metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[1-benzyl-3-(4-methylphenyl)imidazol-2-ylidene]silver(I) hexafluoridophosphate

Kun Huang^a* and Da-Bin Qin^b

^aDepartment of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou 635000, People's Republic of China, and ^bSchool of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China

Correspondence e-mail: greatwall520@163.com

Received 15 June 2011; accepted 4 July 2011

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.004 Å; R factor = 0.031; wR factor = 0.081; data-to-parameter ratio = 13.5.

The title silver N-heterocyclic carbene compound, $[Ag(C_{17})]$ $H_{16}N_2$)₂]PF₆, crystallizes as a mononuclear salt. The two imidazole rings, which are almost coplanar [maximum deviation from the least squares plane of 0.05 (2) Å], are linked by the Ag atom with a C-Ag-C angle of 178.60 (9)°. In the crystal, C-H···F hydrogen bonds, weak π - π interactions [centroid–centroid distances = 3.921(1)and 3.813 (3) Å] and C-H··· π interactions lead to a supermolecular structure.

Related literature

For the first silver N-heterocyclic carbene, see: Arduengo et al. (1993). For the role of N-heterocyclic carbene ligands in organometallic chemistry, see: Lin et al. (2009). For applications of silver N-heterocyclic carbenes, see: Nebioglu et al. (2007); Samantaray et al. (2007). For Ag-C bond lengths, see: Wang, Xu et al. (2005). For the synthesis of the title compound, see: Liu et al. (2003); Wang, Song et al. (2005). For a related structure, see: Catalano & Etogo (2007).

a = 9.692 (2) Å

b = 16.312 (4) Å

c = 20.227 (5) Å

Experimental

Crystal data [Ag(C17H16N2)2]PF6 $M_r = 749.48$ Monoclinic, $P2_1/c$

 $\beta = 93.469 \ (3)^{\circ}$ V = 3192.1 (12) Å³ Z = 4Mo $K\alpha$ radiation

Data collection

Rigaku Saturn CCD area detector	21677 measured reflections
diffractometer	5636 independent reflections
Absorption correction: multi-scan	4775 reflections with $I > 2\sigma(I)$
(CrystalClear; Rigaku/MSC,	$R_{\rm int} = 0.043$
2004)	
$T_{\min} = 0.865, T_{\max} = 0.916$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	417 parameters
$wR(F^2) = 0.081$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{max} = 1.29 \text{ e} \text{ Å}^{-3}$
5636 reflections	$\Delta \rho_{\rm min} = -0.38 \text{ e} \text{ Å}^{-3}$

 $\mu = 0.75 \text{ mm}^{-1}$

 $0.20 \times 0.18 \times 0.12 \ \mathrm{mm}$

T = 113 K

Table 1

Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C1–C6 ring.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C9 - H9 \cdots F1^{i}$ $C26 - H26 \cdots F5^{ii}$ $C34 - H344 \cdots F1^{iii}$	0.95 0.95 0.98	2.54 2.40 2.53	3.120 (6) 3.222 (1) 3.276 (8)	119 144 133
$C27 - H27 \cdots Cg3^{ii}$	0.95	2.50	3.295 (1)	140

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) x + 1, y, z.

Data collection: CrystalClear (Rigaku/MSC, 2004); cell refinement: CrvstalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004).

DBQ thanks the Scientific Researching Fund Projects of China West Normal University (grant No. 06B003) and the Youth Fund Projects of Sichuan Educational Department (grant No. 2006B039).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QM2012).

References

- Arduengo, A. J. III, Dias, H. V. R., Calabrese, J. C. & Davidson, F. (1993). Organometallics, 12, 3405-3409.
- Catalano, V. J. & Etogo, A. O. (2007). Inorg. Chem. 46, 5608-5615.
- Lin, J. C. Y., Huang, R. T. W., Lee, C. S., Bhattacharyya, A., Hwang, W. S. & Lin, I. J. B. (2009). Chem. Rev. 109, 3561-3598.
- Liu, J. P., Chen, J. B., Zhao, J. F., Zhao, Y. H., Li, L. & Zhang, H. B. (2003). Synthesis, 17, 2661–2666.
- Nebioglu, A. K., Panzner, M. J., Tessier, C. A., Cannon, C. L. & Young, W. J. (2007). Coord. Chem. Rev. 251, 884-895.
- Rigaku/MSC (2004). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Samantaray, M. K., Katiyar, V., Pang, K., Nanavati, H. & Ghosh, P. (2007). J. Organomet. Chem. 692, 1672-1682.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, J. W., Song, H. B., Li, Q. S., Xu, F. B. & Zhang, Z. Z. (2005). Inorg. Chim. Acta, 358, 3653-3658.
- Wang, J. W., Xu, F. B., Li, Q. S., Song, H. B. & Zhang, Z. Z. (2005). Inorg. Chem. Commun. 8, 1053-1055.

supporting information

Acta Cryst. (2011). E67, m1116 [doi:10.1107/S1600536811026675]

Bis[1-benzyl-3-(4-methylphenyl)imidazol-2-ylidene]silver(I) hexafluoridophosphate

Kun Huang and Da-Bin Qin

S1. Comment

The discivery of first silver N-heterocyclic carbene (NHC) in 1993 by Arduengo (Arduengo *et al.*, 1993) led to its rapid use in organometallic chemistry (Lin *et al.*, 2009). silver NHCs can be used in various fields such as medical chemistry, Catalysis *et al.* (Nebioglu *et al.*, 2007; Samantaray *et al.*, 2007). Herein we report the crystal structure of the title silver NHC compound.

In the title compound, the silver(I) atom lies on a non-crystallographic twofold axis. The Ag—C bond lengths are close to literature values (Wang, Xu *et al.*, 2005). The silver coordination geometry is almost linear with a C—Ag—C angle of 178.60 (9) °. The two five membered rings are almost co-planar with C9 showing the maximum deviation from the least squares plane of 0.05 Å. The silver atom is 0.07 Å out of this plane and the C11–C16 and C28–C33 rings make angles of 46.61 ° and 41.77 ° repectively with it.

In the crystal there are C—H…F hydrogen bonds and π – π interactions which contribute to supermolecular structure. (Fig. 2) The π – π interactions are between rings N3/C25/N4/C26/C27 and N1/C8/N2/C9/C10 and rings C11–C16 and C28–C33 with the ring centroids being separated by 3.921 Å and 3.813 Å, respectively. [symmetry code: 1-*X*,1/2+Y,1/2-*Z* and 1-*X*,-1/2+Y,1/2-Z.] In addition C—H… π interactions involving the imidazole and benzene rings are also observed.

S2. Experimental

The title compound was prepared according to the reported procedures (Liu *et al.* 2003; Wang, Song *et al.* 2005). Colourless single crystals suitable for X-ray diffraction were obtained by recrystallization from dichloromethane and diethyl ether.

S3. Refinement

H atoms were placed in calculated positions with C—H = 0.95–0.99 Å, and refined in the riding mode with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

A view of the molecular structure of the title compound. The displacement ellipsoids are drawn at 30% probability level. C-bound H atoms have been omitted For clarity.

Figure 2

Crystal packing of the title compound, view down the *a* axis, showing the cations and anions linked *via* C—H···F interactions (dashed lines).H-atoms not involved in these interactions have been omitted for clarity.

Bis[1-benzyl-3-(4-methylphenyl)imidazol-2-ylidene]silver(I) hexafluoridophosphate

F(000) = 1520

 $\theta = 1.6 - 27.9^{\circ}$

 $\mu = 0.75 \text{ mm}^{-1}$ T = 113 K

Prism. colorless

 $0.20 \times 0.18 \times 0.12 \text{ mm}$

 $D_{\rm x} = 1.560 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 11560 reflections

Crystal data

 $[Ag(C_{17}H_{16}N_2)_2]PF_6$ $M_r = 749.48$ Monoclinic, $P2_1/c$ a = 9.692 (2) Å b = 16.312 (4) Å c = 20.227 (5) Å $\beta = 93.469$ (3)° V = 3192.1 (12) Å³ Z = 4

Data collection

Rigaku Saturn CCD area detector	21677 measured reflections
diffractometer	5636 independent reflections
Radiation source: rotating anode	4775 reflections with $I > 2\sigma(I)$
Multilayer monochromator	$R_{\rm int} = 0.043$
Detector resolution: 14.63 pixels mm ⁻¹	$\theta_{\rm max} = 25.0^{\circ}, \ \theta_{\rm min} = 1.6^{\circ}$
ω and φ scans	$h = -11 \rightarrow 7$
Absorption correction: multi-scan	$k = -19 \rightarrow 19$
(CrystalClear; Rigaku/MSC, 2004)	$l = -22 \rightarrow 24$
$T_{\min} = 0.865, \ T_{\max} = 0.916$	

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0457P)^2]$
where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$(\Delta/\sigma)_{\rm max} = 0.002$
$\Delta \rho_{\rm max} = 1.29 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Ag1	0.41572 (2)	0.859060 (11)	0.816377 (9)	0.02055 (8)
N1	0.2579 (2)	1.00527 (12)	0.74697 (10)	0.0201 (5)
N2	0.4069 (2)	1.04857 (12)	0.82125 (10)	0.0201 (5)
N3	0.5671 (2)	0.71360 (12)	0.88999 (11)	0.0218 (5)

N4	0.4187 (2)	0.66895 (13)	0.81610 (10)	0.0203 (5)
C1	0.3421 (3)	0.91678 (15)	0.61584 (14)	0.0236 (6)
H1	0.3971	0.8891	0.6493	0.028*
C2	0.3847 (3)	0.91908 (15)	0.55177 (14)	0.0269 (6)
H2	0.4678	0.8925	0.5413	0.032*
C3	0.3058 (3)	0.96022 (16)	0.50299 (14)	0.0282 (7)
H3	0.3345	0.9619	0.4589	0.034*
C4	0.1846 (3)	0.99894 (16)	0.51871 (13)	0.0273 (6)
H4	0.1307	1.0277	0.4855	0.033*
C5	0.1421 (3)	0.99574 (16)	0.58290 (13)	0.0237 (6)
Н5	0.0587	1.0222	0.5933	0.028*
C6	0.2194 (3)	0.95459 (14)	0.63189 (13)	0.0211 (6)
C7	0.1735 (3)	0.95170 (15)	0.70193 (13)	0.0240 (6)
H7A	0.0756	0.9689	0.7019	0.029*
H7B	0.1800	0.8946	0.7184	0.029*
C8	0.3559 (3)	0.97862 (15)	0.79212 (13)	0.0194 (6)
C9	0.3392 (3)	1.11697 (15)	0.79473 (13)	0.0230 (6)
H9	0.3556	1.1724	0.8074	0.028*
C10	0.2466 (3)	1.09047 (15)	0.74812 (14)	0.0248 (6)
H10	0.1851	1.1232	0.7210	0.030*
C11	0.5114 (3)	1.05048 (15)	0.87445 (13)	0.0215 (6)
C12	0.4931 (3)	1.10008 (17)	0.92862 (14)	0.0296 (7)
H12	0.4131	1.1335	0.9302	0.035*
C13	0.5936 (3)	1.10046 (17)	0.98088 (14)	0.0320 (7)
H13	0.5819	1.1353	1.0178	0.038*
C14	0.7096 (3)	1.05160 (17)	0.98046 (13)	0.0279 (6)
C15	0.7260 (3)	1.00243 (16)	0.92519 (13)	0.0257 (6)
H15	0.8052	0.9683	0.9240	0.031*
C16	0.6293 (3)	1.00224 (15)	0.87199 (13)	0.0232 (6)
H16	0.6433	0.9695	0.8342	0.028*
C17	0.8157 (3)	1.0520(2)	1.03823 (15)	0.0394 (8)
H17A	0.8500	1.1080	1.0458	0.059*
H17B	0.8929	1.0161	1.0284	0.059*
H17C	0.7732	1.0323	1.0780	0.059*
C18	0.8641 (3)	0.77442 (17)	0.86335 (14)	0.0329 (7)
H18	0.8072	0.7999	0.8294	0.040*
C19	1.0014 (3)	0.7597 (2)	0.85337 (16)	0.0423 (8)
H19	1.0380	0.7742	0.8125	0.051*
C20	1.0861 (3)	0.72373 (19)	0.90282 (17)	0.0424 (8)
H20	1.1810	0.7142	0.8962	0.051*
C21	1.0310 (3)	0.70167 (18)	0.96223 (16)	0.0376 (8)
H21	1.0882	0.6769	0.9964	0.045*
C22	0.8923 (3)	0.71589 (16)	0.97149 (14)	0.0284 (7)
H22	0.8548	0.7004	1.0120	0.034*
C23	0.8082 (3)	0.75253 (15)	0.92215 (13)	0.0232 (6)
C24	0.6570 (3)	0.76661 (15)	0.93234 (13)	0.0261 (6)
H24A	0.6395	0.7561	0.9793	0.031*
H24B	0.6338	0.8246	0.9226	0.031*

C25	0.4730 (3)	0.73940 (15)	0.84277 (13)	0.0219 (6)
C26	0.4790 (3)	0.60099 (15)	0.84766 (13)	0.0239 (6)
H26	0.4582	0.5451	0.8382	0.029*
C27	0.5712 (3)	0.62885 (15)	0.89357 (14)	0.0250 (6)
H27	0.6288	0.5968	0.9231	0.030*
C28	0.3152 (3)	0.66399 (15)	0.76335 (13)	0.0214 (6)
C29	0.3165 (3)	0.71662 (15)	0.70946 (13)	0.0243 (6)
H29	0.3885	0.7558	0.7067	0.029*
C30	0.2120 (3)	0.71147 (15)	0.65974 (14)	0.0284 (7)
H30	0.2116	0.7487	0.6236	0.034*
C31	0.1089 (3)	0.65370 (15)	0.66140 (14)	0.0256 (6)
C32	0.1107 (3)	0.59955 (16)	0.71508 (14)	0.0259 (6)
H32	0.0413	0.5586	0.7165	0.031*
C33	0.2115 (3)	0.60464 (15)	0.76600 (13)	0.0229 (6)
H33	0.2105	0.5682	0.8026	0.027*
C34	-0.0037 (3)	0.64745 (17)	0.60683 (15)	0.0359 (7)
H34A	-0.0646	0.6953	0.6083	0.054*
H34B	-0.0576	0.5974	0.6128	0.054*
H34C	0.0378	0.6455	0.5639	0.054*
P1	0.76650 (7)	0.85484 (4)	0.67062 (3)	0.02175 (17)
F1	0.84018 (19)	0.77564 (9)	0.70222 (8)	0.0389 (4)
F2	0.89576 (18)	0.86984 (11)	0.62716 (9)	0.0443 (5)
F3	0.69599 (18)	0.79928 (10)	0.61225 (8)	0.0374 (4)
F4	0.63656 (18)	0.83735 (13)	0.71351 (9)	0.0523 (5)
F5	0.6920 (2)	0.93310 (10)	0.63843 (9)	0.0517 (5)
F6	0.83605 (18)	0.90927 (9)	0.72922 (8)	0.0357 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.02564 (13)	0.01226 (11)	0.02389 (13)	0.00213 (8)	0.00264 (9)	0.00104 (8)
N1	0.0228 (12)	0.0150 (10)	0.0228 (12)	0.0007 (10)	0.0041 (10)	-0.0013 (9)
N2	0.0236 (12)	0.0145 (11)	0.0228 (12)	0.0016 (9)	0.0050 (10)	0.0008 (9)
N3	0.0234 (12)	0.0171 (11)	0.0249 (13)	0.0034 (10)	0.0022 (10)	0.0021 (9)
N4	0.0227 (12)	0.0136 (10)	0.0248 (13)	0.0027 (9)	0.0038 (10)	0.0031 (9)
C1	0.0221 (14)	0.0163 (12)	0.0320 (16)	-0.0006 (12)	-0.0016 (12)	0.0035 (11)
C2	0.0247 (15)	0.0221 (14)	0.0346 (17)	-0.0020 (12)	0.0063 (13)	-0.0044 (12)
C3	0.0301 (16)	0.0279 (15)	0.0268 (16)	-0.0100 (13)	0.0018 (13)	-0.0051 (12)
C4	0.0291 (16)	0.0268 (14)	0.0248 (16)	-0.0093 (13)	-0.0088 (13)	0.0009 (12)
C5	0.0168 (14)	0.0222 (13)	0.0315 (16)	-0.0028 (12)	-0.0027 (12)	-0.0027 (12)
C6	0.0206 (14)	0.0147 (12)	0.0278 (15)	-0.0066 (11)	0.0007 (12)	-0.0017 (11)
C7	0.0215 (14)	0.0193 (13)	0.0310 (16)	-0.0040 (12)	0.0009 (12)	0.0013 (11)
C8	0.0198 (14)	0.0186 (13)	0.0204 (14)	-0.0005 (11)	0.0048 (12)	-0.0002 (11)
C9	0.0262 (15)	0.0122 (12)	0.0314 (16)	0.0034 (12)	0.0066 (13)	0.0013 (11)
C10	0.0231 (15)	0.0168 (13)	0.0349 (17)	0.0038 (12)	0.0057 (13)	0.0049 (11)
C11	0.0256 (15)	0.0175 (13)	0.0219 (14)	-0.0019 (12)	0.0045 (12)	0.0015 (11)
C12	0.0301 (16)	0.0281 (15)	0.0308 (17)	0.0078 (13)	0.0041 (14)	-0.0043 (12)
C13	0.0380 (18)	0.0334 (16)	0.0250 (16)	0.0053 (14)	0.0048 (14)	-0.0066 (13)

C14	0.0288 (16)	0.0313 (15)	0.0239 (15)	-0.0017 (13)	0.0029 (12)	0.0043 (12)
C15	0.0218 (15)	0.0225 (14)	0.0333 (16)	0.0021 (12)	0.0067 (13)	0.0036 (12)
C16	0.0257 (15)	0.0176 (13)	0.0270 (15)	-0.0005 (12)	0.0073 (12)	-0.0030 (11)
C17	0.0378 (19)	0.0473 (19)	0.0327 (18)	0.0019 (16)	-0.0003 (15)	0.0002 (14)
C18	0.0410 (19)	0.0330 (16)	0.0245 (16)	-0.0019 (15)	0.0001 (14)	0.0027 (12)
C19	0.042 (2)	0.051 (2)	0.0350 (19)	-0.0101 (17)	0.0121 (16)	-0.0057 (15)
C20	0.0267 (17)	0.047 (2)	0.055 (2)	-0.0058 (15)	0.0118 (16)	-0.0201 (17)
C21	0.0300 (17)	0.0363 (17)	0.045 (2)	0.0046 (15)	-0.0115 (15)	-0.0100 (14)
C22	0.0349 (17)	0.0234 (14)	0.0265 (16)	-0.0014 (13)	-0.0008 (13)	-0.0017 (12)
C23	0.0285 (15)	0.0143 (12)	0.0264 (15)	-0.0014 (12)	-0.0007 (12)	-0.0053 (11)
C24	0.0328 (16)	0.0218 (14)	0.0232 (15)	0.0033 (13)	-0.0010 (13)	-0.0025 (11)
C25	0.0229 (15)	0.0191 (13)	0.0240 (15)	0.0027 (12)	0.0039 (12)	0.0001 (11)
C26	0.0263 (15)	0.0154 (13)	0.0305 (16)	0.0058 (12)	0.0067 (13)	0.0066 (11)
C27	0.0261 (15)	0.0186 (13)	0.0307 (16)	0.0067 (12)	0.0047 (13)	0.0050 (11)
C28	0.0234 (15)	0.0153 (12)	0.0259 (15)	0.0060 (12)	0.0045 (12)	-0.0019 (11)
C29	0.0320 (16)	0.0148 (12)	0.0263 (15)	-0.0015 (12)	0.0043 (13)	0.0002 (11)
C30	0.0417 (18)	0.0171 (13)	0.0263 (16)	0.0061 (13)	0.0015 (14)	0.0036 (11)
C31	0.0282 (16)	0.0225 (14)	0.0260 (15)	0.0076 (13)	0.0000 (12)	-0.0057 (11)
C32	0.0266 (15)	0.0195 (14)	0.0321 (16)	0.0012 (12)	0.0064 (13)	-0.0025 (12)
C33	0.0257 (15)	0.0186 (13)	0.0251 (15)	0.0014 (12)	0.0077 (12)	0.0016 (11)
C34	0.0393 (19)	0.0317 (16)	0.0362 (19)	0.0047 (14)	-0.0022 (15)	-0.0054 (13)
P1	0.0225 (4)	0.0188 (3)	0.0241 (4)	-0.0008 (3)	0.0027 (3)	0.0009 (3)
F1	0.0516 (11)	0.0235 (8)	0.0403 (10)	0.0065 (8)	-0.0081 (9)	0.0006 (7)
F2	0.0345 (10)	0.0628 (12)	0.0370 (11)	-0.0186 (9)	0.0119 (8)	-0.0025 (9)
F3	0.0408 (10)	0.0368 (9)	0.0336 (10)	-0.0077 (8)	-0.0071 (8)	-0.0050 (7)
F4	0.0329 (11)	0.0815 (14)	0.0443 (12)	-0.0074 (10)	0.0168 (9)	-0.0011 (10)
F5	0.0726 (14)	0.0287 (9)	0.0514 (12)	0.0177 (10)	-0.0154 (10)	0.0024 (8)
F6	0.0487 (11)	0.0246 (8)	0.0330 (10)	-0.0020 (8)	-0.0046 (8)	-0.0071 (7)

Geometric parameters (Å, °)

Ag1—C8	2.085 (2)	C16—H16	0.9500
Ag1—C25	2.090 (2)	C17—H17A	0.9800
N1—C8	1.349 (3)	C17—H17B	0.9800
N1-C10	1.395 (3)	C17—H17C	0.9800
N1—C7	1.474 (3)	C18—C19	1.380 (4)
N2—C8	1.363 (3)	C18—C23	1.383 (4)
N2—C9	1.386 (3)	C18—H18	0.9500
N2-C11	1.433 (3)	C19—C20	1.385 (4)
N3—C25	1.348 (3)	C19—H19	0.9500
N3—C27	1.385 (3)	C20—C21	1.392 (4)
N3—C24	1.466 (3)	C20—H20	0.9500
N4—C25	1.362 (3)	C21—C22	1.387 (4)
N4—C26	1.390 (3)	C21—H21	0.9500
N4—C28	1.422 (3)	C22—C23	1.385 (4)
C1—C2	1.384 (4)	C22—H22	0.9500
C1—C6	1.395 (4)	C23—C24	1.510 (4)
C1—H1	0.9500	C24—H24A	0.9900

C2—C3	1.385 (4)	C24—H24B	0.9900
С2—Н2	0.9500	C26—C27	1.329 (4)
C3—C4	1.387 (4)	C26—H26	0.9500
С3—Н3	0.9500	С27—Н27	0.9500
C4—C5	1.387 (4)	C28—C29	1.388 (4)
C4—H4	0.9500	C28—C33	1.399 (4)
C5—C6	1.380 (4)	C29—C30	1.386 (4)
C5—H5	0.9500	С29—Н29	0.9500
C6—C7	1.511 (3)	C30—C31	1.376 (4)
C7—H7A	0.9900	C30—H30	0.9500
C7—H7B	0.9900	$C_{31} - C_{32}$	1 399 (4)
C9-C10	1 333 (4)	$C_{31} = C_{34}$	1.599(1) 1 508(4)
C9H9	0.9500	C_{32}	1.300(1) 1 378(4)
C10_H10	0.9500	$C_{32} = C_{33}$	0.9500
C_{11} C_{12}	1.382(4)	C32 H33	0.9500
$C_{11} = C_{12}$	1.362(4)	C34 H34A	0.9300
C12 $C12$	1.391(4) 1.202(4)	C_{24} H_{24}	0.9800
C12C13	1.393 (4)	C24 U24C	0.9800
C12—H12	0.9300	C34—II34C	0.9800
C13—C14	1.379 (4)		1.5867 (17)
С13—Н13	0.9500		1.5913 (17)
	1.393 (4)	PI—F2	1.5923 (18)
	1.509 (4)	PI—F6	1.5971 (16)
C15—C16	1.384 (4)	P1—F4	1.5977 (18)
С15—Н15	0.9500	P1—F3	1.6077 (17)
C^{0} A ~ 1 C25	179 (0)	C10 C19 U19	110.6
C_{0} Agi C_{23}	1/6.00(9)	C19—C18—H18	119.0
$C_{0} = N_{1} = C_{10}$	111.3(2) 124.7(2)	С18 С10 С20	119.0
C_{8} NI C_{7}	124.7(2)	C18 - C19 - C20	120.2 (3)
C10 N1 $C7$	124.1(2)	C18—C19—H19	119.9
C8—N2—C9	110.8 (2)	C20—C19—H19	119.9
C8—N2—CII	124.4 (2)	C19 - C20 - C21	119.4 (3)
C9—N2—C11	124.7 (2)	С19—С20—Н20	120.3
C25—N3—C27	111.4 (2)	С21—С20—Н20	120.3
C25—N3—C24	125.6 (2)	C22—C21—C20	119.9 (3)
C27—N3—C24	1230(2)		120.0
C25—N4—C26	125.0 (2)	C22—C21—H21	120.0
	110.5 (2)	C22—C21—H21 C20—C21—H21	120.0
C25—N4—C28	110.5 (2) 125.7 (2)	C22—C21—H21 C20—C21—H21 C23—C22—C21	120.0 120.0 120.5 (3)
C25—N4—C28 C26—N4—C28	110.5 (2) 110.5 (2) 125.7 (2) 123.9 (2)	C22—C21—H21 C20—C21—H21 C23—C22—C21 C23—C22—H22	120.0 120.0 120.5 (3) 119.8
C25—N4—C28 C26—N4—C28 C2—C1—C6	123.0 (2) 110.5 (2) 125.7 (2) 123.9 (2) 120.8 (2)	C22—C21—H21 C20—C21—H21 C23—C22—C21 C23—C22—H22 C21—C22—H22	120.0 120.5 (3) 119.8 119.8
C25—N4—C28 C26—N4—C28 C2—C1—C6 C2—C1—H1	123.0 (2) 110.5 (2) 125.7 (2) 123.9 (2) 120.8 (2) 119.6	C22—C21—H21 C20—C21—H21 C23—C22—C21 C23—C22—H22 C21—C22—H22 C18—C23—C22	120.0 120.0 120.5 (3) 119.8 119.8 119.1 (3)
C25—N4—C28 C26—N4—C28 C2—C1—C6 C2—C1—H1 C6—C1—H1	123.0 (2) 110.5 (2) 125.7 (2) 123.9 (2) 120.8 (2) 119.6	C22—C21—H21 C20—C21—H21 C23—C22—C21 C23—C22—H22 C21—C22—H22 C18—C23—C22 C18—C23—C22	120.0 120.5 (3) 119.8 119.8 119.1 (3) 120.8 (2)
C25—N4—C28 C26—N4—C28 C2—C1—C6 C2—C1—H1 C6—C1—H1 C1—C2—C3	123.0 (2) 110.5 (2) 125.7 (2) 123.9 (2) 120.8 (2) 119.6 119.6 119.8 (3)	C22—C21—H21 C20—C21—H21 C23—C22—C21 C23—C22—H22 C21—C22—H22 C18—C23—C22 C18—C23—C24 C22—C23—C24	120.0 120.5 (3) 119.8 119.8 119.1 (3) 120.8 (2) 120.1 (2)
C25—N4—C28 C26—N4—C28 C2—C1—C6 C2—C1—H1 C6—C1—H1 C1—C2—C3 C1—C2—H2	123.0 (2) 110.5 (2) 125.7 (2) 123.9 (2) 120.8 (2) 119.6 119.6 119.8 (3) 120.1	C22—C21—H21 C20—C21—H21 C23—C22—C21 C23—C22—H22 C21—C22—H22 C18—C23—C22 C18—C23—C24 C22—C23—C24 N3—C24—C23	120.0 120.0 120.5 (3) 119.8 119.8 119.1 (3) 120.8 (2) 120.1 (2) 112.2 (2)
C25—N4—C28 C26—N4—C28 C2—C1—C6 C2—C1—H1 C6—C1—H1 C1—C2—C3 C1—C2—H2 C3—C2—H2	120.0 (2) 110.5 (2) 125.7 (2) 123.9 (2) 120.8 (2) 119.6 119.6 119.8 (3) 120.1	C22—C21—H21 C20—C21—H21 C23—C22—C21 C23—C22—H22 C18—C23—C22 C18—C23—C22 C18—C23—C24 C22—C23—C24 N3—C24—C23 N3—C24—H24A	120.0 120.0 120.5 (3) 119.8 119.8 119.1 (3) 120.8 (2) 120.1 (2) 112.2 (2) 109.2
C25—N4—C28 C26—N4—C28 C2—C1—C6 C2—C1—H1 C6—C1—H1 C1—C2—C3 C1—C2—H2 C3—C2—H2 C2—C3—C4	120.0 (2) 110.5 (2) 125.7 (2) 120.8 (2) 119.6 119.6 119.8 (3) 120.1 120.1 119.7 (3)	C22—C21—H21 C20—C21—H21 C23—C22—C21 C23—C22—H22 C21—C22—H22 C18—C23—C22 C18—C23—C24 C22—C23—C24 N3—C24—C23 N3—C24—H24A C23—C24—H24A	120.0 120.0 120.5 (3) 119.8 119.8 119.1 (3) 120.8 (2) 120.1 (2) 112.2 (2) 109.2
C25—N4—C28 C26—N4—C28 C2—C1—C6 C2—C1—H1 C6—C1—H1 C1—C2—C3 C1—C2—H2 C3—C2—H2 C2—C3—C4 C2—C3—H3	123.0 (2) 110.5 (2) 125.7 (2) 123.9 (2) 120.8 (2) 119.6 119.6 119.8 (3) 120.1 120.1 119.7 (3) 120.1	C22—C21—H21 C20—C21—H21 C23—C22—C21 C23—C22—H22 C18—C23—C22 C18—C23—C24 C22—C23—C24 N3—C24—C23 N3—C24—H24A C23—C24—H24A N3—C24—H24B	120.0 120.5 (3) 119.8 119.8 119.1 (3) 120.8 (2) 120.1 (2) 112.2 (2) 109.2 109.2
C25—N4—C28 C26—N4—C28 C2—C1—C6 C2—C1—H1 C6—C1—H1 C1—C2—C3 C1—C2—H2 C3—C2—H2 C2—C3—C4 C2—C3—H3 C4—C3—H3	120.0 (2) 110.5 (2) 125.7 (2) 120.8 (2) 119.6 119.6 119.8 (3) 120.1 120.1 119.7 (3) 120.1	C22—C21—H21 C20—C21—H21 C23—C22—C21 C23—C22—H22 C18—C23—C22 C18—C23—C24 C22—C23—C24 N3—C24—C23 N3—C24—H24A C23—C24—H24B C23—C24—H24B	120.0 120.0 120.5 (3) 119.8 119.8 119.1 (3) 120.8 (2) 120.1 (2) 112.2 (2) 109.2 109.2 109.2

C5—C4—H4	120.0	N3-C25-N4	104.2(2)
$C_3 - C_4 - H_4$	120.0	$N_3 = C_{25} = A_{g1}$	101.2(2) 12910(18)
C6-C5-C4	120.0 120.7(3)	N4-C25-Ag1	126.64 (19)
C6 C5 H5	110.6	C_{27} C_{26} N_4	120.04(1))
C_{4} C_{5} H_{5}	119.0	$C_{27} = C_{20} = N_{4}$	107.1 (2)
$C_{4} = C_{5} = C_{15}$	119.0	$C_2/-C_{20}-1120$	126.4
$C_{5} = C_{6} = C_{7}$	110.0(2)	$N4 - C_{20} - \Pi_{20}$	120.4
C_{3}	120.7(2)	$C_{20} = C_{27} = N_{3}$	100.8 (2)
	120.5 (2)	C26—C27—H27	126.6
NI = C / = C6	112.2 (2)	$N_3 = C_2 / = H_2 / C_{22}$	126.6
NI - C - H A	109.2	$C_{29} = C_{28} = C_{33}$	119.9 (3)
С6—С/—Н/А	109.2	C29—C28—N4	120.9 (2)
N1—C7—H7B	109.2	C33—C28—N4	119.1 (2)
С6—С7—Н7В	109.2	C30—C29—C28	119.4 (3)
H7A—C7—H7B	107.9	С30—С29—Н29	120.3
N1—C8—N2	104.2 (2)	С28—С29—Н29	120.3
N1—C8—Ag1	129.43 (18)	C31—C30—C29	121.6 (3)
N2—C8—Ag1	126.36 (19)	С31—С30—Н30	119.2
C10—C9—N2	107.2 (2)	С29—С30—Н30	119.2
С10—С9—Н9	126.4	C30—C31—C32	118.5 (3)
N2—C9—H9	126.4	C30—C31—C34	121.6 (3)
C9—C10—N1	106.5 (2)	C32—C31—C34	120.0 (3)
С9—С10—Н10	126.7	C33—C32—C31	121.1 (3)
N1—C10—H10	126.7	С33—С32—Н32	119.4
C12—C11—C16	120.3 (3)	С31—С32—Н32	119.4
C12—C11—N2	119.3 (2)	C32—C33—C28	119.4 (2)
C16—C11—N2	120.4 (2)	С32—С33—Н33	120.3
C11—C12—C13	119.2 (3)	С28—С33—Н33	120.3
C11—C12—H12	120.4	C31—C34—H34A	109.5
C13—C12—H12	120.4	C31—C34—H34B	109.5
C14-C13-C12	121.7 (3)	H34A—C34—H34B	109.5
C14—C13—H13	119.1	C31—C34—H34C	109.5
C12—C13—H13	119.1	H34A—C34—H34C	109.5
C13 - C14 - C15	118.0(3)	H34B - C34 - H34C	109.5
C_{13} C_{14} C_{17}	120.7(3)	F5P1F1	179 27 (11)
$C_{15} C_{14} C_{17}$	120.7(3)	F5 P1 F2	90.20(11)
$C_{15} = C_{14} = C_{17}$	121.3(3) 121.4(3)	$F_{1} = F_{1} = F_{2}$	90.20 (11) 80.85 (10)
$C_{10} = C_{15} = C_{14}$	110.3	$F_{1} = F_{1} = F_{2}$	01.05(10)
$C_{10} = C_{15} = H_{15}$	117.5	$F_{3} = F_{1} = F_{0}$	91.03(9)
	119.5	$\Gamma I - \Gamma I - \Gamma 0$	89.07 (9)
	119.4 (2)	F2	90.77 (10)
C15—C16—H16	120.3	$F_{0} = F_{1} = F_{4}$	90.71 (11)
C11—C16—H16	120.3	$F1 \longrightarrow P1 \longrightarrow F4$	89.21 (11)
С14—С17—Н17А	109.5	F2—P1—F4	178.48 (11)
С14—С17—Н17В	109.5	F6—P1—F4	90.43 (10)
H17A—C17—H17B	109.5	F5—P1—F3	89.41 (10)
C14—C17—H17C	109.5	F1—P1—F3	89.87 (9)
H17A—C17—H17C	109.5	F2—P1—F3	89.71 (10)
H17B—C17—H17C	109.5	F6—P1—F3	179.34 (10)
C19—C18—C23	120.8 (3)	F4—P1—F3	89.09 (10)

C6—C1—C2—C3	0.8 (4)	C23-C18-C19-C20	-1.0 (5)
C1—C2—C3—C4	0.1 (4)	C18—C19—C20—C21	0.8 (5)
C2—C3—C4—C5	-0.6 (4)	C19—C20—C21—C22	-0.1 (4)
C3—C4—C5—C6	0.3 (4)	C20—C21—C22—C23	-0.5 (4)
C4—C5—C6—C1	0.6 (4)	C19—C18—C23—C22	0.4 (4)
C4—C5—C6—C7	179.5 (2)	C19—C18—C23—C24	-178.3 (3)
C2-C1-C6-C5	-1.1 (4)	C21—C22—C23—C18	0.3 (4)
C2-C1-C6-C7	179.9 (2)	C21—C22—C23—C24	179.1 (2)
C8—N1—C7—C6	-104.8 (3)	C25—N3—C24—C23	-117.8 (3)
C10—N1—C7—C6	75.0 (3)	C27—N3—C24—C23	61.1 (3)
C5—C6—C7—N1	-106.0 (3)	C18—C23—C24—N3	68.3 (3)
C1—C6—C7—N1	72.9 (3)	C22—C23—C24—N3	-110.4 (3)
C10—N1—C8—N2	-0.5 (3)	C27—N3—C25—N4	-0.6 (3)
C7—N1—C8—N2	179.3 (2)	C24—N3—C25—N4	178.4 (2)
C10—N1—C8—Ag1	177.56 (18)	C27—N3—C25—Ag1	177.84 (19)
C7—N1—C8—Ag1	-2.6 (4)	C24—N3—C25—Ag1	-3.1 (4)
C9—N2—C8—N1	0.9 (3)	C26—N4—C25—N3	0.6 (3)
C11—N2—C8—N1	177.8 (2)	C28—N4—C25—N3	-179.3 (2)
C9—N2—C8—Ag1	-177.31 (17)	C26—N4—C25—Ag1	-177.89 (17)
C11—N2—C8—Ag1	-0.4 (3)	C28—N4—C25—Ag1	2.2 (4)
C25—Ag1—C8—N1	-103 (4)	C8—Ag1—C25—N3	-75 (4)
C25—Ag1—C8—N2	75 (4)	C8—Ag1—C25—N4	103 (4)
C8—N2—C9—C10	-0.9 (3)	C25—N4—C26—C27	-0.4 (3)
C11—N2—C9—C10	-177.8 (2)	C28—N4—C26—C27	179.5 (2)
N2-C9-C10-N1	0.5 (3)	N4—C26—C27—N3	0.0 (3)
C8—N1—C10—C9	0.0 (3)	C25—N3—C27—C26	0.4 (3)
C7—N1—C10—C9	-179.8 (2)	C24—N3—C27—C26	-178.7 (2)
C8—N2—C11—C12	-133.5 (3)	C25—N4—C28—C29	40.1 (4)
C9—N2—C11—C12	43.0 (4)	C26—N4—C28—C29	-139.7 (3)
C8—N2—C11—C16	45.7 (3)	C25—N4—C28—C33	-140.4 (3)
C9—N2—C11—C16	-137.7 (3)	C26—N4—C28—C33	39.8 (3)
C16—C11—C12—C13	-0.6 (4)	C33—C28—C29—C30	2.1 (4)
N2-C11-C12-C13	178.7 (2)	N4-C28-C29-C30	-178.4 (2)
C11—C12—C13—C14	-1.1 (4)	C28—C29—C30—C31	-2.0 (4)
C12—C13—C14—C15	1.4 (4)	C29—C30—C31—C32	0.3 (4)
C12-C13-C14-C17	-178.9 (3)	C29—C30—C31—C34	-179.2 (3)
C13—C14—C15—C16	0.1 (4)	C30—C31—C32—C33	1.3 (4)
C17—C14—C15—C16	-179.7 (3)	C34—C31—C32—C33	-179.2 (2)
C14—C15—C16—C11	-1.7 (4)	C31—C32—C33—C28	-1.2 (4)
C12-C11-C16-C15	2.0 (4)	C29—C28—C33—C32	-0.6 (4)
N2-C11-C16-C15	-177.3 (2)	N4—C28—C33—C32	179.9 (2)

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C1–C6 ring.

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C9—H9…F1 ⁱ	0.95	2.54	3.120 (6)	119

supporting information

C26—H26…F5 ⁱⁱ	0.95	2.40	3.222 (1)	144
C34—H34A····F1 ⁱⁱⁱ	0.98	2.53	3.276 (8)	133
C27—H27··· <i>Cg</i> 3 ⁱⁱ	0.95	2.50	3.295 (1)	140

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*+1/2; (ii) -*x*+1, *y*+1/2, -*z*+1/2; (iii) *x*+1, *y*, *z*.