	0.9853	0.032*
C17	0.0697 (3)	0.06678 (7)	0.90705 (19)	0.0237 (4)
C18	-0.0176 (3)	0.03466 (7)	0.9622 (2)	0.0291 (5)
H18	0.0521	0.0113	0.9946	0.035*
C19	-0.2132 (3)	0.03103 (8)	0.9792 (3)	0.0352 (5)
H19A	-0.2483	0.0516	1.0474	0.053*
H19B	-0.2412	0.0021	1.0085	0.053*
H19C	-0.2772	0.0371	0.8927	0.053*
C20	-0.0439 (3)	0.10017 (7)	0.6943 (2)	0.0266 (4)
H20A	0.0583	0.0869	0.6546	0.040*
H20B	-0.0710	0.1273	0.6486	0.040*
H20C	-0.1459	0.0811	0.6832	0.040*
C21	-0.0997 (3)	0.24812 (7)	0.65418 (19)	0.0241 (4)
H21A	-0.1986	0.2286	0.6341	0.036*

H21B	0.0040	0.2382	0.6083	0.036*
H21C	-0.1316	0.2768	0.6222	0.036*
C22	0.0686 (3)	0.39855 (7)	1.0316 (2)	0.0234 (4)
C23	-0.0088 (3)	0.33577 (7)	1.13435 (19)	0.0225 (4)
C24	0.0676 (3)	0.36517 (7)	1.24055 (19)	0.0228 (4)
C25	0.1115 (3)	0.40315 (7)	1.1793 (2)	0.0246 (4)
C26	0.1802 (3)	0.43709 (7)	1.2540 (2)	0.0327 (5)
H26	0.2100	0.4632	1.2120	0.039*
C27	0.2040 (4)	0.43139 (8)	1.3936 (2)	0.0387 (6)
H27	0.2503	0.4542	1.4480	0.046*
C28	0.1616 (3)	0.39320 (9)	1.4547 (2)	0.0361 (5)
H28	0.1806	0.3902	1.5499	0.043*
C29	0.0919 (3)	0.35916 (8)	1.3792 (2)	0.0295 (5)
H29	0.0623	0.3330	1.4207	0.035*
C30	0.6180 (3)	0.18753 (7)	0.2866 (2)	0.0267 (4)
H30A	0.7183	0.1847	0.3541	0.032*
H30B	0.6414	0.1685	0.2097	0.032*
C31	0.6114 (3)	0.23375 (7)	0.2351 (2)	0.0266 (4)
H31A	0.7330	0.2448	0.2291	0.032*
H31B	0.5527	0.2346	0.1433	0.032*
C32	0.5104 (3)	0.26194 (6)	0.3308 (2)	0.0220 (4)
H32	0.5656	0.2582	0.4240	0.026*
C33	0.3173 (3)	0.24763 (7)	0.3335 (2)	0.0226 (4)
H33A	0.2446	0.2651	0.2685	0.027*
H33B	0.2748	0.2528	0.4250	0.027*
C34	0.2920 (3)	0.20021 (6)	0.29740 (19)	0.0194 (4)
H34	0.2892	0.1982	0.1964	0.023*
C35	0.1129 (3)	0.18443 (7)	0.3409 (2)	0.0239 (4)
H35A	0.1073	0.1880	0.4401	0.029*
H35B	0.0184	0.2021	0.2967	0.029*
C36	0.0799 (3)	0.13791 (7)	0.3046 (2)	0.0233 (4)
H36A	0.0666	0.1351	0.2049	0.028*
H36B	-0.0318	0.1286	0.3425	0.028*
C37	0.2294 (2)	0.10888 (6)	0.35822 (18)	0.0186 (4)
H37	0.2339	0.1096	0.4594	0.022*
C38	0.4080 (3)	0.12490 (6)	0.30987 (19)	0.0192 (4)
H38	0.3969	0.1247	0.2087	0.023*
C39	0.4472 (2)	0.17192 (6)	0.35221 (18)	0.0184 (4)
C40	0.5592 (3)	0.09406 (7)	0.3504 (2)	0.0278 (4)
H40A	0.6672	0.1036	0.3071	0.033*
H40B	0.5829	0.0956	0.4497	0.033*
C41	0.5217 (3)	0.04757 (7)	0.3106 (2)	0.0287(5)
H41A	0.6196	0.0293	0.3470	0.034*
H41B	0 5159	0.0450	0 2107	0.034*
C42	0.3478 (3)	0.03193 (7)	0.3651(2)	0.0233 (4)
C43	0 2021 (3)	0.06299 (6)	0 31204 (18)	0.0209(4)
H43	0.2081	0.0634	0.2113	0.025*
C44	0.0288 (3)	0.04034 (7)	0.3408(2)	0.0282 (5)
0.11	0.0200 (0)	0.01001(7)	0.5 100 (2)	0.0202 (0)

H44A	-0.0691	0.0504	0.2787	0.034*
H44B	-0.0030	0.0451	0.4354	0.034*
C45	0.0704 (3)	-0.00700 (7)	0.3158 (2)	0.0329 (5)
H45A	0.0266	-0.0249	0.3893	0.039*
H45B	0.0138	-0.0166	0.2286	0.039*
C46	0.2709 (3)	-0.01020 (7)	0.3130 (2)	0.0275 (5)
C47	0.3507 (4)	-0.04530 (8)	0.2710 (2)	0.0346 (5)
H47	0.2742	-0.0674	0.2378	0.042*
C48	0.5431 (4)	-0.05482 (8)	0.2688 (3)	0.0404 (6)
H48A	0.5838	-0.0492	0.1782	0.061*
H48B	0.5637	-0.0849	0.2919	0.061*
H48C	0.6082	-0.0367	0.3349	0.061*
C49	0.3627 (3)	0.02932 (7)	0.5214 (2)	0.0294 (5)
H49A	0.2481	0.0214	0.5550	0.044*
H49B	0.3989	0.0571	0.5587	0.044*
H49C	0.4508	0.0078	0.5496	0.044*
C50	0.4707 (3)	0.17570 (7)	0.5074 (2)	0.0251 (4)
H50A	0.4909	0.2056	0.5324	0.038*
H50B	0.5720	0.1585	0.5401	0.038*
H50C	0.3640	0.1654	0.5484	0.038*
C51	0.6074 (3)	0.33777 (7)	0.3812 (2)	0.0241 (4)
C52	0.4818 (3)	0.32479 (6)	0.16710 (19)	0.0215 (4)
C53	0.5465 (3)	0.36949 (6)	0.17163 (19)	0.0199 (4)
C54	0.6196 (3)	0.37753 (6)	0.30028 (19)	0.0225 (4)
C55	0.6941 (3)	0.41651 (7)	0.3343 (2)	0.0278 (4)
H55	0.7417	0.4223	0.4233	0.033*
C56	0.6962 (3)	0.44707 (7)	0.2317 (2)	0.0303 (5)
H56	0.7488	0.4740	0.2508	0.036*
C57	0.6231 (3)	0.43903 (7)	0.1023 (2)	0.0282 (5)
H57	0.6266	0.4605	0.0349	0.034*
C58	0.5448 (3)	0.39987 (7)	0.0701 (2)	0.0256 (4)
H58	0.4927	0.3943	-0.0175	0.031*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0471 (10)	0.0241 (8)	0.0284 (8)	-0.0045 (7)	0.0028 (7)	0.0046 (6)
O2	0.0435 (9)	0.0258 (8)	0.0274 (7)	-0.0104 (7)	0.0000 (6)	0.0038 (6)
O3	0.0557 (11)	0.0276 (9)	0.0240 (7)	-0.0018 (8)	-0.0127 (7)	0.0044 (6)
O4	0.0325 (8)	0.0286 (8)	0.0228 (7)	-0.0053 (6)	-0.0053 (6)	0.0008 (6)
N1	0.0242 (8)	0.0197 (8)	0.0198 (7)	0.0024 (6)	0.0026 (6)	0.0013 (6)
N2	0.0229 (8)	0.0184 (8)	0.0211 (8)	-0.0003 (7)	-0.0004 (6)	0.0033 (6)
C1	0.0161 (9)	0.0247 (11)	0.0270 (9)	0.0017 (7)	0.0010 (7)	-0.0031 (7)
C2	0.0233 (10)	0.0246 (11)	0.0257 (9)	0.0049 (8)	0.0021 (8)	-0.0024 (7)
C3	0.0258 (10)	0.0201 (10)	0.0211 (9)	0.0035 (8)	0.0006 (8)	0.0012 (7)
C4	0.0238 (10)	0.0222 (10)	0.0208 (9)	-0.0004 (8)	0.0035 (7)	-0.0012 (7)
C5	0.0180 (9)	0.0224 (10)	0.0177 (8)	0.0015 (7)	0.0017 (7)	-0.0021 (7)
C6	0.0194 (9)	0.0253 (10)	0.0212 (9)	-0.0001 (8)	0.0038 (7)	-0.0031 (7)

C7	0.0148 (9)	0.0272 (10)	0.0207 (9)	-0.0001 (7)	0.0015 (7)	-0.0030 (7)
C8	0.0163 (9)	0.0226 (10)	0.0174 (8)	0.0008 (7)	0.0009 (7)	-0.0031(7)
C9	0.0149 (9)	0.0220 (10)	0.0176 (8)	0.0013 (7)	0.0016 (7)	-0.0019 (7)
C10	0.0190 (9)	0.0212 (10)	0.0176 (8)	0.0021 (7)	-0.0001 (7)	-0.0013 (7)
C11	0.0171 (9)	0.0238 (10)	0.0288 (10)	0.0010 (8)	0.0004 (7)	-0.0032 (8)
C12	0.0170 (9)	0.0250 (10)	0.0253 (9)	0.0000 (8)	0.0020 (7)	0.0002 (7)
C13	0.0191 (9)	0.0225 (10)	0.0184 (8)	0.0003 (8)	0.0018 (7)	-0.0014 (7)
C14	0.0168 (9)	0.0227 (10)	0.0181 (8)	0.0033 (7)	0.0014 (7)	-0.0008 (7)
C15	0.0206 (9)	0.0247 (10)	0.0307 (10)	0.0052 (8)	0.0052 (8)	-0.0007 (8)
C16	0.0254 (11)	0.0265 (11)	0.0277 (10)	0.0062 (8)	0.0069 (8)	0.0031 (8)
C17	0.0255 (10)	0.0237 (10)	0.0222 (9)	0.0023 (8)	0.0038 (8)	-0.0028 (7)
C18	0.0324 (12)	0.0257 (11)	0.0299 (10)	0.0039 (9)	0.0081 (9)	0.0009 (8)
C19	0.0364 (13)	0.0272 (12)	0.0432 (13)	-0.0030 (10)	0.0126 (10)	0.0018 (9)
C20	0.0301 (11)	0.0282 (11)	0.0211 (9)	-0.0044 (8)	-0.0017 (8)	-0.0038 (7)
C21	0.0280 (11)	0.0249 (10)	0.0190 (8)	0.0017 (8)	-0.0030 (8)	-0.0016(7)
C22	0.0269 (10)	0.0203 (10)	0.0233 (9)	0.0032 (8)	0.0040 (8)	0.0011 (7)
C23	0.0251 (10)	0.0218 (10)	0.0208 (9)	0.0019 (8)	0.0038 (7)	0.0017 (7)
C24	0.0222 (10)	0.0235 (10)	0.0229 (9)	0.0008 (8)	0.0038 (7)	-0.0011 (7)
C25	0.0253 (10)	0.0231 (10)	0.0260 (10)	0.0011 (8)	0.0056 (8)	-0.0007 (8)
C26	0.0400 (13)	0.0256 (12)	0.0329 (11)	-0.0053 (10)	0.0055 (10)	-0.0038 (8)
C27	0.0498 (15)	0.0345 (13)	0.0316 (12)	-0.0098 (11)	0.0010 (10)	-0.0110 (9)
C28	0.0423 (14)	0.0419 (14)	0.0240 (10)	-0.0056 (11)	-0.0005 (9)	-0.0034 (9)
C29	0.0341 (12)	0.0315 (12)	0.0232 (10)	-0.0018(9)	0.0034 (8)	0.0023 (8)
C30	0.0186 (10)	0.0220 (11)	0.0401 (12)	-0.0002(8)	0.0071 (9)	0.0036 (8)
C31	0.0219 (10)	0.0211 (10)	0.0376 (11)	-0.0012(8)	0.0098 (9)	0.0030 (8)
C32	0.0244 (10)	0.0167 (9)	0.0249 (9)	-0.0010 (8)	0.0000 (8)	0.0047 (7)
C33	0.0212 (10)	0.0231 (10)	0.0238 (9)	0.0030 (8)	0.0046 (7)	0.0033 (7)
C34	0.0179 (9)	0.0211 (10)	0.0191 (8)	-0.0001 (7)	0.0012 (7)	0.0019 (7)
C35	0.0178 (9)	0.0231 (11)	0.0310 (10)	0.0017 (8)	0.0041 (8)	0.0011 (8)
C36	0.0160 (9)	0.0252 (11)	0.0288 (10)	-0.0026 (8)	0.0016 (7)	0.0009 (8)
C37	0.0173 (9)	0.0204 (9)	0.0183 (8)	-0.0020(7)	0.0027 (7)	0.0001 (7)
C38	0.0174 (9)	0.0196 (9)	0.0211 (8)	-0.0013 (7)	0.0050 (7)	0.0006 (7)
C39	0.0163 (9)	0.0182 (9)	0.0209 (8)	-0.0007 (7)	0.0022 (7)	0.0008 (7)
C40	0.0198 (10)	0.0204 (10)	0.0434 (12)	0.0008 (8)	0.0042 (9)	0.0048 (9)
C41	0.0260 (11)	0.0217 (11)	0.0395 (12)	0.0014 (8)	0.0105 (9)	0.0008 (8)
C42	0.0275 (10)	0.0193 (10)	0.0238 (9)	-0.0016 (8)	0.0069 (8)	-0.0012 (7)
C43	0.0228 (10)	0.0214 (10)	0.0191 (8)	-0.0044 (8)	0.0052 (7)	-0.0024 (7)
C44	0.0254 (11)	0.0276 (11)	0.0324 (11)	-0.0084 (8)	0.0078 (8)	-0.0069 (8)
C45	0.0370 (13)	0.0246 (11)	0.0383 (12)	-0.0105 (9)	0.0132 (10)	-0.0057 (9)
C46	0.0373 (12)	0.0219 (10)	0.0241 (10)	-0.0054 (9)	0.0092 (9)	-0.0010 (8)
C47	0.0450 (14)	0.0272 (12)	0.0318 (11)	-0.0028 (10)	0.0030 (10)	-0.0057 (9)
C48	0.0478 (15)	0.0281 (13)	0.0442 (13)	0.0077 (11)	-0.0080 (11)	-0.0132 (10)
C49	0.0389 (12)	0.0245 (11)	0.0248 (10)	0.0028 (9)	0.0027 (9)	0.0015 (8)
C50	0.0298 (11)	0.0212 (10)	0.0235 (9)	-0.0036 (8)	-0.0040 (8)	0.0029 (7)
C51	0.0283 (11)	0.0215 (10)	0.0224 (9)	0.0000 (8)	-0.0013 (8)	0.0004 (7)
C52	0.0203 (10)	0.0227 (10)	0.0215 (9)	0.0007 (7)	0.0008 (7)	0.0037 (7)
C53	0.0197 (9)	0.0181 (9)	0.0221 (9)	0.0026 (7)	0.0023 (7)	-0.0001 (7)
C54	0.0242 (10)	0.0213 (10)	0.0219 (9)	0.0025 (8)	0.0015 (7)	0.0002 (7)

supporting information

C55	0.0345 (12)	0.0207 (10)	0.0280 (10)	0.0008 (9)	-0.0001 (8)	-0.0031 (8)
C56	0.0376 (13)	0.0192 (10)	0.0343 (11)	-0.0020 (9)	0.0048 (9)	-0.0035 (8)
C57	0.0392 (13)	0.0189 (10)	0.0274 (10)	0.0041 (9)	0.0085 (9)	0.0039 (7)
C58	0.0324 (11)	0.0231 (10)	0.0215 (9)	0.0028 (8)	0.0043 (8)	0.0018 (7)

Geometric parameters (Å, °)

01-C22	1.210 (2)	C27—C28	1.387 (4)
O2—C23	1.207 (3)	С27—Н27	0.9500
O3—C51	1.208 (2)	C28—C29	1.391 (3)
O4—C52	1.213 (2)	C28—H28	0.9500
N1—C22	1.399 (3)	С29—Н29	0.9500
N1—C23	1.403 (2)	C30—C31	1.536 (3)
N1—C3	1.486 (2)	C30—C39	1.559 (3)
N2—C52	1.401 (2)	С30—Н30А	0.9900
N2—C51	1.404 (3)	С30—Н30В	0.9900
N2—C32	1.472 (2)	C31—C32	1.531 (3)
C1—C2	1.532 (3)	C31—H31A	0.9900
C1—C10	1.544 (3)	C31—H31B	0.9900
C1—H1A	0.9900	C32—C33	1.534 (3)
C1—H1B	0.9900	С32—Н32	1.0000
C2—C3	1.534 (3)	C33—C34	1.539 (3)
C2—H2A	0.9900	С33—Н33А	0.9900
C2—H2B	0.9900	С33—Н33В	0.9900
C3—C4	1.532 (3)	C34—C35	1.530 (3)
С3—Н3	1.0000	C34—C39	1.549 (3)
C4—C5	1.521 (3)	С34—Н34	1.0000
C4—H4A	0.9900	C35—C36	1.520 (3)
C4—H4B	0.9900	С35—Н35А	0.9900
C5—C6	1.529 (3)	С35—Н35В	0.9900
C5—C10	1.550 (3)	C36—C37	1.527 (3)
С5—Н5	1.0000	С36—Н36А	0.9900
C6—C7	1.525 (3)	С36—Н36В	0.9900
C6—H6A	0.9900	C37—C43	1.521 (3)
С6—Н6В	0.9900	C37—C38	1.545 (2)
C7—C8	1.531 (3)	С37—Н37	1.0000
С7—Н7А	0.9900	C38—C40	1.537 (3)
С7—Н7В	0.9900	C38—C39	1.557 (3)
C8—C14	1.521 (3)	C38—H38	1.0000
С8—С9	1.546 (2)	C39—C50	1.540 (3)
С8—Н8	1.0000	C40—C41	1.533 (3)
C9—C11	1.540 (3)	C40—H40A	0.9900
C9—C10	1.558 (3)	C40—H40B	0.9900
С9—Н9	1.0000	C41—C42	1.533 (3)
C10—C21	1.539 (2)	C41—H41A	0.9900
C11—C12	1.538 (3)	C41—H41B	0.9900
C11—H11A	0.9900	C42—C46	1.523 (3)
C11—H11B	0.9900	C42—C43	1.544 (3)

C12—C13	1 535 (3)	C42—C49	1547(3)
C_{12} H_{12}	0.9900	C43-C44	1.517(3) 1 534(3)
C12—H12B	0.9900	C43 - H43	1,0000
C_{13} C_{17}	1 523 (3)	C44— $C45$	1.540(3)
C_{13} C_{20}	1.525(3) 1.543(3)	C44 $H44A$	0.0000
$C_{13} = C_{20}$	1.545(3) 1.546(3)		0.9900
C13 - C14	1.540(3)	C_{44} T_{44} D_{44} D	0.3300 1 527 (2)
C14 $U14$	1.0000	$C_{45} = U_{45} \Lambda$	1.527(5)
	1.0000	C45_H45A	0.9900
C15C16	1.344 (3)	C45—H45B	0.9900
CIS—HISA	0.9900	C40-C47	1.333 (3)
CIS—HISB	0.9900	C4/-C48	1.492 (4)
C16—C17	1.530 (3)	C4/—H4/	0.9500
C16—H16A	0.9900	C48—H48A	0.9800
C16—H16B	0.9900	C48—H48B	0.9800
C17—C18	1.338 (3)	C48—H48C	0.9800
C18—C19	1.507 (3)	C49—H49A	0.9800
C18—H18	0.9500	C49—H49B	0.9800
C19—H19A	0.9800	C49—H49C	0.9800
C19—H19B	0.9800	C50—H50A	0.9800
C19—H19C	0.9800	C50—H50B	0.9800
C20—H20A	0.9800	С50—Н50С	0.9800
C20—H20B	0.9800	C51—C54	1.487 (3)
C20—H20C	0.9800	C52—C53	1.485 (3)
C21—H21A	0.9800	C53—C58	1.384 (3)
C21—H21B	0.9800	C53—C54	1.384 (3)
C21—H21C	0.9800	C54—C55	1.381 (3)
C22—C25	1.487 (3)	C55—C56	1.397 (3)
C23—C24	1.491 (3)	С55—Н55	0.9500
C24—C25	1.384 (3)	C56—C57	1.391 (3)
C_{24} C_{29}	1.387(3)	C56—H56	0.9500
C_{25}	1.381(3)	C57—C58	1 393 (3)
$C_{25} = C_{20}$	1.301(3) 1 394(3)	C57—E58	0.9500
C26 H26	0.0500	C58 H58	0.9500
0.20-1120	0.9300	0.56-1156	0.9500
C22—N1—C23	110.72 (17)	C24—C29—C28	116.9 (2)
C22—N1—C3	118.85 (16)	С24—С29—Н29	121.5
$C_{23} = N_{1} = C_{3}$	130.38 (17)	C28—C29—H29	121.5
C52 - N2 - C51	111.04 (16)	C31 - C30 - C39	114 93 (17)
$C_{52} = N_{2} = C_{32}$	125 32 (17)	C31—C30—H30A	108 5
$C_{51} = N_{2} = C_{32}$	123.32 (17)	C39—C30—H30A	108.5
C_{2} C_{1} C_{10}	123.27(10) 114.37(17)	C_{31} $-C_{30}$ $-H_{30B}$	108.5
$C_2 C_1 H_1 \Lambda$	108 7	C39 C30 H30B	108.5
$C_2 = C_1 = H_1 \Lambda$	108.7	H30A C30 H30B	107.5
C_{10} C_{10} H_{1R}	108.7	C_{22} C_{21} C_{20}	107.5
$C_2 = C_1 = \Pi D$	100.7	$C_{32} = C_{31} = C_{30}$	110.57 (10)
$U_{10} - U_{1} - \Pi_{1D}$	100./	C_{32} C_{31} C	109.0
$\Pi A - C I - \Pi I D$	10/.0	C_{30} C_{31} C	109.0
$C_1 = C_2 = C_3$	110.33(17)	C_{22} C_{21} C	109.0
	108.7	UNT-UNT-HNB	109.0

C3—C2—H2A	108.2	H31A—C31—H31B	108.1
C1—C2—H2B	108.2	N2—C32—C31	111.04 (16)
C3—C2—H2B	108.2	N2—C32—C33	112.05 (17)
H2A—C2—H2B	107.4	C31—C32—C33	110.65 (17)
N1—C3—C4	111.16 (16)	N2—C32—H32	107.6
N1—C3—C2	115.98 (16)	С31—С32—Н32	107.6
C4—C3—C2	111.20 (17)	С33—С32—Н32	107.6
N1—C3—H3	105.9	C32—C33—C34	112.69 (16)
С4—С3—Н3	105.9	С32—С33—Н33А	109.1
С2—С3—Н3	105.9	С34—С33—Н33А	109.1
C5—C4—C3	112.65 (16)	С32—С33—Н33В	109.1
С5—С4—Н4А	109.1	С34—С33—Н33В	109.1
C3—C4—H4A	109.1	H33A—C33—H33B	107.8
C5—C4—H4B	109.1	C35—C34—C33	110.41 (16)
C3—C4—H4B	109.1	C35—C34—C39	112.75 (15)
H4A—C4—H4B	107.8	C33—C34—C39	112.90 (16)
C4—C5—C6	111.40 (16)	С35—С34—Н34	106.8
C4—C5—C10	112.30 (16)	С33—С34—Н34	106.8
C6—C5—C10	112.24 (16)	С39—С34—Н34	106.8
С4—С5—Н5	106.8	C36—C35—C34	112.41 (16)
С6—С5—Н5	106.8	С36—С35—Н35А	109.1
С10—С5—Н5	106.8	С34—С35—Н35А	109.1
C7—C6—C5	111.21 (15)	С36—С35—Н35В	109.1
С7—С6—Н6А	109.4	С34—С35—Н35В	109.1
С5—С6—Н6А	109.4	H35A—C35—H35B	107.9
С7—С6—Н6В	109.4	C35—C36—C37	112.34 (17)
С5—С6—Н6В	109.4	С35—С36—Н36А	109.1
H6A—C6—H6B	108.0	С37—С36—Н36А	109.1
C6—C7—C8	112.34 (16)	С35—С36—Н36В	109.1
С6—С7—Н7А	109.1	С37—С36—Н36В	109.1
С8—С7—Н7А	109.1	H36A—C36—H36B	107.9
С6—С7—Н7В	109.1	C43—C37—C36	111.88 (16)
С8—С7—Н7В	109.1	C43—C37—C38	108.82 (15)
H7A—C7—H7B	107.9	C36—C37—C38	110.27 (15)
C14—C8—C7	111.70 (16)	С43—С37—Н37	108.6
C14—C8—C9	108.70 (15)	С36—С37—Н37	108.6
C7—C8—C9	110.37 (15)	С38—С37—Н37	108.6
С14—С8—Н8	108.7	C40—C38—C37	111.70 (16)
С7—С8—Н8	108.7	C40—C38—C39	113.34 (17)
С9—С8—Н8	108.7	C37—C38—C39	112.50 (15)
C11—C9—C8	112.36 (16)	C40—C38—H38	106.2
C11—C9—C10	113.73 (16)	С37—С38—Н38	106.2
C8—C9—C10	111.96 (15)	С39—С38—Н38	106.2
С11—С9—Н9	106.0	C50—C39—C34	110.48 (15)
С8—С9—Н9	106.0	C50—C39—C38	110.56 (15)
С10—С9—Н9	106.0	C34—C39—C38	108.50 (15)
C21—C10—C1	109.42 (16)	C50—C39—C30	109.65 (16)
C21—C10—C5	112.02 (15)	C34—C39—C30	107.93 (15)

C1-C10-C5	107.91 (15)	C38—C39—C30	109.66 (15)
C21—C10—C9	111.78 (16)	C41—C40—C38	113.94 (18)
C1—C10—C9	108.84 (15)	C41—C40—H40A	108.8
C5—C10—C9	106.73 (15)	C38—C40—H40A	108.8
C12—C11—C9	114.24 (16)	C41—C40—H40B	108.8
C12—C11—H11A	108.7	C38—C40—H40B	108.8
C9—C11—H11A	108.7	H40A—C40—H40B	107.7
C12—C11—H11B	108.7	C40—C41—C42	111.44 (17)
C9—C11—H11B	108.7	C40—C41—H41A	109.3
H11A—C11—H11B	107.6	C42—C41—H41A	109.3
C13—C12—C11	110.97 (16)	C40—C41—H41B	109.3
C13—C12—H12A	109.4	C42—C41—H41B	109.3
C11—C12—H12A	109.4	H41A—C41—H41B	108.0
C13—C12—H12B	109.4	C46—C42—C41	118.69 (17)
C11—C12—H12B	109.4	C46—C42—C43	100.25 (17)
H12A—C12—H12B	108.0	C41—C42—C43	107.07 (16)
C17—C13—C12	118.33 (16)	C46—C42—C49	107.39 (16)
C17—C13—C20	106.99 (16)	C41—C42—C49	110.45 (19)
C12—C13—C20	110.40 (17)	C43—C42—C49	112.71 (16)
C17—C13—C14	100.73 (15)	C37—C43—C44	119.13 (16)
C12—C13—C14	107.40 (16)	C37—C43—C42	114.27 (16)
C20-C13-C14	112.77 (15)	C44—C43—C42	104.49 (17)
C8—C14—C15	119.19 (16)	С37—С43—Н43	106.0
C8—C14—C13	114.32 (16)	C44—C43—H43	106.0
C15—C14—C13	104.56 (16)	C42—C43—H43	106.0
C8—C14—H14	105.9	C43—C44—C45	103.37 (17)
C15—C14—H14	105.9	C43—C44—H44A	111.1
C13—C14—H14	105.9	C45—C44—H44A	111.1
C14—C15—C16	102.55 (16)	C43—C44—H44B	111.1
C14—C15—H15A	111.3	C45—C44—H44B	111.1
C16—C15—H15A	111.3	H44A—C44—H44B	109.1
C14—C15—H15B	111.3	C46—C45—C44	106.23 (17)
C16—C15—H15B	111.3	C46—C45—H45A	110.5
H15A—C15—H15B	109.2	C44—C45—H45A	110.5
C17—C16—C15	106.14 (17)	C46—C45—H45B	110.5
C17—C16—H16A	110.5	C44—C45—H45B	110.5
C15—C16—H16A	110.5	H45A—C45—H45B	108.7
C17—C16—H16B	110.5	C47—C46—C42	130.5 (2)
C15—C16—H16B	110.5	C47—C46—C45	122.0 (2)
H16A—C16—H16B	108.7	C42—C46—C45	107.50 (17)
C18—C17—C13	129.17 (19)	C46—C47—C48	129.1 (2)
C18—C17—C16	122.9 (2)	C46—C47—H47	115.4
C13—C17—C16	107.93 (16)	C48—C47—H47	115.4
C17—C18—C19	127.9 (2)	C47—C48—H48A	109.5
C17—C18—H18	116.0	C47—C48—H48B	109.5
C19—C18—H18	116.0	H48A—C48—H48B	109.5
C18—C19—H19A	109.5	C47—C48—H48C	109.5
C18—C19—H19B	109.5	H48A—C48—H48C	109.5

H19A—C19—H19B	109.5	H48B—C48—H48C	109.5
C18—C19—H19C	109.5	С42—С49—Н49А	109.5
H19A—C19—H19C	109.5	C42—C49—H49B	109.5
H19B—C19—H19C	109.5	H49A—C49—H49B	109.5
С13—С20—Н20А	109.5	С42—С49—Н49С	109.5
C13—C20—H20B	109.5	H49A—C49—H49C	109.5
H20A—C20—H20B	109.5	H49B—C49—H49C	109.5
C13—C20—H20C	109.5	С39—С50—Н50А	109.5
H20A—C20—H20C	109.5	C39—C50—H50B	109.5
H20B—C20—H20C	109.5	H50A—C50—H50B	109.5
C10—C21—H21A	109.5	C39—C50—H50C	109.5
C10-C21-H21B	109.5	$H_{50A} - C_{50} - H_{50C}$	109.5
$H_{21}A = C_{21} = H_{21}B$	109.5	H50B-C50-H50C	109.5
C10-C21-H21C	109.5	03-C51-N2	125.04 (19)
$H_{21}A = C_{21} = H_{21}C$	109.5	03 - 051 - 054	123.61(19) 128.65(19)
$H_{21B} = C_{21} = H_{21C}$	109.5	N2_C51_C54	120.03(17) 106.28(16)
$\Omega_1 = \Omega_2 = \Omega_1 = \Omega_2 = \Omega_1$	109.5 124.81(10)	04 C52 N2	100.26(10) 125.56(10)
01 - 022 - 025	124.01(19) 128.1(2)	04 - 052 - 102	123.30(19) 128.10(18)
N1 C22 C25	120.1(2) 107.07(16)	04 - 052 - 053	126.19(16) 106.25(17)
N1 - C22 - C23	107.07(10) 127.50(10)	$N_2 = C_{52} = C_{53}$	100.23(17)
02 - 023 - 024	127.39 (19)	$C_{58} = C_{53} = C_{54}$	121.97 (19)
02-023-024	126.24 (18)	$C_{58} = C_{53} = C_{52}$	129.63 (19)
NI-C23-C24	106.16 (17)	054-053-052	108.38 (17)
C25—C24—C29	121.8 (2)	C55—C54—C53	121.63 (18)
C25—C24—C23	108.49 (17)	C55—C54—C51	130.32 (18)
C29—C24—C23	129.69 (19)	C53—C54—C51	107.99 (17)
C26—C25—C24	121.4 (2)	C54—C55—C56	116.76 (19)
C26—C25—C22	131.0 (2)	С54—С55—Н55	121.6
C24—C25—C22	107.53 (18)	С56—С55—Н55	121.6
C25—C26—C27	117.1 (2)	C57—C56—C55	121.7 (2)
C25—C26—H26	121.4	С57—С56—Н56	119.2
С27—С26—Н26	121.4	С55—С56—Н56	119.2
C28—C27—C26	121.4 (2)	C56—C57—C58	120.95 (19)
С28—С27—Н27	119.3	С56—С57—Н57	119.5
С26—С27—Н27	119.3	С58—С57—Н57	119.5
C27—C28—C29	121.3 (2)	C53—C58—C57	116.98 (19)
С27—С28—Н28	119.4	С53—С58—Н58	121.5
C29—C28—H28	119.4	С57—С58—Н58	121.5
C10—C1—C2—C3	-45.7(2)	C39—C30—C31—C32	37.1 (3)
C22—N1—C3—C4	90.0 (2)	C52—N2—C32—C31	55.2 (3)
C23—N1—C3—C4	-87.3(2)	C51—N2—C32—C31	-117.0(2)
C22—N1—C3—C2	-141.66(18)	C52—N2—C32—C33	-69.1(2)
$C_{23} = N_1 = C_3 = C_2$	41.1 (3)	C_{51} N_{2} C_{32} C_{33}	118.7(2)
C1-C2-C3-N1	-851(2)	C_{30} C_{31} C_{32} N_{2}	171 34 (17)
C1 - C2 - C3 - C4	43 2 (2)	C_{30} C_{31} C_{32} C_{33}	-63.6(2)
$N_1 - C_3 - C_4 - C_5$	81 2 (2)	N_{2} C_{32} C_{33} C_{34}	150 33 (16)
C_{2} C_{3} C_{4} C_{5}	-496(2)	C_{31} C_{32} C_{33} C_{34}	$25 \times (2)$
$C_2 = C_3 = C_4 = C_5$	-173.40(16)	$C_{32} = C_{32} = C_{33} = C_{34} = C_{35}$	25.0(2)
C_{1}	1/3.47 (10)	032-033-034-033	103.40 (10)

C3—C4—C5—C10	59.6 (2)	C32—C33—C34—C39	36.2 (2)
C4—C5—C6—C7	175.86 (16)	C33—C34—C35—C36	178.74 (16)
C10—C5—C6—C7	-57.2 (2)	C39—C34—C35—C36	-53.9 (2)
C5—C6—C7—C8	53.6 (2)	C34—C35—C36—C37	53.5 (2)
C6-C7-C8-C14	-174.54 (14)	C35—C36—C37—C43	-175.55 (15)
C6—C7—C8—C9	-53.5 (2)	C35—C36—C37—C38	-54.3 (2)
C14—C8—C9—C11	-50.5 (2)	C43—C37—C38—C40	-51.4 (2)
C7—C8—C9—C11	-173.29 (16)	C36—C37—C38—C40	-174.50 (16)
C14—C8—C9—C10	-179.90(15)	C43—C37—C38—C39	179.77 (15)
C7—C8—C9—C10	57.3 (2)	C36—C37—C38—C39	56.7 (2)
C2-C1-C10-C21	-71.3 (2)	C35—C34—C39—C50	-67.3(2)
C2-C1-C10-C5	50.8 (2)	C33—C34—C39—C50	58.7 (2)
C2-C1-C10-C9	166.25 (16)	C35—C34—C39—C38	54.08 (19)
C4—C5—C10—C21	62.4 (2)	C33—C34—C39—C38	-179.93(14)
C6-C5-C10-C21	-64.1(2)	C_{35} C_{34} C_{39} C_{30}	172.84 (16)
C4-C5-C10-C1	-58.15(19)	C_{33} C_{34} C_{39} C_{30}	-612(2)
C6-C5-C10-C1	175 42 (16)	C40-C38-C39-C50	-62.6(2)
C4-C5-C10-C9	-17499(14)	C_{37} C_{38} C_{39} C_{50}	653(2)
C6-C5-C10-C9	58 58 (19)	C40-C38-C39-C34	176.08(15)
$C_{11} = C_{10} = C_{10} = C_{21}$	-647(2)	C_{37} C_{38} C_{39} C_{34}	-55.99(19)
C8 - C9 - C10 - C21	64.1(2)	C40-C38-C39-C30	58 4 (2)
$C_{11} = C_{10} = C_{10} = C_{10}$	563(2)	C_{37} C_{38} C_{39} C_{30}	-173.65(16)
C_{8}^{-} C_{9}^{-} C_{10}^{-} C_{1}^{1}	-174.97(15)	C_{31} C_{30} C_{39} C_{50}	-97.8(2)
$C_{3} - C_{3} - C_{10} - C_{10}$	174.97(13) 172.55(14)	$C_{31} = C_{30} = C_{39} = C_{30}$	27.6(2)
$C_{1}^{8} = C_{1}^{9} = C_{1}^{10} = C_{2}^{5}$	-58.75(18)	$C_{31} = C_{30} = C_{39} = C_{34}$	140.61.(18)
$C_{8} = C_{9} = C_{10} = C_{3}$	50.1.(2)	$C_{37} = C_{30} = C_{39} = C_{38}$	51.1(2)
$C_{10} = C_{10} = C_{11} = C_{12}$	50.1(2) 178.62(15)	$C_{30} = C_{30} = C_{40} = C_{41}$	170 42 (16)
$C_{10} = C_{11} = C_{12} = C_{12}$	-522(2)	$C_{39} = C_{30} = C_{40} = C_{41}$	-540(2)
C_{9} C_{11} C_{12} C_{13} C_{17}	-33.2(2)	$C_{38} - C_{40} - C_{41} - C_{42} - C_{46}$	-34.0(2)
C11 - C12 - C13 - C17	100.00(17)	C40 - C41 - C42 - C40	100.13(19)
C11 - C12 - C13 - C20	-0/.4(2)	C40 - C41 - C42 - C43	33.8(2)
C11 - C12 - C13 - C14	53.9 (2)	$C_{40} = C_{41} = C_{42} = C_{49}$	-07.5(2)
$C_{}C_{8}C_{14}C_{15}$	-54.9(2)	$C_{30} = C_{37} = C_{43} = C_{44}$	-34.0(2)
$C_{2} = C_{3} = C_{14} = C_{12}$	-1/0.95(1/)	$C_{38} = C_{37} = C_{43} = C_{44}$	-1/6./2(1/)
C/-C8-C14-C13	-1/9.5/(14)	$C_{36} = C_{37} = C_{43} = C_{42}$	-1/9.08(15)
C_{9} C_{8} C_{14} C_{13}	58.41 (19)	$C_{38} = C_{37} = C_{43} = C_{42}$	58.84 (19)
C17 - C13 - C14 - C8	1/4.11 (14)	C46 - C42 - C43 - C37	1/4.66 (15)
C12-C13-C14-C8	-61.45 (19)	C41 - C42 - C43 - C37	-60.9 (2)
C_{20} $-C_{13}$ $-C_{14}$ $-C_{8}$	60.4 (2)	C49 - C42 - C43 - C37	60.8 (2)
C17 - C13 - C14 - C15	42.02 (17)	C46-C42-C43-C44	42.74 (17)
C12-C13-C14-C15	166.46 (15)	C41 - C42 - C43 - C44	167.20 (16)
C20—C13—C14—C15	-71.7(2)	C49—C42—C43—C44	-/1.1 (2)
C8—C14—C15—C16	-168.54 (17)	C37—C43—C44—C45	-165.23 (18)
C13—C14—C15—C16	-39.30 (19)	C42—C43—C44—C45	-36.2 (2)
C14—C15—C16—C17	20.9 (2)	C43—C44—C45—C46	15.0 (2)
C12—C13—C17—C18	34.9 (3)	C41—C42—C46—C47	31.1 (3)
C20—C13—C17—C18	-90.4 (2)	C43—C42—C46—C47	147.1 (2)
C14—C13—C17—C18	151.6 (2)	C49—C42—C46—C47	-95.0 (3)
C12—C13—C17—C16	-145.12 (17)	C41—C42—C46—C45	-149.3 (2)

C20-C13-C17-C16	89.52 (19)	C43—C42—C46—C45	-33.23 (19)
C14—C13—C17—C16	-28.51 (18)	C49—C42—C46—C45	84.7 (2)
C15—C16—C17—C18	-174.9 (2)	C44—C45—C46—C47	-168.5 (2)
C15—C16—C17—C13	5.1 (2)	C44—C45—C46—C42	11.8 (2)
C13—C17—C18—C19	0.0 (4)	C42—C46—C47—C48	3.4 (4)
C16—C17—C18—C19	-179.9 (2)	C45—C46—C47—C48	-176.2 (2)
C23—N1—C22—O1	178.1 (2)	C52—N2—C51—O3	-179.8 (2)
C3—N1—C22—O1	0.3 (3)	C32—N2—C51—O3	-6.6 (3)
C23—N1—C22—C25	-1.5 (2)	C52—N2—C51—C54	-1.4 (2)
C3—N1—C22—C25	-179.25 (16)	C32—N2—C51—C54	171.68 (17)
C22—N1—C23—O2	179.7 (2)	C51—N2—C52—O4	-178.0 (2)
C3—N1—C23—O2	-2.8 (4)	C32—N2—C52—O4	9.0 (3)
C22—N1—C23—C24	0.6 (2)	C51—N2—C52—C53	2.2 (2)
C3—N1—C23—C24	178.00 (18)	C32—N2—C52—C53	-170.77 (17)
O2—C23—C24—C25	-178.5 (2)	O4—C52—C53—C58	-3.6 (4)
N1—C23—C24—C25	0.6 (2)	N2-C52-C53-C58	176.2 (2)
O2—C23—C24—C29	-0.2 (4)	O4—C52—C53—C54	178.1 (2)
N1—C23—C24—C29	179.0 (2)	N2-C52-C53-C54	-2.1 (2)
C29—C24—C25—C26	-0.6 (3)	C58—C53—C54—C55	0.3 (3)
C23—C24—C25—C26	177.9 (2)	C52—C53—C54—C55	178.75 (19)
C29—C24—C25—C22	-179.99 (19)	C58—C53—C54—C51	-177.17 (19)
C23—C24—C25—C22	-1.5 (2)	C52—C53—C54—C51	1.3 (2)
O1—C22—C25—C26	3.0 (4)	O3—C51—C54—C55	1.1 (4)
N1-C22-C25-C26	-177.5 (2)	N2-C51-C54-C55	-177.2 (2)
O1—C22—C25—C24	-177.7 (2)	O3—C51—C54—C53	178.3 (2)
N1-C22-C25-C24	1.8 (2)	N2-C51-C54-C53	0.1 (2)
C24—C25—C26—C27	0.2 (3)	C53—C54—C55—C56	-1.6 (3)
C22—C25—C26—C27	179.4 (2)	C51—C54—C55—C56	175.3 (2)
C25—C26—C27—C28	0.4 (4)	C54—C55—C56—C57	1.4 (3)
C26—C27—C28—C29	-0.6 (4)	C55—C56—C57—C58	-0.1 (3)
C25—C24—C29—C28	0.4 (3)	C54—C53—C58—C57	1.0 (3)
C23—C24—C29—C28	-177.8 (2)	C52—C53—C58—C57	-177.01 (19)
C27—C28—C29—C24	0.2 (4)	C56—C57—C58—C53	-1.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C1—H1 <i>B</i> ···O2	0.99	2.25	3.027 (3)	134
С3—Н3…О1	1.00	2.41	2.823 (3)	104
C5—H5…O4 ⁱ	1.00	2.59	3.237 (3)	122
С21—Н21С…ОЗ ^{іі}	0.98	2.60	3.501 (3)	153
C31—H31A····O2 ⁱⁱⁱ	0.99	2.47	3.361 (3)	150
C31—H31 <i>B</i> ···O4	0.99	2.58	3.144 (3)	116
С32—Н32…О3	1.00	2.49	2.917 (3)	105

Symmetry codes: (i) *x*, *y*, *z*+1; (ii) *x*-1, *y*, *z*; (iii) *x*+1, *y*, *z*-1.