organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Amino-6-(pyrrolidin-1-yl)-4-p-tolylpyridine-3,5-dicarbonitrile

S. Antony Inglebert,^a Jayabal Kamalraja,^b Gnanasambandam Vasuki^b and K. Sethusankar^c*

^aPhysics Department, Sri Ram Engineering College, Chennai 602 024, India, ^bDepartment of Chemistry, Pondichery University, Pondichery 605 014, India, and ^cDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004. India

Correspondence e-mail: ksethusankar@yahoo.co.in

Received 14 June 2011; accepted 1 July 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.044; wR factor = 0.119; data-to-parameter ratio = 13.2.

In the title compound, $C_{18}H_{17}N_5$, the pyrrolidine ring adopts an envelope conformation. The pyrrolidine ring is disordered over two sets of sites with occupancy factors of 0.648 (6) and 0.352 (6). The dihedral angles between the pyrrolidine and pyridine rings are $14.6 (3)^{\circ}$ for the major component and $16.2 (6)^{\circ}$ for the ninor component. The crystal structure is stabilized by intermolecular N-H···N and C-H···N interactions.

Related literature

For a related structure, see: Wang et al. (2011). For the biological activity of spiro compounds, see: Kobayashi et al. (1991); James et al. (1991). For the use of 2-amino-3-cyanopyridines as intermediates in the preparation of heterocyclic compounds, see: Shishoo et al. (1983). For puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data C18H17N5

 $M_r = 303.37$

Triclinic, P1	
a = 7.4005 (5) Å	
b = 9.0330 (5) Å	
c = 12.0533 (6) Å	
$\alpha = 87.876 \ (5)^{\circ}$	
$\beta = 80.575 \ (5)^{\circ}$	
$\gamma = 84.053 \ (5)^{\circ}$	

Data collection

Bruker Kappa APEXII CCD	5515 measured reflections
diffractometer	2924 independent reflections
Absorption correction: multi-scan	1812 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.026$
$T_{\min} = 0.916, \ T_{\max} = 0.984$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	48 restraints
$wR(F^2) = 0.119$	H-atom parameters constrained
S = 0.95	$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$
2924 reflections	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$
222 parameters	

V = 790.43 (8) Å³

Mo $K\alpha$ radiation

 $0.30 \times 0.25 \times 0.20$ mm

 $\mu = 0.08 \text{ mm}^{-1}$ T = 295 K

7 - 2

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1A\cdots N4^{i}$	0.86	2.19	3.010 (2)	160
$C11-H11\cdots N2^{ii}$	0.93	2.62	3.531 (2)	166

Symmetry codes: (i) x, y - 1, z; (ii) -x, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

SAIB and KS thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2281).

References

Bruker (2008). APEX2 and SAINT. Bruker Axs Inc., Madison, Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

James, D., Kunz, H. B. & Faulkner, D. (1991). J. Nat. Prod. 54, 1137-1140.

Kobayashi, J., Tsuda, S. G., Agmi, K., Shigmori, H., Ishibashi, M., Sasaki, T. & Mikami, Y. (1991). Tetrahedron, 43, 6617-6622.

Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Shishoo, C. J., Devani, M. B., Bhadti, V. S., Ananthan, S. & Ullas, G. V. (1983). Tetrahedron Lett. pp. 4611-4612.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Wang, J.-Q., Tang, S.-G. & Guo, C. (2011). Acta Cryst. E67, 056.

supporting information

Acta Cryst. (2011). E67, o1972 [doi:10.1107/S1600536811026092]

2-Amino-6-(pyrrolidin-1-yl)-4-p-tolylpyridine-3,5-dicarbonitrile

S. Antony Inglebert, Jayabal Kamalraja, Gnanasambandam Vasuki and K. Sethusankar

S1. Comment

Generally the 'spiro'–compounds are naturally occurring substances (Kobayashi *et al.*, 1991; James *et al.*, 1991). Pyridines are of interest because of occurrence of their saturated and partially saturated derivatives in biologically active compounds and natural products such as *NAD* nucleotides, pyridoxol and pyridine alkaloids. Derivatives of 2-amino-3-cynaopyridine are important compound in the preparation of various hetrocyclic compounds (Shishoo *et al.*, 1983).

The title compound $C_{18}H_{17}N_5$ was prepared from 4–methylbenzaldehyde, malononitrile and pyrrolidine. The reported compound pyridine bearing a pyrrolidine ring at C5 and benzene ring at C3. The X–ray analysis confirms the molecular structure and atom connectivity of the compound, as illustrated in Fig. 1. The pyrrolidine ring adopts an envelope conformation with puckering parameter $q_2 = 0.333$ (8)Å, and $\varphi_2 = 98.1$ (14)°, (Cremer & Pople, 1975) and the maximum deviation of C8 atom is -0.207 (6)Å. Also it has disordered with the occupancy factor of 0.648 (6) / 0.352 (6).

The pyridine ring (N2/C1—C5) forms dihedral angles of 14.6 (3)° and 59.89 (8)° with pyrrolidine (N3/C6—C9) and phenyl ring (C10—C15) respectively. Also the pyrrolidine ring forms a dihedral angle of 73.2 (3)° with phenyl ring. The title compound exibits the structural similarities with the reported related structure (Wang *et al.*, 2011).

The crystal structure is stabilized by N—H···N and C—H···N intermolecular interactions (Table 1). For the symmetry codes, see Table 1 too. The packing view of the reported compound is shown in Fig. 2.

S2. Experimental

Initially a mixture of 4–methylbenzaldehyde (2 mmoL,0.24 g), malononitrile (3 mmoL, 0.198 g), pyrrolidine (1.5 mmoL, 0.1 g) and was stirred without any solvent at room temperature. A solid appeared immediately which has dissolved in a minimum amount (3 ml) of ethanol and the solution was refluxed until completion of the reaction (monitered by *TLC*). The reaction mixture was cooled. Ethanol was evaporated under reduced pressure and the residue was extracted with dicholoromethane (3 x 10 ml). Evaporation of solvent left the crude solid which was subjected to silica gel column chromatography [25%/75% ethyl acetate/hexane] and the product was recrysallized from dichloromethane.

S3. Refinement

The H atoms were placed in idealized positions and allowed to ride on the parent atoms, with C—H bond lengths fixed to 0.93Å (Aromatic H), 0.96Å (methyl H), 0.97Å (methylene H), 0.86Å (N—H) and $U_{iso}(H) = 1.2-1.5U_{eq}(C,N)$.

Figure 1

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are present as small spheres of arbitary radius. Only major moiety of pyrrolidine is presented for clarity.

Figure 2

The packing arrangement of the title compound viewed down. Dashed lines indicates the N—H…N and C—H…N interactions.

2-Amino-6-(pyrrolidin-1-yl)-4-p-tolylpyridine-3,5-dicarbonitrile

Crystal data

C₁₈H₁₇N₅ $M_r = 303.37$ Triclinic, *P*1 Hall symbol: -P 1 a = 7.4005 (5) Å b = 9.0330 (5) Å c = 12.0533 (6) Å a = 87.876 (5)° $\beta = 80.575$ (5)° $\gamma = 84.053$ (5)° V = 790.43 (8) Å³

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine–focus sealed tube Graphite monochromator ω and φ scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.916, T_{\max} = 0.984$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from
$wR(F^2) = 0.119$	neighbouring sites
S = 0.95	H-atom parameters constrained
2924 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0686P)^2]$
222 parameters	where $P = (F_o^2 + 2F_c^2)/3$
48 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Z = 2

F(000) = 320

 $\theta = 2.8 - 25.5^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$

Block, colourless $0.30 \times 0.25 \times 0.20$ mm

5515 measured reflections

 $\theta_{\rm max} = 25.5^{\circ}, \ \theta_{\rm min} = 2.8^{\circ}$

2924 independent reflections

1812 reflections with $I > 2\sigma(I)$

T = 295 K

 $R_{\rm int} = 0.026$

 $h = -8 \rightarrow 8$

 $k = -10 \rightarrow 6$

 $l = -14 \rightarrow 14$

 $D_{\rm x} = 1.275 {\rm ~Mg} {\rm ~m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2784 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.2478 (2)	0.39231 (19)	0.48703 (14)	0.0311 (4)	
C2	0.2350 (2)	0.50607 (19)	0.40420 (14)	0.0299 (4)	
C3	0.2438 (2)	0.65256 (19)	0.43307 (14)	0.0287 (4)	

C4	0.2583 (2)	0.68285 (19)	0.54390 (14)	0.0295 (4)	
C5	0.2649 (2)	0.56120 (19)	0.62372 (14)	0.0293 (4)	
C6	0.2432 (9)	0.7131 (12)	0.7968 (9)	0.0461 (15)	0.648 (6)
H6A	0.1327	0.7729	0.7820	0.055*	0.648 (6)
H6B	0.3472	0.7716	0.7782	0.055*	0.648 (6)
C7	0.2226 (9)	0.6588 (7)	0.9190 (4)	0.0691 (15)	0.648 (6)
H7A	0.2771	0.7236	0.9638	0.083*	0.648 (6)
H7B	0.0939	0.6557	0.9508	0.083*	0.648 (6)
C8	0.3238 (8)	0.5040 (6)	0.9150 (3)	0.0563 (11)	0.648 (6)
H8A	0.2748	0.4437	0.9790	0.068*	0.648 (6)
H8B	0.4542	0.5084	0.9151	0.068*	0.648 (6)
C9	0.2914 (10)	0.4408 (11)	0.8058 (7)	0.0390 (12)	0.648 (6)
H9A	0.3947	0.3718	0.7741	0.047*	0.648 (6)
H9B	0.1800	0.3905	0.8169	0.047*	0.648 (6)
C6'	0.301 (2)	0.715 (3)	0.7863 (18)	0.0461 (15)	0.352 (6)
H6'1	0.1965	0.7891	0.7859	0.055*	0.352 (6)
H6'2	0 4114	0.7569	0.7482	0.055*	0.352 (6)
C7'	0.3223(17)	0.6648 (14)	0.9056(9)	0.0691 (15)	0.352 (6)
H7'1	0.4510	0.6416	0.9124	0.083*	0.352 (6)
H7'2	0.2680	0.7410	0.9590	0.083*	0.352 (6)
C8'	0.2208 (14)	0.5274(12)	0.9249 (7)	0.0563 (11)	0.352 (0)
H8'1	0.2200 (11)	0.4600	0.9787	0.068*	0.352 (6)
H8'2	0.0914	0.5536	0.9531	0.068*	0.352 (6)
C9'	0.243(2)	0.3550 0.463 (2)	0.8208 (15)	0.000	0.352 (6)
U) H9'1	0.1343	0.4147	0.8136	0.047*	0.352 (6)
H9'2	0.3477	0.3873	0.8132	0.047*	0.352 (6)
C10	0.2397(2)	0.77241 (18)	0.34444(14)	0.0311(4)	0.552 (0)
C11	0.2597(2) 0.0942(3)	0.7948(2)	0.31111(11) 0.28509(15)	0.0311(1) 0.0401(5)	
H11	-0.0063	0.7399	0.3045	0.048*	
C12	0.0959 (3)	0.8974(2)	0.19760 (16)	0.0475(5)	
H12	-0.0041	0.9107	0.1593	0.057*	
C13	0.0041 0.2424(3)	0.9812(2)	0.16525 (15)	0.037 0.0416 (5)	
C14	0.2121(3) 0.3849(3)	0.9602(2)	0.22687 (16)	0.0478(5)	
H14	0.4842	1.0165	0.22007 (10)	0.057*	
C15	0.3855(3)	0.8584(2)	0.2002 0.31535(15)	0.0395 (5)	
H15	0.4836	0.8477	0.3553	0.047*	
C16	0.2469 (4)	1.0884(2)	0.06669(17)	0.0647(7)	
H16A	0.3279	1.0004 (2)	0.0743	0.007*	
H16R	0.1252	1.1356	0.0745	0.097*	
H16C	0.1252	1.0354	-0.0016	0.097*	
C17	0.2907 0.2191 (3)	0.4648(2)	0.0010	0.097	
C18	0.2191(3) 0.2644(3)	0.4040(2) 0.8343(2)	0.27340(10) 0.57125(14)	0.0400(5) 0.0367(5)	
N1	0.2044(3) 0.2465(2)	0.8343(2) 0.24897(16)	0.37123(14) 0.46085(13)	0.0307(5)	
H1A	0.2403 (2)	0.1801	0.5115	0.056*	
H1R	0.2372	0.2262	0.3935	0.056*	
N2	0.2572	0.2202 0.41952(15)	0.5935	0.0333 (4)	
N3	0.20230(19) 0.2732(2)	0.71952(15) 0.57631(16)	0.39230(11) 0.73317(12)	0.0333(4) 0.0370(4)	
N/	0.2752(2) 0.2600(2)	0.57051(10) 0.05712(10)	0.73317(12) 0.58007(14)	0.0570(4)	
111	0.2077 (3)	0.73/12(17)	0.2020/(14)	0.0371(3)	

supporting information

N 1	r 🗲
- INI	<u></u>

0.2055 (3)

0.4201 (2)

0.20790 (15)

0.0654 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0345 (10)	0.0243 (10)	0.0349 (11)	-0.0038 (8)	-0.0068 (8)	0.0012 (8)
C2	0.0353 (10)	0.0275 (10)	0.0272 (9)	-0.0050 (8)	-0.0057 (7)	0.0028 (8)
C3	0.0287 (9)	0.0263 (10)	0.0308 (9)	-0.0035 (8)	-0.0043 (7)	0.0024 (8)
C4	0.0347 (10)	0.0244 (9)	0.0300 (10)	-0.0044 (8)	-0.0061 (8)	0.0015 (8)
C5	0.0296 (10)	0.0298 (10)	0.0292 (10)	-0.0041 (8)	-0.0066 (8)	0.0027 (8)
C6	0.065 (4)	0.0426 (13)	0.032 (2)	-0.011 (4)	-0.006 (3)	-0.0053 (14)
C7	0.109 (4)	0.066 (2)	0.0320 (18)	-0.008 (4)	-0.009 (3)	-0.0056 (15)
C8	0.063 (3)	0.076 (2)	0.0343 (15)	-0.017 (3)	-0.016 (2)	0.0116 (15)
C9	0.048 (4)	0.037 (3)	0.027 (3)	0.010 (3)	-0.001 (2)	0.0050 (19)
C6′	0.065 (4)	0.0426 (13)	0.032 (2)	-0.011 (4)	-0.006 (3)	-0.0053 (14)
C7′	0.109 (4)	0.066 (2)	0.0320 (18)	-0.008 (4)	-0.009(3)	-0.0056 (15)
C8′	0.063 (3)	0.076 (2)	0.0343 (15)	-0.017 (3)	-0.016 (2)	0.0116 (15)
C9′	0.048 (4)	0.037 (3)	0.027 (3)	0.010 (3)	-0.001 (2)	0.0050 (19)
C10	0.0423 (11)	0.0238 (10)	0.0267 (9)	-0.0039 (8)	-0.0047 (8)	0.0028 (8)
C11	0.0449 (12)	0.0404 (12)	0.0372 (11)	-0.0111 (9)	-0.0106 (9)	0.0078 (9)
C12	0.0590 (13)	0.0473 (13)	0.0381 (11)	-0.0014 (11)	-0.0180 (10)	0.0089 (10)
C13	0.0663 (14)	0.0285 (11)	0.0285 (10)	-0.0015 (10)	-0.0056 (10)	0.0038 (8)
C14	0.0653 (14)	0.0372 (12)	0.0418 (11)	-0.0217 (10)	-0.0031 (10)	0.0077 (9)
C15	0.0466 (12)	0.0392 (11)	0.0360 (10)	-0.0135 (9)	-0.0117 (9)	0.0058 (9)
C16	0.103 (2)	0.0465 (14)	0.0421 (12)	-0.0053 (13)	-0.0091 (12)	0.0139 (11)
C17	0.0561 (13)	0.0298 (11)	0.0351 (11)	-0.0083 (9)	-0.0089 (9)	0.0030 (9)
C18	0.0499 (12)	0.0307 (11)	0.0299 (10)	-0.0054 (9)	-0.0074 (9)	0.0039 (8)
N1	0.0766 (12)	0.0255 (9)	0.0401 (9)	-0.0073 (8)	-0.0172 (8)	0.0030 (7)
N2	0.0442 (9)	0.0267 (9)	0.0302 (8)	-0.0047 (7)	-0.0101 (7)	0.0042 (7)
N3	0.0529 (10)	0.0337 (9)	0.0257 (8)	-0.0053 (8)	-0.0105 (7)	0.0013 (7)
N4	0.1006 (16)	0.0303 (11)	0.0475 (11)	-0.0096 (10)	-0.0134 (10)	0.0014 (8)
N5	0.1054 (16)	0.0584 (13)	0.0359 (10)	-0.0146 (11)	-0.0165 (10)	-0.0068 (9)

Geometric parameters (Å, °)

C1—N2	1.329 (2)	C7′—C8′	1.508 (16)	
C1—N1	1.345 (2)	C7′—H7′1	0.9700	
C1—C2	1.413 (2)	C7′—H7′2	0.9700	
С2—С3	1.391 (2)	C8′—C9′	1.38 (2)	
C2—C17	1.426 (2)	C8′—H8′1	0.9700	
C3—C4	1.397 (2)	C8′—H8′2	0.9700	
C3—C10	1.494 (2)	C9′—N3	1.453 (19)	
C4—C18	1.426 (2)	C9′—H9′1	0.9700	
C4—C5	1.436 (2)	С9′—Н9′2	0.9700	
C5—N3	1.343 (2)	C10—C11	1.382 (2)	
C5—N2	1.350 (2)	C10—C15	1.386 (2)	
C6—N3	1.457 (11)	C11—C12	1.377 (3)	
C6—C7	1.523 (12)	C11—H11	0.9300	

С6—Н6А	0.9700	C12—C13	1.381 (3)
С6—Н6В	0.9700	C12—H12	0.9300
C7—C8	1.515 (9)	C13—C14	1.380 (3)
C7—H7A	0.9700	C13—C16	1.503 (3)
С7—Н7В	0.9700	C14—C15	1.382 (3)
C8—C9	1.518 (11)	C14—H14	0.9300
C8—H8A	0.9700	C15—H15	0.9300
C8—H8B	0.9700	C16—H16A	0.9600
C9—N3	1 486 (10)	C16—H16B	0.9600
C9—H9A	0.9700	C16—H16C	0.9600
C9—H9B	0.9700	C17—N5	1 144 (2)
C6'N3	1.48(2)	C18_N4	1.144(2) 1 144(2)
C6' - C7'	1.40(2)		1.144(2)
Со —С /	0.0700	NI UID	0.8600
$C_0 - H_0 I$	0.9700	NI—HID	0.8000
Со —по 2	0.9700		
N2—C1—N1	116.85 (15)	C9'—C8'—H8'1	110.7
N2-C1-C2	122.80 (15)	C7'—C8'—H8'1	110.7
N1-C1-C2	120.35 (15)	C9'—C8'—H8'2	110.7
$C_{3}-C_{2}-C_{1}$	118 84 (15)	C7' - C8' - H8'2	110.7
C_{3} C_{2} C_{17}	122.85 (16)	H8'1 - C8' - H8'2	108.8
C1 - C2 - C17	118 29 (15)	C8' - C9' - N3	100.0 109.3(14)
$C_2 - C_3 - C_4$	118.92 (15)	C8' - C9' - H9'1	109.8
$C_2 = C_3 = C_1 0$	110.92(15) 119.08(15)	N_{3} C_{9} H_{9} H_{9} H_{9}	109.8
$C_{2} = C_{3} = C_{10}$	119.00(15)	$(1)^{-1}(2)^$	109.8
$C_{4} = C_{3} = C_{10}$	122.00(15) 117.60(15)	$C_{0} = C_{0} = H_{0}^{2}$	109.8
$C_{3} = C_{4} = C_{18}$	117.00(15) 119.67(15)	103-03-1192	109.8
$C_3 = C_4 = C_5$	116.07(15) 122.72(15)	$H_{2}^{-} = H_{2}^{-} = H_{2$	108.5
C18 - C4 - C3	123.73(15)		118.23 (16)
N3-C5-N2	114.48 (14)	C11 - C10 - C3	120.58 (15)
N3-C5-C4	124.32 (15)	C15 - C10 - C3	121.11 (16)
N2-C5-C4	121.20 (15)	C12—C11—C10	120.90 (18)
N3—C6—C7	103.8 (7)	С12—С11—Н11	119.6
N3—C6—H6A	111.0	C10—C11—H11	119.6
С7—С6—Н6А	111.0	C11—C12—C13	121.73 (19)
N3—C6—H6B	111.0	C11—C12—H12	119.1
С7—С6—Н6В	111.0	C13—C12—H12	119.1
H6A—C6—H6B	109.0	C14—C13—C12	116.77 (17)
C8—C7—C6	104.8 (5)	C14—C13—C16	121.75 (19)
С8—С7—Н7А	110.8	C12—C13—C16	121.5 (2)
С6—С7—Н7А	110.8	C13—C14—C15	122.44 (18)
С8—С7—Н7В	110.8	C13—C14—H14	118.8
С6—С7—Н7В	110.8	C15—C14—H14	118.8
H7A—C7—H7B	108.9	C14—C15—C10	119.89 (18)
C7—C8—C9	104.7 (4)	C14—C15—H15	120.1
С7—С8—Н8А	110.8	C10—C15—H15	120.1
С9—С8—Н8А	110.8	C13—C16—H16A	109.5
C7—C8—H8B	110.8	C13—C16—H16B	109.5
С9—С8—Н8В	110.8	H16A—C16—H16B	109.5

H8A—C8—H8B	108.9	C13—C16—H16C	109.5
N3—C9—C8	102.4 (6)	H16A—C16—H16C	109.5
N3—C9—H9A	111.3	H16B—C16—H16C	109.5
С8—С9—Н9А	111.3	N5—C17—C2	174.4 (2)
N3—C9—H9B	111.3	N4—C18—C4	177.49 (19)
С8—С9—Н9В	111.3	C1—N1—H1A	120.0
H9A—C9—H9B	109.2	C1—N1—H1B	120.0
N3—C6′—C7′	103.1 (14)	H1A—N1—H1B	120.0
N3—C6′—H6′1	111.1	C1—N2—C5	119.50 (14)
С7'—С6'—Н6'1	111.1	C5—N3—C9′	126.0 (8)
N3—C6′—H6′2	111.1	C5—N3—C6	127.7 (5)
С7'—С6'—Н6'2	111.1	C9′—N3—C6	102.6 (8)
H6'1—C6'—H6'2	109.1	C5—N3—C6′	125.6 (9)
C8′—C7′—C6′	104.2 (11)	C9'—N3—C6'	108.3 (12)
C8′—C7′—H7′1	110.9	C6—N3—C6′	16.9 (8)
С6'—С7'—Н7'1	110.9	C5—N3—C9	119.2 (4)
C8'—C7'—H7'2	110.9	C9′—N3—C9	15.9 (6)
C6'—C7'—H7'2	110.9	C6—N3—C9	112.7 (6)
H7'1—C7'—H7'2	108.9	C6′—N3—C9	114.2 (10)
C9'—C8'—C7'	105.2 (11)		
N2—C1—C2—C3	2.0 (3)	C16—C13—C14—C15	-177.78 (18)
N1—C1—C2—C3	-177.54 (16)	C13—C14—C15—C10	0.4 (3)
N2—C1—C2—C17	-179.85 (16)	C11—C10—C15—C14	-1.9(3)
N1—C1—C2—C17	0.6 (3)	C3—C10—C15—C14	174.71 (17)
C1—C2—C3—C4	-2.3 (2)	N1—C1—N2—C5	179.88 (15)
C17—C2—C3—C4	179.63 (17)	C2—C1—N2—C5	0.3 (2)
C1-C2-C3-C10	177.00 (16)	N3—C5—N2—C1	177.57 (15)
C17—C2—C3—C10	-1.0 (3)	C4—C5—N2—C1	-2.2 (2)
C2—C3—C4—C18	-179.12 (16)	N2—C5—N3—C9′	-13.0(7)
C10—C3—C4—C18	1.6 (2)	C4—C5—N3—C9′	166.8 (7)
C2—C3—C4—C5	0.5 (2)	N2—C5—N3—C6	-167.4 (4)
C10—C3—C4—C5	-178.81 (16)	C4—C5—N3—C6	12.4 (4)
C3—C4—C5—N3	-177.95 (16)	N2—C5—N3—C6′	171.6 (8)
C18—C4—C5—N3	1.7 (3)	C4—C5—N3—C6′	-8.6 (8)
C3—C4—C5—N2	1.8 (2)	N2-C5-N3-C9	4.0 (4)
C18—C4—C5—N2	-178.55 (16)	C4—C5—N3—C9	-176.2 (4)
N3—C6—C7—C8	24.5 (6)	C8′—C9′—N3—C5	-166.2 (7)
C6—C7—C8—C9	-34.4 (7)	C8′—C9′—N3—C6	-6.7 (12)
C7—C8—C9—N3	30.0 (6)	C8′—C9′—N3—C6′	9.8 (14)
N3—C6′—C7′—C8′	-25.3 (12)	C8′—C9′—N3—C9	124 (5)
C6'—C7'—C8'—C9'	32.1 (14)	C7—C6—N3—C5	166.3 (3)
C7'—C8'—C9'—N3	-26.1 (14)	C7—C6—N3—C9′	7.2 (8)
C2—C3—C10—C11	57.6 (2)	C7—C6—N3—C6′	-105 (5)
C4—C3—C10—C11	-123.05 (19)	C7—C6—N3—C9	-5.7 (6)
C2-C3-C10-C15	-118.87 (19)	C7'—C6'—N3—C5	-173.4 (6)
C4—C3—C10—C15	60.5 (2)	C7'—C6'—N3—C9'	10.5 (12)
C15-C10-C11-C12	1.5 (3)	C7'—C6'—N3—C6	83 (4)

C3-C10-C11-C12	-175.07 (17)	C7'—C6'—N3—C9	-5.3 (11)
C10-C11-C12-C13	0.3 (3)	C8—C9—N3—C5	172.1 (3)
C11—C12—C13—C14	-1.7 (3)	C8—C9—N3—C9′	-68 (4)
C11—C12—C13—C16	177.43 (19)	C8—C9—N3—C6	-15.2 (6)
C12—C13—C14—C15	1.4 (3)	C8—C9—N3—C6′	3.1 (8)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N1—H1A···N4 ⁱ	0.86	2.19	3.010 (2)	160
C11—H11····N2 ⁱⁱ	0.93	2.62	3.531 (2)	166

Symmetry codes: (i) *x*, *y*–1, *z*; (ii) –*x*, –*y*+1, –*z*+1.