

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# Methyl 3-(4-isopropylphenyl)-1-phenyl-3.3a.4.9b-tetrahvdro-1H-chromeno-[4,3-c]isoxazole-3a-carboxylate

## J. Kanchanadevi,<sup>a</sup> G. Anbalagan,<sup>b</sup> J. Srinivasan,<sup>c</sup> M. Bakthadoss<sup>c</sup> and V. Manivannan<sup>d</sup>\*

<sup>a</sup>Department of Physics, Velammal Institute of Technology, Panchetty, Chennai 601 204, India, <sup>b</sup>Department of Physics, Presidency College (Autonomous), Chennai 600 005, India, <sup>c</sup>Department of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India, and <sup>d</sup>Department of Research and Development, PRIST University, Vallam, Thanjavur 613 403, Tamil Nadu, India Correspondence e-mail: crystallography2010@gmail.com

Received 23 June 2011; accepted 3 July 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.054; wR factor = 0.166; data-to-parameter ratio = 29.3.

In the title compound,  $C_{27}H_{27}NO_4$ , the five-membered isoxazole ring adopts an envelope conformation and the sixmembered pyran ring adopts a half-chair conformation. The dihedral angle between the mean planes of the isoxazole ring and the chromene ring system is  $54.95 (4)^{\circ}$ .

### **Related literature**

For the biological activity of chromenopyrrole, see: Caine (1993) and of benzopyran and isoxazolidine, see: Lin et al. (1996); Hu et al. (2004). For related structures, see: Gangadharan et al. (2011); Swaminathan et al. (2011).



### **Experimental**

### Crystal data

| C <sub>27</sub> H <sub>27</sub> NO <sub>4</sub> | $\gamma = 96.385 \ (1)^{\circ}$           |
|-------------------------------------------------|-------------------------------------------|
| $M_r = 429.50$                                  | V = 1153.88 (7) Å <sup>3</sup>            |
| Triclinic, P1                                   | Z = 2                                     |
| a = 9.3555 (3) Å                                | Mo $K\alpha$ radiation                    |
| b = 10.7247 (4) Å                               | $\mu = 0.08 \text{ mm}^{-1}$              |
| c = 12.0449 (4) Å                               | $T = 295  { m K}$                         |
| $\alpha = 94.707 \ (1)^{\circ}$                 | $0.35 \times 0.30 \times 0.25 \text{ mm}$ |
| $\beta = 104.730 \ (1)^{\circ}$                 |                                           |
|                                                 |                                           |

#### Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS: Sheldrick, 1996)  $T_{\min} = 0.937, T_{\max} = 0.954$ 

### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.054$  $wR(F^2) = 0.166$ S = 1.038565 reflections

32129 measured reflections 8565 independent reflections 4738 reflections with  $I=2\sigma(I)$  $R_{\rm int} = 0.030$ 

292 parameters H-atom parameters constrained  $\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$ 

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008): program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2423).

### References

- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Caine, B. (1993). Science, 260, 1814-1816.
- Gangadharan, R., SethuSankar, K., Murugan, G. & Bakthadoss, M. (2011). Acta Cryst. E67, 0942.
- Hu, H., Harrison, T. J. & Wilson, P. D. (2004). J. Org. Chem. 69, 3782-3786.
- Lin, G. N., Lu, C. M., Lin, H. C., Fang, S. C., Shieh, B. J., Hsu, M. F., Wang, J. P.,
- Ko, F. N. & Teng, C. M. (1996). J. Nat. Prod. 59, 834-838. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Swaminathan, K., Sethusankar, K., Murugan, G. & Bakthadoss, M. (2011). Acta Cryst. E67, 0905.

# supporting information

Acta Cryst. (2011). E67, o1989 [doi:10.1107/S1600536811026365]

# Methyl 3-(4-isopropylphenyl)-1-phenyl-3,3a,4,9b-tetrahydro-1*H*-chromeno[4,3*c*]isoxazole-3a-carboxylate

# J. Kanchanadevi, G. Anbalagan, J. Srinivasan, M. Bakthadoss and V. Manivannan

# S1. Comment

Chromenopyrrole compounds are used in the treatment of impulsive disorders (Caine, 1993). It is well known that benzopyran and isoxazolidine derivatives possess interesting biological and pharmacological activities (Lin *et al.*, 1996; Hu *et al.*, 2004).

The geometric parameters of the title molecule (Fig. 1) agree well with the corresponding geometric parameters reported in closely related structures (Gangadharan *et al.*, 2011; Swaminathan *et al.*, 2011). The dihedral angle between the two benzene rings [(C11—C16) and (C17—C22)] is 73.02 (2) °. The sum of bond angles around N1 [335.04 (9) °]indicates the *sp*<sup>3</sup> hybridization state of atom N1 in the molecule. The molecular structure is stabilized by weak intramolecular C—H…O interactions.

# S2. Experimental

A mixture of (*E*)-methyl 2-((2-formylphenoxy)methyl)-3-(4-isopropylphenyl) acrylate (2 mmol, 0.68 g) and *N*-phenylhydroxylamine (3 mmol, 0.33 g) in ethanol (10 ml) was refluxed for 6 h. After the completion of the reaction as indicated by TLC, the reaction mixture was concentrated and the resulting crude mass was diluted with water (15 ml) and extracted with ethyl acetate (3x15 ml). The combined organic layer was washed with brine (3x15 ml) and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, solvent was removed under reduced pressure. The crude mass was purified by column chromatography on silica gel (Acme 100–200 mesh), using ethyl acetate-hexane (0.5: 9.5) to afford the title compound as a colourless solid in 84% yield. The compound was recrystallised from ethyl acetate to produce X-ray diffraction quality crystals.

# S3. Refinement

H atoms were positioned geometrically and refined using riding model with C—H distances = 0.93, 0.96, 0.97 and 0.98 Å for aryl, methyl, methylene and methine type H-atoms, respectively, using  $U_{iso}(H) = 1.2U_{eq}(\text{non-methyl C atoms})$  and  $1.5U_{eq}(\text{methyl C atoms})$ .



## Figure 1

The molecular structure of the title compound with atom labels and 30% probability displacement ellipsoids for non-H atoms.

# Methyl 3-(4-isopropylphenyl)-1-phenyl-3,3a,4,9b-tetrahydro- 1H-chromeno[4,3-c]isoxazole-3a-carboxylate

| Crystal data                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $C_{27}H_{27}NO_4$ $M_r = 429.50$ Triclinic, <i>P</i> 1<br>Hall symbol: -P 1<br>a = 9.3555 (3) Å<br>b = 10.7247 (4) Å<br>c = 12.0449 (4) Å<br>a = 94.707 (1)°<br>$\beta = 104.730$ (1)°<br>$\gamma = 96.385$ (1)°<br>W = 1153.88 (7) Å <sup>3</sup>                                                                                   | Z = 2<br>F(000) = 456<br>$D_x = 1.236 \text{ Mg m}^{-3}$<br>Mo K $\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$<br>Cell parameters from 8942 reflections<br>$\theta = 2.3-27.5^{\circ}$<br>$\mu = 0.08 \text{ mm}^{-1}$<br>T = 295 K<br>Block, colourless<br>$0.35 \times 0.30 \times 0.25 \text{ mm}$ |
| Data collection<br>Bruker Kappa APEXII CCD<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>Detector resolution: 0 pixels mm <sup>-1</sup><br>$\omega$ and $\varphi$ scans<br>Absorption correction: multi-scan<br>( <i>SADABS</i> ; Sheldrick, 1996)<br>$T_{min} = 0.937, T_{max} = 0.954$ | 32129 measured reflections<br>8565 independent reflections<br>4738 reflections with $I=2\sigma(I)$<br>$R_{int} = 0.030$<br>$\theta_{max} = 33.0^{\circ}, \theta_{min} = 2.3^{\circ}$<br>$h = -14 \rightarrow 14$<br>$k = -16 \rightarrow 16$<br>$l = -18 \rightarrow 17$                                  |

Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier          |
|-------------------------------------------------|-----------------------------------------------------------|
| Least-squares matrix: full                      | map                                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.054$                 | Hydrogen site location: inferred from                     |
| $wR(F^2) = 0.166$                               | neighbouring sites                                        |
| <i>S</i> = 1.03                                 | H-atom parameters constrained                             |
| 8565 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0735P)^2 + 0.1032P]$         |
| 292 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                            |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} = 0.001$                       |
| Primary atom site location: structure-invariant | $\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$ |
| direct methods                                  | $\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$  |
|                                                 |                                                           |

| Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(A^2)$ |
|-----------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------|

|     | x            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|--------------|--------------|-----------------------------|--|
| C1  | 0.60704 (18) | 0.16741 (14) | 0.53375 (12) | 0.0569 (3)                  |  |
| H1  | 0.5311       | 0.2173       | 0.5296       | 0.068*                      |  |
| C2  | 0.6510 (2)   | 0.13476 (16) | 0.43502 (13) | 0.0680 (4)                  |  |
| H2  | 0.6063       | 0.1639       | 0.3656       | 0.082*                      |  |
| C3  | 0.7615 (2)   | 0.05886 (15) | 0.44040 (14) | 0.0676 (4)                  |  |
| H3  | 0.7895       | 0.0350       | 0.3738       | 0.081*                      |  |
| C4  | 0.83058 (18) | 0.01821 (14) | 0.54304 (14) | 0.0614 (4)                  |  |
| H4  | 0.9048       | -0.0333      | 0.5461       | 0.074*                      |  |
| C5  | 0.78884 (15) | 0.05468 (12) | 0.64292 (12) | 0.0487 (3)                  |  |
| C6  | 0.87307 (13) | 0.10646 (12) | 0.84153 (11) | 0.0460 (3)                  |  |
| H6A | 0.9191       | 0.1884       | 0.8303       | 0.055*                      |  |
| H6B | 0.9345       | 0.0801       | 0.9110       | 0.055*                      |  |
| C7  | 0.71742 (12) | 0.11725 (10) | 0.85621 (10) | 0.0375 (2)                  |  |
| C8  | 0.61543 (13) | 0.15211 (10) | 0.74339 (10) | 0.0389 (2)                  |  |
| H8  | 0.5169       | 0.1021       | 0.7291       | 0.047*                      |  |
| C9  | 0.67386 (14) | 0.12726 (11) | 0.63853 (10) | 0.0439 (3)                  |  |
| C10 | 0.71737 (13) | 0.23270 (10) | 0.94285 (10) | 0.0395 (2)                  |  |
| H10 | 0.6250       | 0.2215       | 0.9674       | 0.047*                      |  |
| C11 | 0.45688 (14) | 0.31910 (11) | 0.77135 (10) | 0.0430 (3)                  |  |
| C12 | 0.32924 (15) | 0.25929 (14) | 0.69002 (12) | 0.0537 (3)                  |  |
| H12 | 0.3366       | 0.1947       | 0.6362       | 0.064*                      |  |
| C13 | 0.19070 (17) | 0.29527 (17) | 0.68844 (14) | 0.0670 (4)                  |  |
| H13 | 0.1060       | 0.2542       | 0.6338       | 0.080*                      |  |
| C14 | 0.1775 (2)   | 0.39055 (19) | 0.76652 (15) | 0.0755 (5)                  |  |
| H14 | 0.0845       | 0.4138       | 0.7659       | 0.091*                      |  |
| C15 | 0.3036 (2)   | 0.45114 (18) | 0.84575 (15) | 0.0786 (5)                  |  |
| H15 | 0.2955       | 0.5166       | 0.8985       | 0.094*                      |  |
| C16 | 0.44312 (18) | 0.41693 (14) | 0.84892 (13) | 0.0611 (4)                  |  |
| H16 | 0.5274       | 0.4596       | 0.9030       | 0.073*                      |  |
| C17 | 0.84729 (13) | 0.26602 (11) | 1.04857 (11) | 0.0421 (3)                  |  |
| C18 | 0.97498 (14) | 0.34429 (12) | 1.04776 (12) | 0.0487 (3)                  |  |
| H18 | 0.9834       | 0.3755       | 0.9796       | 0.058*                      |  |
| C19 | 1.09029 (15) | 0.37650 (13) | 1.14762 (13) | 0.0552 (3)                  |  |
| H19 | 1.1746       | 0.4302       | 1.1455       | 0.066*                      |  |

| C20  | 1.08295 (16) | 0.33070 (13)  | 1.25029 (13) | 0.0587 (4)  |
|------|--------------|---------------|--------------|-------------|
| C21  | 0.95492 (18) | 0.25349 (16)  | 1.25008 (14) | 0.0690 (4)  |
| H21  | 0.9470       | 0.2217        | 1.3181       | 0.083*      |
| C22  | 0.83775 (16) | 0.22189 (14)  | 1.15152 (12) | 0.0588 (4)  |
| H22  | 0.7521       | 0.1707        | 1.1545       | 0.071*      |
| C23  | 1.2070 (2)   | 0.36685 (18)  | 1.36204 (16) | 0.0839 (6)  |
| H23  | 1.1953       | 0.3028        | 1.4138       | 0.101*      |
| C24  | 1.3610 (2)   | 0.3669 (3)    | 1.3421 (2)   | 0.1332 (10) |
| H24A | 1.3655       | 0.2878        | 1.3005       | 0.200*      |
| H24B | 1.4349       | 0.3785        | 1.4151       | 0.200*      |
| H24C | 1.3798       | 0.4345        | 1.2979       | 0.200*      |
| C25  | 1.1916 (3)   | 0.4915 (3)    | 1.4210 (2)   | 0.1299 (10) |
| H25A | 1.2074       | 0.5571        | 1.3740       | 0.195*      |
| H25B | 1.2643       | 0.5086        | 1.4946       | 0.195*      |
| H25C | 1.0933       | 0.4887        | 1.4321       | 0.195*      |
| C26  | 0.64937 (13) | -0.00295 (11) | 0.89318 (10) | 0.0404 (3)  |
| C27  | 0.6998 (2)   | -0.16605 (17) | 1.01174 (18) | 0.0825 (6)  |
| H27A | 0.6501       | -0.1412       | 1.0689       | 0.124*      |
| H27B | 0.7834       | -0.2070       | 1.0468       | 0.124*      |
| H27C | 0.6315       | -0.2233       | 0.9510       | 0.124*      |
| N1   | 0.59985 (11) | 0.28810 (9)   | 0.76661 (9)  | 0.0423 (2)  |
| 01   | 0.86540 (10) | 0.01709 (9)   | 0.74473 (9)  | 0.0559 (2)  |
| O2   | 0.71185 (9)  | 0.33448 (8)   | 0.87192 (8)  | 0.0470 (2)  |
| O3   | 0.75166 (11) | -0.05530 (10) | 0.96424 (10) | 0.0651 (3)  |
| O4   | 0.51902 (11) | -0.04183 (10) | 0.86632 (9)  | 0.0648 (3)  |
|      |              |               |              |             |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$    | <i>U</i> <sup>22</sup> | $U^{33}$    | $U^{12}$    | $U^{13}$   | <i>U</i> <sup>23</sup> |
|-----|-------------|------------------------|-------------|-------------|------------|------------------------|
| C1  | 0.0691 (9)  | 0.0559 (8)             | 0.0467 (7)  | 0.0098 (7)  | 0.0167 (6) | 0.0054 (6)             |
| C2  | 0.0911 (12) | 0.0681 (10)            | 0.0451 (7)  | 0.0029 (9)  | 0.0221 (7) | 0.0055 (7)             |
| C3  | 0.0884 (11) | 0.0617 (9)             | 0.0595 (9)  | -0.0048 (8) | 0.0418 (8) | -0.0040 (7)            |
| C4  | 0.0672 (9)  | 0.0558 (8)             | 0.0708 (10) | 0.0050 (7)  | 0.0401 (8) | -0.0014 (7)            |
| C5  | 0.0512 (7)  | 0.0446 (7)             | 0.0552 (7)  | 0.0037 (5)  | 0.0250 (6) | 0.0035 (5)             |
| C6  | 0.0371 (6)  | 0.0510(7)              | 0.0523 (7)  | 0.0081 (5)  | 0.0145 (5) | 0.0092 (5)             |
| C7  | 0.0348 (5)  | 0.0371 (5)             | 0.0421 (6)  | 0.0062 (4)  | 0.0121 (4) | 0.0057 (4)             |
| C8  | 0.0386 (5)  | 0.0354 (5)             | 0.0438 (6)  | 0.0066 (4)  | 0.0123 (5) | 0.0049 (4)             |
| C9  | 0.0498 (7)  | 0.0398 (6)             | 0.0435 (6)  | 0.0036 (5)  | 0.0169 (5) | 0.0025 (5)             |
| C10 | 0.0362 (5)  | 0.0372 (6)             | 0.0443 (6)  | 0.0033 (4)  | 0.0099 (5) | 0.0053 (5)             |
| C11 | 0.0502 (7)  | 0.0420 (6)             | 0.0387 (6)  | 0.0168 (5)  | 0.0095 (5) | 0.0088 (5)             |
| C12 | 0.0521 (7)  | 0.0584 (8)             | 0.0479 (7)  | 0.0177 (6)  | 0.0057 (6) | 0.0019 (6)             |
| C13 | 0.0533 (8)  | 0.0830 (11)            | 0.0625 (9)  | 0.0245 (8)  | 0.0038 (7) | 0.0109 (8)             |
| C14 | 0.0684 (10) | 0.0972 (13)            | 0.0708 (10) | 0.0476 (10) | 0.0190 (8) | 0.0172 (9)             |
| C15 | 0.0887 (12) | 0.0819 (11)            | 0.0700 (10) | 0.0486 (10) | 0.0180 (9) | -0.0039 (9)            |
| C16 | 0.0691 (9)  | 0.0578 (8)             | 0.0535 (8)  | 0.0260 (7)  | 0.0070 (7) | -0.0044 (6)            |
| C17 | 0.0391 (6)  | 0.0373 (6)             | 0.0470 (6)  | 0.0030 (5)  | 0.0071 (5) | 0.0037 (5)             |
| C18 | 0.0443 (6)  | 0.0479 (7)             | 0.0510 (7)  | -0.0009(5)  | 0.0094 (5) | 0.0095 (5)             |
| C19 | 0.0431 (7)  | 0.0484 (7)             | 0.0655 (9)  | -0.0052 (5) | 0.0028 (6) | 0.0107 (6)             |

| C20 | 0.0564 (8)  | 0.0504 (8)  | 0.0573 (8)  | -0.0019 (6)  | -0.0054 (6)  | 0.0135 (6)   |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C21 | 0.0689 (10) | 0.0738 (10) | 0.0526 (8)  | -0.0130 (8)  | -0.0008 (7)  | 0.0245 (7)   |
| C22 | 0.0522 (7)  | 0.0617 (8)  | 0.0551 (8)  | -0.0108 (6)  | 0.0064 (6)   | 0.0146 (6)   |
| C23 | 0.0793 (12) | 0.0758 (11) | 0.0705 (11) | -0.0177 (9)  | -0.0212 (9)  | 0.0270 (9)   |
| C24 | 0.0680 (13) | 0.171 (3)   | 0.129 (2)   | 0.0246 (15)  | -0.0369 (13) | 0.0206 (19)  |
| C25 | 0.1180 (19) | 0.143 (2)   | 0.0866 (15) | -0.0023 (17) | -0.0268 (14) | -0.0302 (15) |
| C26 | 0.0416 (6)  | 0.0378 (6)  | 0.0444 (6)  | 0.0072 (5)   | 0.0154 (5)   | 0.0044 (5)   |
| C27 | 0.0738 (11) | 0.0735 (11) | 0.1208 (16) | 0.0249 (9)   | 0.0416 (11)  | 0.0604 (11)  |
| N1  | 0.0438 (5)  | 0.0388 (5)  | 0.0418 (5)  | 0.0082 (4)   | 0.0063 (4)   | 0.0032 (4)   |
| 01  | 0.0552 (5)  | 0.0592 (6)  | 0.0633 (6)  | 0.0236 (4)   | 0.0262 (5)   | 0.0091 (5)   |
| O2  | 0.0469 (5)  | 0.0359 (4)  | 0.0518 (5)  | 0.0033 (3)   | 0.0024 (4)   | 0.0053 (4)   |
| O3  | 0.0478 (5)  | 0.0641 (6)  | 0.0934 (8)  | 0.0159 (4)   | 0.0223 (5)   | 0.0444 (6)   |
| O4  | 0.0472 (5)  | 0.0686 (6)  | 0.0718 (7)  | -0.0101 (5)  | 0.0062 (5)   | 0.0244 (5)   |
|     |             |             |             |              |              |              |

Geometric parameters (Å, °)

| C1—C9   | 1.3846 (19) | C14—H14  | 0.9300      |
|---------|-------------|----------|-------------|
| C1—C2   | 1.385 (2)   | C15—C16  | 1.386 (2)   |
| C1—H1   | 0.9300      | C15—H15  | 0.9300      |
| C2—C3   | 1.377 (2)   | C16—H16  | 0.9300      |
| C2—H2   | 0.9300      | C17—C22  | 1.3831 (19) |
| C3—C4   | 1.371 (2)   | C17—C18  | 1.3841 (17) |
| С3—Н3   | 0.9300      | C18—C19  | 1.3853 (18) |
| C4—C5   | 1.3959 (18) | C18—H18  | 0.9300      |
| C4—H4   | 0.9300      | C19—C20  | 1.382 (2)   |
| C5—O1   | 1.3703 (17) | C19—H19  | 0.9300      |
| С5—С9   | 1.3893 (18) | C20—C21  | 1.378 (2)   |
| C6—O1   | 1.4289 (16) | C20—C23  | 1.526 (2)   |
| C6—C7   | 1.5265 (16) | C21—C22  | 1.3840 (19) |
| С6—Н6А  | 0.9700      | C21—H21  | 0.9300      |
| С6—Н6В  | 0.9700      | C22—H22  | 0.9300      |
| C7—C26  | 1.5235 (16) | C23—C25  | 1.501 (3)   |
| C7—C8   | 1.5492 (16) | C23—C24  | 1.520 (3)   |
| C7—C10  | 1.5525 (16) | С23—Н23  | 0.9800      |
| C8—N1   | 1.4925 (15) | C24—H24A | 0.9600      |
| C8—C9   | 1.5144 (16) | C24—H24B | 0.9600      |
| C8—H8   | 0.9800      | C24—H24C | 0.9600      |
| C10—O2  | 1.4378 (14) | C25—H25A | 0.9600      |
| C10—C17 | 1.5060 (16) | C25—H25B | 0.9600      |
| C10—H10 | 0.9800      | C25—H25C | 0.9600      |
| C11—C16 | 1.3858 (18) | C26—O4   | 1.1957 (14) |
| C11—C12 | 1.3887 (18) | C26—O3   | 1.3211 (15) |
| C11—N1  | 1.4274 (16) | C27—O3   | 1.4484 (17) |
| C12—C13 | 1.389 (2)   | C27—H27A | 0.9600      |
| C12—H12 | 0.9300      | С27—Н27В | 0.9600      |
| C13—C14 | 1.369 (2)   | С27—Н27С | 0.9600      |
| С13—Н13 | 0.9300      | N1—O2    | 1.4350 (13) |
| C14—C15 | 1.371 (3)   |          |             |
|         |             |          |             |

| C9—C1—C2    | 121.34 (14) | C16—C15—H15   | 119.3       |
|-------------|-------------|---------------|-------------|
| С9—С1—Н1    | 119.3       | C11—C16—C15   | 119.93 (15) |
| C2—C1—H1    | 119.3       | C11—C16—H16   | 120.0       |
| C3—C2—C1    | 119.49 (15) | C15—C16—H16   | 120.0       |
| С3—С2—Н2    | 120.3       | C22—C17—C18   | 118.30 (12) |
| C1—C2—H2    | 120.3       | C22—C17—C10   | 119.56 (11) |
| C4—C3—C2    | 120.59 (14) | C18—C17—C10   | 122.09 (11) |
| С4—С3—Н3    | 119.7       | C17—C18—C19   | 120.57 (12) |
| С2—С3—Н3    | 119.7       | C17—C18—H18   | 119.7       |
| C3—C4—C5    | 119.60 (14) | C19—C18—H18   | 119.7       |
| C3—C4—H4    | 120.2       | C20-C19-C18   | 121.50 (13) |
| C5—C4—H4    | 120.2       | С20—С19—Н19   | 119.3       |
| O1—C5—C9    | 121.49 (11) | C18—C19—H19   | 119.3       |
| O1—C5—C4    | 117.81 (12) | C21—C20—C19   | 117.34 (13) |
| C9—C5—C4    | 120.70 (13) | C21—C20—C23   | 120.08 (14) |
| O1—C6—C7    | 110.68 (10) | C19—C20—C23   | 122.53 (14) |
| O1—C6—H6A   | 109.5       | C20—C21—C22   | 121.90 (14) |
| С7—С6—Н6А   | 109.5       | C20—C21—H21   | 119.0       |
| O1—C6—H6B   | 109.5       | C22—C21—H21   | 119.0       |
| С7—С6—Н6В   | 109.5       | C17—C22—C21   | 120.37 (13) |
| H6A—C6—H6B  | 108.1       | С17—С22—Н22   | 119.8       |
| C26—C7—C6   | 111.81 (9)  | C21—C22—H22   | 119.8       |
| C26—C7—C8   | 111.35 (9)  | C25—C23—C24   | 111.4 (2)   |
| C6—C7—C8    | 110.09 (9)  | C25—C23—C20   | 110.72 (16) |
| C26—C7—C10  | 110.01 (9)  | C24—C23—C20   | 112.07 (18) |
| C6—C7—C10   | 111.99 (9)  | С25—С23—Н23   | 107.5       |
| C8—C7—C10   | 101.13 (8)  | С24—С23—Н23   | 107.5       |
| N1—C8—C9    | 111.90 (9)  | С20—С23—Н23   | 107.5       |
| N1—C8—C7    | 105.99 (9)  | C23—C24—H24A  | 109.5       |
| C9—C8—C7    | 113.50 (9)  | C23—C24—H24B  | 109.5       |
| N1—C8—H8    | 108.4       | H24A—C24—H24B | 109.5       |
| С9—С8—Н8    | 108.4       | C23—C24—H24C  | 109.5       |
| С7—С8—Н8    | 108.4       | H24A—C24—H24C | 109.5       |
| C1—C9—C5    | 118.20 (12) | H24B—C24—H24C | 109.5       |
| C1—C9—C8    | 121.15 (11) | C23—C25—H25A  | 109.5       |
| C5—C9—C8    | 120.46 (11) | C23—C25—H25B  | 109.5       |
| O2—C10—C17  | 109.26 (9)  | H25A—C25—H25B | 109.5       |
| O2—C10—C7   | 102.26 (9)  | C23—C25—H25C  | 109.5       |
| C17—C10—C7  | 118.65 (9)  | H25A—C25—H25C | 109.5       |
| O2—C10—H10  | 108.7       | H25B—C25—H25C | 109.5       |
| C17—C10—H10 | 108.7       | O4—C26—O3     | 123.99 (11) |
| C7—C10—H10  | 108.7       | O4—C26—C7     | 124.51 (11) |
| C16—C11—C12 | 118.53 (12) | O3—C26—C7     | 111.39 (10) |
| C16—C11—N1  | 121.18 (12) | O3—C27—H27A   | 109.5       |
| C12—C11—N1  | 119.98 (11) | O3—C27—H27B   | 109.5       |
| C11—C12—C13 | 120.50 (13) | H27A—C27—H27B | 109.5       |
| C11—C12—H12 | 119.7       | O3—C27—H27C   | 109.5       |

| C13—C12—H12     | 119.7        | H27A—C27—H27C   | 109.5        |
|-----------------|--------------|-----------------|--------------|
| C14—C13—C12     | 120.70 (15)  | H27B—C27—H27C   | 109.5        |
| C14—C13—H13     | 119.7        | C11—N1—O2       | 111.46 (9)   |
| C12—C13—H13     | 119.7        | C11—N1—C8       | 118.02 (10)  |
| C13—C14—C15     | 118.93 (15)  | O2—N1—C8        | 105.56 (8)   |
| C13—C14—H14     | 120.5        | C5—O1—C6        | 111.86 (9)   |
| C15—C14—H14     | 120.5        | N1—O2—C10       | 105.57 (8)   |
| C14—C15—C16     | 121.40 (15)  | C26—O3—C27      | 116.86 (11)  |
| C14—C15—H15     | 119.3        |                 | ~ /          |
|                 |              |                 |              |
| C9—C1—C2—C3     | 1.2 (2)      | O2-C10-C17-C18  | -29.12 (15)  |
| C1—C2—C3—C4     | -1.7 (2)     | C7—C10—C17—C18  | 87.45 (14)   |
| C2—C3—C4—C5     | -0.3 (2)     | C22-C17-C18-C19 | 0.4 (2)      |
| C3—C4—C5—O1     | -176.94 (13) | C10-C17-C18-C19 | 177.75 (12)  |
| C3—C4—C5—C9     | 2.7 (2)      | C17—C18—C19—C20 | 0.9 (2)      |
| O1—C6—C7—C26    | 68.26 (13)   | C18—C19—C20—C21 | -1.2 (2)     |
| O1—C6—C7—C8     | -56.07 (13)  | C18—C19—C20—C23 | -178.72 (15) |
| O1—C6—C7—C10    | -167.75 (9)  | C19—C20—C21—C22 | 0.3 (3)      |
| C26—C7—C8—N1    | 130.21 (10)  | C23—C20—C21—C22 | 177.81 (16)  |
| C6—C7—C8—N1     | -105.20 (10) | C18—C17—C22—C21 | -1.4 (2)     |
| C10-C7-C8-N1    | 13.38 (11)   | C10-C17-C22-C21 | -178.79 (14) |
| C26—C7—C8—C9    | -106.59 (11) | C20-C21-C22-C17 | 1.1 (3)      |
| C6—C7—C8—C9     | 18.01 (13)   | C21—C20—C23—C25 | -94.8 (2)    |
| C10—C7—C8—C9    | 136.58 (10)  | C19—C20—C23—C25 | 82.6 (3)     |
| C2-C1-C9-C5     | 1.1 (2)      | C21—C20—C23—C24 | 140.1 (2)    |
| C2-C1-C9-C8     | -173.87 (13) | C19—C20—C23—C24 | -42.5 (2)    |
| O1—C5—C9—C1     | 176.55 (12)  | C6—C7—C26—O4    | -147.55 (13) |
| C4—C5—C9—C1     | -3.1 (2)     | C8—C7—C26—O4    | -23.93 (16)  |
| O1—C5—C9—C8     | -8.42 (19)   | C10—C7—C26—O4   | 87.35 (15)   |
| C4—C5—C9—C8     | 171.93 (11)  | C6—C7—C26—O3    | 36.03 (14)   |
| N1-C8-C9-C1     | -51.91 (15)  | C8—C7—C26—O3    | 159.65 (10)  |
| C7—C8—C9—C1     | -171.81 (11) | C10—C7—C26—O3   | -89.07 (12)  |
| N1—C8—C9—C5     | 133.21 (12)  | C16—C11—N1—O2   | 20.92 (16)   |
| C7—C8—C9—C5     | 13.31 (16)   | C12—C11—N1—O2   | -165.45 (11) |
| C26—C7—C10—O2   | -152.76 (9)  | C16—C11—N1—C8   | 143.32 (13)  |
| C6—C7—C10—O2    | 82.24 (11)   | C12—C11—N1—C8   | -43.05 (16)  |
| C8—C7—C10—O2    | -34.95 (10)  | C9—C8—N1—C11    | 123.40 (11)  |
| C26—C7—C10—C17  | 87.01 (12)   | C7—C8—N1—C11    | -112.39 (11) |
| C6—C7—C10—C17   | -37.99 (14)  | C9—C8—N1—O2     | -111.26 (10) |
| C8—C7—C10—C17   | -155.18 (10) | C7—C8—N1—O2     | 12.96 (11)   |
| C16—C11—C12—C13 | -1.4 (2)     | C9—C5—O1—C6     | -30.67 (16)  |
| N1-C11-C12-C13  | -175.17 (13) | C4—C5—O1—C6     | 148.99 (12)  |
| C11—C12—C13—C14 | 0.3 (2)      | C7—C6—O1—C5     | 63.65 (13)   |
| C12-C13-C14-C15 | 0.7 (3)      | C11—N1—O2—C10   | 92.31 (10)   |
| C13—C14—C15—C16 | -0.7 (3)     | C8—N1—O2—C10    | -37.00 (11)  |
| C12-C11-C16-C15 | 1.4 (2)      | C17—C10—O2—N1   | 171.97 (9)   |
| N1-C11-C16-C15  | 175.13 (14)  | C7—C10—O2—N1    | 45.40 (10)   |
| C14—C15—C16—C11 | -0.4 (3)     | O4—C26—O3—C27   | -0.3 (2)     |

# supporting information

| O2—C10—C17—C22<br>C7—C10—C17—C22 | 148.15 (12)<br>-95.27 (15) | C7—C26—O3—C27 |           | 176.14 (13) |
|----------------------------------|----------------------------|---------------|-----------|-------------|
| Hydrogen-bond geometry (Å, °)    |                            |               |           |             |
| D—H···A                          | D—H                        | H···A         | D…A       | D—H···A     |
| С6—Н6В…ОЗ                        | 0.97                       | 2.37          | 2.706 (2) | 100         |
| С8—Н8…О4                         | 0.98                       | 2.35          | 2.846 (2) | 111         |
| С16—Н16…О2                       | 0.93                       | 2.38          | 2.713 (2) | 101         |