Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

[2-(4-Methylbenzoyl)phenyl](4-methylphenyl)methanone

P. Narayanan, ${ }^{\text {a }}$ K. Sethusankar, ${ }^{\text {a* }}$ Meganathan Nandakumar ${ }^{\text {b }}$ and Arasambattu K. Mohanakrishnan ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and ${ }^{\mathbf{b}}$ Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
Correspondence e-mail: ksethusankar@yahoo.co.in

Received 7 July 2011; accepted 18 July 2011
Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.050 ; \omega R$ factor $=0.154$; data-to-parameter ratio $=19.4$.

The asymmetric unit of the title compound, $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{2}$, contains one half-molecule, the complete molecule being generated by the operation of a crystallographic twofold rotation axis. The carbonyl group and the two C atoms attached to it forms interplanar angles of 23.67 (7) ${ }^{\circ}$ with the methyl-substituted phenyl ring and 50.74 (8) ${ }^{\circ}$ with the central ring. In the crystal, molecules are linked into infinite chains along the b-axis direction by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, generating $R_{2}^{2}(10)$ graph-set motifs.

Related literature

For the uses and biological importance of diketones, see: Bennett et al. (1999); Sato et al. (2008). For related structures, see: Muto et al. (2010); Khan et al. (2009); For asymmetry parameters, see: Nardelli (1983); Macrae et al. (2008). For graph-set notation: Bernstein et al. (1995).

Experimental

Crystal data
$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{2}$
$M_{r}=314.36$
Monoclinic, $C 2 / c$.
$a=20.7432$ (13) \AA
$b=7.7564$ (4) A
$c=11.3946$ (6) \AA
$\beta=114.314$ (5) ${ }^{\circ}$

Data collection

Bruker Kappa APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.977, T_{\text {max }}=0.984$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.154$

110 parameters

$S=1.03$
2133 reflections

17689 measured reflections 2133 independent reflections 1729 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.076$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.62	$3.4305(17)$	145
Symmetry code: (i) $x, y-1, z$.				

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

PN and KS thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection and Dr V. Murugan, Head of the Department of Physics, RKM Vivekananda College, for providing facilities in the department for carrying out this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2284).

References

Bennett, I., Broom, N. J. P., Cassels, R., Elder, J. S., Masson, N. D. \& O'Hanlon, P. J. (1999). Bioorg. Med. Chem. Lett. 9, 1847-1852.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Khan, F. N., Manivel, P., Prabakaran, K., Hathwar, V. R. \& Ng, S. W. (2009). Acta Cryst. E65, o2745.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Muto, T., Kato, Y., Nagasawa, A., Okamoto, A. \& Yonezawa, N. (2010). Acta Cryst. E66, o2752.
Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
Sato, K., Yamazoe, S., Yamamoto, R., Ohata, S., Tarui, A., Omote, M., Kumadaki, I. \& Ando, A. (2008). Org. Lett. 10, 2405-2408.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2011). E67, o2120 [doi:10.1107/S1600536811028820]

[2-(4-Methylbenzoyl)phenyl](4-methylphenyl)methanone

P. Narayanan, K. Sethusankar, Meganathan Nandakumar and Arasambattu K. Mohanakrishnan

S1. Comment

Diketones are popular in organic synthesis, for their applications in biology and medicine. They are known to exhibit antioxidants, antitumour and antibacterial activities (Bennett et al., 1999). They are also key intermediates in the preparation of various heterocyclic compounds (Sato et al., 2008).
The title compound $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{2}$, contains one half molecule in the asymmetric unit, the complete molecule being generated by twofold rotation, with direction [$\left.\begin{array}{lll}0 & 1 & 0\end{array}\right]$, having symmetry code: (i) $-x+1, y,-z+3 / 2$. X-ray analysis confirms the molecular structure and atom connectivity of the compound as illustrated in (Fig. 1). The carbonyl group (C3/C4/C5/O1) forms an interplanar angle of 23.67 (7) ${ }^{\circ}$ with the phenyl ring ($\mathrm{C} 5 / \mathrm{C} 6 / \mathrm{C} 7 / \mathrm{C} 8 / \mathrm{C} 9 / \mathrm{C} 10$). The deviation of atom O1 from the phenyl ring (C5/C6/C7/C8/C9/C10) is -0.4719 (19) \AA (Nardelli, 1983). The title compound exhibits structural similarities with the already reported related structures (Muto et al., 2010; Khan et al., 2009).
The central phenyl ring $\left(\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C1}^{\mathrm{i}} / \mathrm{C}_{2}{ }^{\mathrm{i}} / \mathrm{C} 3^{\mathrm{i}}\right)$ forms dihedral angles of $67.14(17)^{\circ}$ and $50.74(8)^{\circ}$ with the phenyl ring ($\mathrm{C} 5 / \mathrm{C} 6 / \mathrm{C} 7 / \mathrm{C} 8 / \mathrm{C} 9 / \mathrm{C} 10$) and the mean plane of the carbonyl group ($\mathrm{C} 3 / \mathrm{C} 4 / \mathrm{C} 5 / \mathrm{O} 1$), respectively. The dihedral angle between the phenyl rings ($\mathrm{C} 5 / \mathrm{C} 6 / \mathrm{C} 7 / \mathrm{C} 8 / \mathrm{C} 9 / \mathrm{C} 10$) and $\left(\mathrm{C}^{\mathrm{i}} / \mathrm{C}^{\mathrm{i}} / \mathrm{C}^{\mathrm{i}} / \mathrm{C} 8^{\mathrm{i}} / \mathrm{C} 9^{\mathrm{i}} / \mathrm{C} 10^{i}\right)$ is 82.83 (2) (Macrae et al., 2008), and thus they are almost orthogonal to each other.
The crystal packing is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular interactions. The molecules are linked into infinite chains along the b axis via $\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{ii}}$ hydrogen bonds, generating the $R^{2}{ }_{2}(10)$ graphset motifs (Bernstein et al., 1995). The symmetry code: (ii) $x,-1+y, z$ (look Table 1). The packing view of the compound is shown in (Fig. 2).

S2. Experimental

To a stirred suspension of benzo[c]furan, 1,3-bis(4-methylphenyl)-4,7-dihydro-2-benzofuran ($3 \mathrm{~g}, 9.554 \mathrm{mmol}$) in dry THF $(20 \mathrm{ml})$, lead tetra acetate $(4.23 \mathrm{~g}, 9.5 \mathrm{mmol})$ was added and refluxed at 343 K for half an hour. The reaction mixture was then poured into water $(200 \mathrm{ml})$ and extracted with ethyl acetate $(2 \times 20 \mathrm{ml})$, washed with brine solution and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The removal of solvent in vacuo followed by crystallization from methanol afforded the title compound, (4-methylphenyl) 2 -[(4-methylphenyl)carbonyl]phenyl $\}$ methanone as a colourless solid.

S3. Refinement

The hydrogen atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$ and refined in the riding model with fixed isotropic displacement parameters: $U_{\text {iso }}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C})$ for methyl atoms and $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ for the aryl atoms.

Figure 1
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are shown at 30% probability level. The H atoms are presented as a small spheres of arbitrary radius. Related atoms have symmetry code: (i) $-x+1, y,-z+3 / 2$.

Figure 2
The crystal packing of the title compound, viewed down c axis, showing molecules linked along b axis. Intermolecular hydrogen bonds are shown in as dashed lines.

[2-(4-Methylbenzoyl)phenyl](4-methylphenyl)methanone

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{2} \\
& M_{r}=314.36 \\
& \text { Monoclinic, } C 2 / c \\
& \text { Hall symbol: -C } 2 \mathrm{yc} \\
& a=20.7432(13) \AA \\
& b=7.7564(4) \AA \\
& c=11.3946(6) \AA \\
& \beta=114.314(5)^{\circ} \\
& V=1670.70(17) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
\begin{aligned}
& F(000)=664 \\
& D_{\mathrm{x}}=1.250 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 2133 \text { reflections } \\
& \theta=2.2-28.6^{\circ} \\
& \mu=0.08 \mathrm{~mm}^{-1} \\
& T=295 \mathrm{~K} \\
& \text { Block, colourless } \\
& 0.30 \times 0.25 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker Kappa APEXII CCD

 diffractometerRadiation source: fine-focus sealed tube
Graphite monochromator

ω-scans

Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.977, T_{\text {max }}=0.984$

17689 measured reflections
2133 independent reflections
1729 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.076$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.154$
$S=1.03$
2133 reflections
110 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& \theta_{\max }=28.6^{\circ}, \theta_{\min }=2.2^{\circ} \\
& h=-27 \rightarrow 27 \\
& k=-10 \rightarrow 10 \\
& l=-15 \rightarrow 15
\end{aligned}
$$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
C1	$0.47990(8)$	$-0.45596(18)$	$0.68469(16)$	$0.0577(4)$
H1	0.4669	-0.5598	0.6403	0.069^{*}
C2	$0.45881(7)$	$-0.30216(17)$	$0.61934(13)$	$0.0493(3)$
H2	0.4310	-0.3030	0.5312	0.059^{*}
C3	$0.47868(6)$	$-0.14603(15)$	$0.68400(11)$	$0.0375(3)$
C4	$0.46029(6)$	$0.01963(15)$	$0.61000(11)$	$0.0380(3)$
C5	$0.38557(6)$	$0.05007(15)$	$0.52013(11)$	$0.0384(3)$
C6	$0.37060(7)$	$0.16656(18)$	$0.41976(13)$	$0.0478(3)$
H6	0.4074	0.2221	0.4083	0.057^{*}
C7	$0.30152(8)$	$0.2002(2)$	$0.33701(13)$	$0.0535(4)$
H7	0.2924	0.2766	0.2691	0.064^{*}
C8	$0.24545(7)$	$0.12297(18)$	$0.35264(13)$	$0.0508(4)$
C9	$0.26051(7)$	$0.0089(2)$	$0.45387(14)$	$0.0529(4)$
H9	0.2236	-0.0433	0.4668	0.063^{*}
C10	$0.32965(7)$	$-0.02856(18)$	$0.53609(13)$	$0.0474(3)$
H10	0.3387	-0.1072	0.6027	0.057^{*}
C11	$0.17032(9)$	$0.1623(3)$	$0.26113(19)$	$0.0739(5)$
H11A	0.1696	0.2622	0.2109	0.111^{*}
H11B	0.1425	0.1841	0.3093	0.111^{*}
H11C	0.1509	0.0656	0.2050	0.111^{*}
O1	$0.50637(5)$	$0.12345(12)$	$0.62240(9)$	$0.0503(3)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0579(8)$	$0.0333(6)$	$0.0742(10)$	$-0.0053(6)$	$0.0195(7)$	$-0.0101(6)$
C2	$0.0496(7)$	$0.0405(7)$	$0.0470(7)$	$-0.0063(5)$	$0.0091(6)$	$-0.0084(5)$
C3	$0.0360(5)$	$0.0337(6)$	$0.0368(6)$	$-0.0015(4)$	$0.0088(5)$	$-0.0008(4)$
C4	$0.0414(6)$	$0.0359(6)$	$0.0318(6)$	$-0.0023(4)$	$0.0100(5)$	$-0.0016(4)$
C5	$0.0405(6)$	$0.0371(6)$	$0.0324(6)$	$0.0011(4)$	$0.0097(5)$	$-0.0003(4)$
C6	$0.0487(7)$	$0.0482(7)$	$0.0442(7)$	$0.0033(5)$	$0.0167(6)$	$0.0096(5)$
C7	$0.0557(8)$	$0.0531(8)$	$0.0437(7)$	$0.0116(6)$	$0.0125(6)$	$0.0121(6)$
C8	$0.0450(7)$	$0.0493(7)$	$0.0471(7)$	$0.0084(6)$	$0.0079(6)$	$-0.0061(5)$
C9	$0.0418(7)$	$0.0575(8)$	$0.0566(8)$	$-0.0040(6)$	$0.0176(6)$	$-0.0025(6)$
C10	$0.0484(7)$	$0.0482(7)$	$0.0416(7)$	$-0.0025(5)$	$0.0143(5)$	$0.0049(5)$
C11	$0.0483(8)$	$0.0751(11)$	$0.0757(11)$	$0.0150(7)$	$0.0028(8)$	$-0.0027(9)$
O1	$0.0479(5)$	$0.0442(5)$	$0.0487(5)$	$-0.0100(4)$	$0.0098(4)$	$0.0032(4)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

C1- $\mathrm{Cl}^{\text {i }}$	1.374 (3)	C6-H6	0.9300
C1-C2	1.379 (2)	C7-C8	1.383 (2)
$\mathrm{C} 1-\mathrm{H} 1$	0.9300	C7-H7	0.9300
C2-C3	1.3890 (16)	C8-C9	1.384 (2)
C2-H2	0.9300	C8-C11	1.507 (2)
C3-C3 ${ }^{\text {i }}$	1.396 (2)	C9-C10	1.383 (2)
C3-C4	1.4975 (16)	C9-H9	0.9300
C4-O1	1.2128 (15)	C10-H10	0.9300
C4-C5	1.4832 (16)	C11-H11A	0.9600
C5-C10	1.3872 (18)	C11-H11B	0.9600
C5-C6	1.3887 (17)	C11-H11C	0.9600
C6-C7	1.3778 (19)		
$\mathrm{C} 1{ }^{\text {i }}-\mathrm{C} 1-\mathrm{C} 2$	120.07 (8)	C6-C7-C8	121.50 (13)
$\mathrm{C} 1{ }^{\text {i }}-\mathrm{C} 1-\mathrm{H} 1$	120.0	C6-C7-H7	119.2
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	120.0	C8-C7-H7	119.2
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	120.60 (12)	C7-C8-C9	118.11 (12)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.7	C7-C8-C11	120.53 (14)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.7	C9-C8-C11	121.36 (15)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 3{ }^{\text {i }}$	119.31 (7)	C10-C9-C8	120.95 (13)
C2-C3-C4	119.89 (10)	C10-C9-H9	119.5
C3 ${ }^{\text {i }}$ - $\mathrm{C} 3-\mathrm{C} 4$	120.54 (6)	C8-C9-H9	119.5
O1-C4-C5	121.61 (11)	C9-C10-C5	120.58 (12)
O1-C4-C3	119.89 (10)	C9-C10-H10	119.7
C5-C4-C3	118.48 (10)	C5-C10-H10	119.7
C10-C5-C6	118.59 (11)	C8-C11-H11A	109.5
C10-C5-C4	122.14 (11)	C8-C11-H11B	109.5
C6-C5-C4	119.21 (11)	H11A-C11-H11B	109.5
C7-C6-C5	120.25 (13)	C8- $\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}$	109.5
C7-C6-H6	119.9	H11A-C11-H11C	109.5

$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	119.9
$\mathrm{C} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$1.0(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 3^{\mathrm{i}}$	$1.0(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$175.06(13)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 1$	$-125.83(13)$
$\mathrm{C} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 1$	$48.2(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$52.62(16)$
$\mathrm{C} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-133.37(15)$
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 10$	$-156.10(13)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 10$	$25.47(17)$
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$21.08(18)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-157.35(12)$

$\mathrm{H} 11 \mathrm{~B}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}$	109.5
$\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-1.1(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-178.36(12)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$1.4(2)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-0.5(2)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 11$	$179.79(14)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-0.8(2)$
$\mathrm{C} 11-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$178.91(14)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 5$	$1.2(2)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 9$	$-0.2(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 9$	$177.00(12)$

Symmetry code: (i) $-x+1, y,-z+3 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D — \mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{C} 1 — \mathrm{H} 1 \cdots 1^{\mathrm{ii}}$	0.93	2.62	$3.4305(17)$	145

Symmetry code: (ii) $x, y-1, z$.

