Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ethyl 2-[(carbamothioylamino)imino]propanoate

Charlane C. Corrêa, ${ }^{\text {a* }}$ José Eugênio J.C. Graúdo, ${ }^{\text {a }}$ Luiz Fernando C. de Oliveira, ${ }^{a}$ Mauro V. de Almeida ${ }^{\text {b }}$ and Renata Diniz ${ }^{\text {a }}$
${ }^{\text {a }}$ Núcleo de Espectroscopia e Estrutura Molecular (NEEM), Department of Chemistry, Federal University of Juiz de Fora, Minas Gerais 36036-900, Brazil, and ${ }^{\mathbf{b}}$ Department of Chemistry, Federal University of Juiz de Fora, Minas Gerais 36036-900, Brazil Correspondence e-mail: charcorrea@gmail.com

Received 7 June 2011; accepted 1 July 2011
Key indicators: single-crystal X-ray study; $T=297 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.033 ; w R$ factor $=0.092$; data-to-parameter ratio $=17.3$.

The title compound, $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$, consists of a roughly planar molecule (r.m.s deviation from planarity $=0.077 \AA$ for the non-H atoms) and has the S atom in an anti position to the imine N atom. This N atom is the acceptor of a strongly bent internal $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond donated by the amino group. In the crystal, molecules are arranged in undulating layers parallel to (010). The molecules are linked via intermolecular amino-carboxyl $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming chains parallel to [001]. The chains are cross-linked by $\mathrm{N}_{\text {carbazone }}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ interactions, forming infinite sheets.

Related literature

For the synthesis of thiosemicarbazones, see: Gupta \& Narayana (1997); Li et al. (1998); Tarasconi et al. (2000); Holla et al. (2003); Shailendra et al. (2003). For the synthesis, crystal structures and applications of thiosemicarbazones, see: West et al. (1993); Casas et al. (2000); Beraldo (2004); Tenório et al. (2005). For graph-set notation, see: Etter et al. (1990).

Experimental

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$
Monoclinic, $C 2 / c$
$M_{r}=189.24$ $a=16.682$ (3) A

$$
\begin{aligned}
& b=7.2558(15) \AA \\
& c=17.317(4) \AA \\
& \beta=116.63(3)^{\circ} \\
& V=1873.8(7) \AA^{3} \\
& Z=8
\end{aligned}
$$

Data collection

Bruker-Nonius KappaCCD diffractometer 15270 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.092$
$S=1.08$
2133 reflections
123 parameters

Mo $K \alpha$ radiation
$\mu=0.31 \mathrm{~mm}^{-1}$
$T=297 \mathrm{~K}$
$0.56 \times 0.27 \times 0.12 \mathrm{~mm}$

2133 independent reflections 1785 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.021$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.21 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.26 \mathrm{e}^{\AA^{-3}}$

Table 1
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{~N} 3$	$0.84(2)$	$2.24(2)$	$2.610(2)$	$107(2)$
$\mathrm{N} 1-\mathrm{H} 2 N \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.88(3)$	$2.08(3)$	$2.954(2)$	$172(2)$
$\mathrm{N} 2-\mathrm{H} 3 N \cdots \mathrm{~S}^{1 i}$	$0.85(2)$	$2.78(2)$	$3.623(2)$	$172(2)$
$\mathrm{C} 3-\mathrm{H} 3 C \cdots \mathrm{~S} 1^{\mathrm{ii}}$	0.96	2.82	$3.611(2)$	141

Symmetry codes: (i) $x,-y+1, z-\frac{1}{2}$; (ii) $-x, y,-z+\frac{1}{2}$.

Data collection: COLLECT (Hooft, 1999); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO (Otwinowski \& Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).

The authors thank CNPq, CAPES, and FAPEMIG (Brazilian agencies) for financial support and also R. G. Bastos (LDRX-IF/UFF) for the X-ray diffraction facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QK2014).

References

Beraldo, H. (2004). Quím. Nova, 27, 461-471.
Casas, J. S., Tasende, M. S. G. \& Sordo, J. (2000). Coord. Chem. Rev. 209, 197261.

Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256-262.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Gupta, R. P. \& Narayana, N. L. (1997). Pharm. Acta Helv. 72, 43-45.
Holla, B. S., Malini, K. V., Rao, B. S., Sarojini, B. K. \& Kumari, N. S. (2003). Eur. J. Med. Chem. 38, 313-318.
Hooft, R. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.
Li, J., Chen, S., Li, X., Niu, C. \& Doyle, T. W. (1998). Tetrahedron, 54, 393-400.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Shailendra, N. B., Naqvi, F. \& Azam, A. (2003). Bioorg. Med. Chem. Lett. 13, 689-692.

organic compounds

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Tarasconi, P., Capacchi, S., Pelosi, G., Cornia, M., Albertini, R., Bonati, A., Dall'Aglio, P. P., Lunghi, P. \& Pinelli, S. (2000). Bioorg. Med. Chem. 8, 157162.

Tenório, R. P., Góes, A. J. S., de Lima, A. J. S., de Faria, A. R., Alves, A. J. \& de Aquino, T. M. (2005). Quím. Nova, 28, 1030-1037.
West, D. X., Liberta, A., Padhye, S. B., Chikate, R. C., Sonawane, P. B., Kumbhar, A. S. \& Yerande, R. G. (1993). Coord. Chem. Rev. 123, 49-71.

supporting information

Acta Cryst. (2011). E67, o1967-o1968 [doi:10.1107/S1600536811026237]

Ethyl 2-[(carbamothioylamino)imino]propanoate

Charlane C. Corrêa, José Eugênio J.C. Graúdo, Luiz Fernando C. de Oliveira, Mauro V. de Almeida and Renata Diniz

S1. Comment

Thiosemicarbazones are a class of substances known for their biological and chemical properties, such as antiviral, antibacterial, antiprotozoal and antitumor activity (West et al., 1993). The enzyme ribonucleoside diphosphate reductase (RDR) (Beraldo, 2004) is an object of attack by thiosemicarbazones, which relates to their tumor control properties. One background for the biological activity of thiosemicarbazones is certainly their ability to form chelates with transition metal ions. The synthesis of thiosemicarbazones is described in several works in the literature (Gupta \& Narayana, 1997; Li et al., 1998; Tarasconi et al., 2000; Holla et al., 2003; Shailendra et al., 2003). In context with potential biological activity the crystal structure determination of the title compound, ethyl pyruvate thiosemicarbazone (scheme 1), was of interest. The compound may also be interesting as ligand in coordination chemistry.
Figure 1 shows the $O R T E P$ representation of the asymmetric unit of the title compound. The compound features a fairly planar molecule with a r.m.s deviation from planarity $0.077 \AA$ for the non-hydrogen atoms. The sulfur atom is in anti position to the imine nitrogen N 3 . The bond lengths in the $\mathrm{N}-\mathrm{C}(\mathrm{S})-\mathrm{N}$ fragment indicate delocalization of the π electrons due to the fact that the $\mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{S}$ bonds are shorter than tipycal single bonds (around 1.47 and $1.73 \AA$, respectively) and bigger than corresponding double bonds (around 1.29 and $1.55 \AA$, respectively) (Casas et al., 2000; Tenório et al., 2005). The molecule is stabilized by the strongly bent intramolecular hydrogen N1—H1n $\cdots \mathrm{N} 3, \mathrm{~N} 1 \cdots \mathrm{~N} 3=$ 2.610 (2) Å (Table 1).

In the crystal lattice the molecules are arranged in undulating layers parallel to (010). Via the intermolecular hydrogen bond $\mathrm{N} 1-\mathrm{H} 2 \mathrm{n} \cdots \mathrm{O} 2^{i}$ the molecules are linked to form continuous chains parallel to [001], as visualized in Figure 2. The graph-set representation for this arrangement is $\mathrm{N}=\mathrm{C}(8)$, (Etter et al., 1990). Each two of these chains are mutually crosslinked by the weak interactions $\mathrm{N} 2-\mathrm{H} 3 \mathrm{n} \cdots \mathrm{S} 1^{i i}, \mathrm{~N} 2 \cdots \mathrm{~S} 1^{i i}=3.623$ (2) \AA, and $\mathrm{C} 3-\mathrm{H} 3 \mathrm{c} \cdots \mathrm{S} 1^{i i}, \mathrm{C} 3 \cdots \mathrm{~S} 1^{i i}=3.611$ (2) \AA, to form infinite ribbons along the c axis, see Table 1 and Fig. 2.

S2. Experimental

For preparation of the title compound, 0.188 g of ethyl pyruvate $(1.62 \mathrm{mmol})$ was added to 15 ml of a water-methanol solution (1:2) of thiosemicarbazide hydrochloride $(1.48 \mathrm{~g}, 1.62 \mathrm{mmol})$ and the mixture was heated at $80^{\circ} \mathrm{C}$ for 3 h . After few days, colorless crystals formed at room temperature and were isolated. M.p.: $145^{\circ} \mathrm{C}$. Elemental analysis gave the following results: Calcd. for $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{~N}_{3} \mathrm{~S}$: C 38.08, H 5.86, N 22.21%; found: C 39.69 ; H 6.62; N 22.93%.
IR spectral data were obtained with a Bomem MB-102 spectrometer fitted with a CsI beam splitter, using KBr disks and a spectral resolution of $4 \mathrm{~cm}^{-1}$. The main absorption bands are $\left(\mathrm{cm}^{-1}\right): 3442-3204(v \mathrm{NH}) ; 1709(v \mathrm{CO}) ; 1600(v \mathrm{NH}+v \mathrm{CN}$ $+v \mathrm{CC}) ; 1498\left(v \mathrm{CO}_{\text {asym }}\right) ; 1370(v \mathrm{CN}) ; 1173\left(v \mathrm{CO}_{\text {sym }}\right) ; 1119,1024(v \mathrm{CS}) ; 1105(v \mathrm{COC})$.

S3. Refinement

C-bound H atoms were included in the riding model approximation with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 \times U_{\text {equ }}(\mathrm{C})$ for CH_{3}, and $0.97 \AA U_{\text {iso }}(\mathrm{H})=1.2 \times U_{\text {equ }}(\mathrm{C})$ for $\mathrm{CH}_{2} . \mathrm{H}$ atoms of nitrogen atoms were located from an electron density map and were refined unrestrained in x, y, z, and $U_{\text {iso }}$.

Figure 1

The molecular structure of ethyl pyruvate thiosemicarbazone showing 50\% displacement ellipsoids.

Figure 2

View of a ribbon of hydrogen bonded molecules in the crystal structure of ethyl pyruvate thiosemicarbazone.

Ethyl 2-[(carbamothioylamino)imino]propanoate

Crystal data
$\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$
$M_{r}=189.24$

Monoclinic, $C 2 / c$
Hall symbol: -C 2yc
$a=16.682(3) \AA$
$b=7.2558(15) \AA$
$c=17.317$ (4) \AA
$\beta=116.63(3)^{\circ}$
$V=1873.8(7) \AA^{3}$
$Z=8$
$F(000)=800$
$D_{\mathrm{x}}=1.342 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker-Nonius KappaCCD

diffractometer
Radiation source: fine-focus sealed tube
Horizonally mounted graphite crystal monochromator
Detector resolution: 9 pixels mm^{-1}
ω and φ scans
15270 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.092$
$S=1.08$
2133 reflections
123 parameters
0 restraints

Melting point: 418 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 106 reflections
$\theta=4.7-22.6^{\circ}$
$\mu=0.31 \mathrm{~mm}^{-1}$
$T=297 \mathrm{~K}$
Prism, colourless
$0.56 \times 0.27 \times 0.12 \mathrm{~mm}$

2133 independent reflections
1785 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=5.3^{\circ}$
$h=-21 \rightarrow 21$
$k=-9 \rightarrow 9$
$l=-22 \rightarrow 22$

Secondary atom site location: difference Fourier map
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0423 P)^{2}+1.1077 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.21 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.26 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
S1	$0.07816(2)$	$0.66899(7)$	$0.18273(2)$	$0.05007(15)$
O1	$0.36286(7)$	$0.42826(16)$	$0.55879(6)$	$0.0453(3)$
O2	$0.29362(8)$	$0.4511(2)$	$0.64308(7)$	$0.0599(4)$
N3	$0.21829(8)$	$0.52146(17)$	$0.42323(7)$	$0.0363(3)$
N2	$0.14791(8)$	$0.57872(18)$	$0.34827(7)$	$0.0394(3)$
N1	$0.23628(9)$	$0.5179(2)$	$0.28107(9)$	$0.0541(4)$
C2	$0.21056(9)$	$0.5244(2)$	$0.49384(9)$	$0.0365(3)$
C1	$0.15936(9)$	$0.5823(2)$	$0.27447(9)$	$0.0368(3)$
C4	$0.29221(9)$	$0.4639(2)$	$0.57299(9)$	$0.0378(3)$
C3	$0.13145(10)$	$0.5866(3)$	$0.50629(11)$	$0.0507(4)$

H3A	0.1298	0.7189	0.5069	0.076^{*}
H3B	0.1365	0.5398	0.5601	0.076^{*}
H3C	0.0773	0.5410	0.4598	0.076^{*}
C6	$0.51684(12)$	$0.3513(3)$	$0.60556(14)$	$0.0644(5)$
H6A	0.4977	0.2588	0.5613	0.097^{*}
H6B	0.5713	0.3122	0.6537	0.097^{*}
H6C	0.5272	0.4650	0.5831	0.097^{*}
C5	$0.44536(10)$	$0.3796(3)$	$0.63469(11)$	$0.0503(4)$
H5A	0.4368	0.2677	0.6607	0.060^{*}
H5B	0.4626	0.4777	0.6772	0.060^{*}
H1N	$0.2740(14)$	$0.476(3)$	$0.3288(14)$	$0.061(6)^{*}$
H3N	$0.0969(12)$	$0.612(2)$	$0.3430(11)$	$0.045(4)^{*}$
H2N	$0.2477(13)$	$0.525(3)$	$0.2361(14)$	$0.060(5)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0402(2)$	$0.0741(3)$	$0.0365(2)$	$0.00740(18)$	$0.01775(16)$	$0.01065(17)$
O1	$0.0387(5)$	$0.0663(7)$	$0.0337(5)$	$0.0055(5)$	$0.0186(4)$	$0.0026(5)$
O2	$0.0558(7)$	$0.0988(10)$	$0.0322(5)$	$0.0012(6)$	$0.0260(5)$	$-0.0006(6)$
N3	$0.0358(6)$	$0.0444(6)$	$0.0318(5)$	$-0.0029(5)$	$0.0179(5)$	$-0.0016(5)$
N2	$0.0344(6)$	$0.0552(8)$	$0.0339(6)$	$0.0028(5)$	$0.0200(5)$	$0.0027(5)$
N1	$0.0421(7)$	$0.0910(12)$	$0.0369(7)$	$0.0153(7)$	$0.0246(6)$	$0.0118(7)$
C2	$0.0385(7)$	$0.0425(7)$	$0.0343(6)$	$-0.0052(6)$	$0.0213(6)$	$-0.0043(6)$
C1	$0.0352(6)$	$0.0456(8)$	$0.0333(6)$	$-0.0042(6)$	$0.0185(5)$	$-0.0004(6)$
C4	$0.0415(7)$	$0.0440(8)$	$0.0334(7)$	$-0.0053(6)$	$0.0216(6)$	$-0.0056(6)$
C3	$0.0431(8)$	$0.0733(11)$	$0.0454(8)$	$0.0025(8)$	$0.0284(7)$	$-0.0012(8)$
C6	$0.0447(9)$	$0.0665(12)$	$0.0798(13)$	$0.0050(8)$	$0.0259(9)$	$-0.0007(10)$
C5	$0.0430(8)$	$0.0574(10)$	$0.0432(8)$	$0.0009(7)$	$0.0128(7)$	$0.0070(7)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{S} 1-\mathrm{C} 1$	$1.6808(16)$	$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	$0.84(2)$
$\mathrm{O} 1-\mathrm{C} 4$	$1.3325(17)$	$\mathrm{N} 1-\mathrm{H} 2 \mathrm{~N}$	$0.88(2)$
$\mathrm{O} 1-\mathrm{C} 5$	$1.4577(19)$	$\mathrm{N} 2-\mathrm{H} 3 \mathrm{~N}$	$0.85(2)$
$\mathrm{O} 2-\mathrm{C} 4$	$1.2069(17)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9600
$\mathrm{~N} 3-\mathrm{C} 2$	$1.2860(17)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	0.9600
$\mathrm{~N} 3-\mathrm{N} 2$	$1.3675(17)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	0.9600
$\mathrm{~N} 2-\mathrm{C} 1$	$1.3745(17)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9700
$\mathrm{~N} 1-\mathrm{C} 1$	$1.3217(19)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	0.9700
$\mathrm{C} 2-\mathrm{C} 3$	$1.4989(19)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	0.9600
$\mathrm{C} 2-\mathrm{C} 4$	$1.501(2)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	0.9600
$\mathrm{C} 6-\mathrm{C} 5$	$1.503(2)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{C}$	0.9600
		$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	
$\mathrm{C} 4-\mathrm{O} 1-\mathrm{C} 5$	$115.86(11)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.00
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{N} 2$	$119.23(12)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.00
$\mathrm{~N} 3-\mathrm{N} 2-\mathrm{C} 1$	$118.06(11)$	$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.00
$\mathrm{~N} 3-\mathrm{C} 2-\mathrm{C} 3$	$127.72(14)$		109.00

supporting information

N3-C2-C4	115.25 (12)	H3A-C3-H3C	109.00
C3-C2-C4	117.00 (12)	$\mathrm{H} 3 \mathrm{~B}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.00
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	116.55 (13)	O1-C5-H5A	110.00
N1-C1-S1	123.64 (11)	O1-C5-H5B	110.00
N2-C1-S1	119.80 (11)	C6-C5-H5A	110.00
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{O} 1$	123.40 (14)	C6-C5-H5B	110.00
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 2$	122.77 (13)	H5A-C5-H5B	108.00
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 2$	113.83 (11)	C5-C6-H6A	109.00
O1-C5-C6	107.52 (14)	C5-C6-H6B	109.00
C1-N1-H1N	118.9 (17)	C5-C6-H6C	109.00
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 2 \mathrm{~N}$	119.2 (15)	H6A-C6-H6B	109.00
$\mathrm{H} 1 \mathrm{~N}-\mathrm{N} 1-\mathrm{H} 2 \mathrm{~N}$	122 (2)	H6A-C6-H6C	109.00
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 3 \mathrm{~N}$	116.4 (12)	H6B-C6-H6C	109.00
N3-N2-H3N	125.5 (12)		
$\mathrm{C} 5-\mathrm{O} 1-\mathrm{C} 4-\mathrm{O} 2$	-2.7 (2)	N2-N3-C2-C3	-0.6 (2)
$\mathrm{C} 5-\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 2$	176.48 (14)	N2-N3-C2-C4	-178.40 (13)
$\mathrm{C} 4-\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 6$	-178.14 (15)	N3-C2-C4-O1	4.43 (19)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 2$	177.04 (14)	N3-C2-C4-O2	-176.40 (15)
N3-N2-C1-S1	-174.66 (11)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 4-\mathrm{O} 1$	-173.59 (15)
N3-N2-C1-N1	4.4 (2)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 4-\mathrm{O} 2$	5.6 (2)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 N \cdots \mathrm{~N} 3$	$0.84(2)$	$2.24(2)$	$2.610(2)$	$107(2)$
$\mathrm{N} 1 — \mathrm{H} 2 N \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.88(3)$	$2.08(3)$	$2.954(2)$	$172(2)$
$\mathrm{N} 2 — \mathrm{H} 3 N \cdots{ }^{\mathrm{ii}}$	$0.85(2)$	$2.78(2)$	$3.623(2)$	$172(2)$
$\mathrm{C} 3 — \mathrm{H} 3 C \cdots \mathrm{~S}^{\mathrm{ii}}$	0.96	2.82	$3.611(2)$	141

Symmetry codes: (i) $x,-y+1, z-1 / 2$; (ii) $-x, y,-z+1 / 2$.

