

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2-Benzoylphenyl)(3,4-dimethylphenyl)methanone

G. Jagadeesan,^a K. Sethusankar,^b* R. Sivasakthikumaran^c and Arasambattu K. Mohanakrishnan^c

^aDepartment of Physics, Dr MGR Educational and Research Institute University, Chennai 600 095, India, ^bDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and ^cDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India Correspondence e-mail: ksethusankar@yahoo.co.in

Received 18 July 2011; accepted 25 July 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.002 Å; R factor = 0.044; wR factor = 0.129; data-to-parameter ratio = 17.6.

In the title compound, $C_{22}H_{18}O_2$, the central benzene ring forms dihedral angles of 76.0 (1) and 73.1 (1)° with the phenyl ring and dimethyl-substituted benzene ring, respectively. The carbonyl-group O atoms deviate significantly from the phenyl ring and the dimethyl-substituted benzene ring [-0.582 (12) and 0.546 (12) Å, respectively]. The crystal packing is stabilized by $C-H\cdots\pi$ interactions.

Related literature

For the synthesis of heterocyclic compounds, see: Hirsch & Bailey (1978). For chelating reagents of metallic systems, see: Liang *et al.* (2003). For related bond-length and angle values, see: Judaš & Kaitner (2005). For related structures, see: Khan *et al.* (2009); Narayanan *et al.* (2011).

Experimental

Crystal data $C_{22}H_{18}O_2$ $M_r = 314.36$ Monoclinic, $P2_1/c$ a = 17.8606 (14) Å

h = 7.7500 (6) Å
D = 7.7390(0) A a = 11.0722(11) Å
c = 11.9/22 (11) A
p = 95.942(5)
V = 1655.2 (2) A

Z = 4Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$

Data collection

Bruker Kappa APEXII CCD diffractometer 17270 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ 219 parameters $wR(F^2) = 0.129$ H-atom parameters constrainedS = 1.01 $\Delta \rho_{max} = 0.22 \text{ e } \text{\AA}^{-3}$ 3862 reflections $\Delta \rho_{min} = -0.18 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C6 ring and Cg3 is the centroid of the C15–C20 ring.

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C4-H4\cdots Cg1^{i}$ $C21-H21A\cdots Cg3^{ii}$ $C22-H22C\cdots Cg3^{iii}$	0.93 0.96 0.96	2.86 2.91 2.78	3.747 (2) 3.8144 (17) 3.6484 (17)	159 157 152
Symmetry codes: (i) -x + 1, -y + 1, -z + 2.	$-x, y - \frac{1}{2}, -$	$-z + \frac{5}{2};$ (ii)	$-x+1, y-\frac{1}{2}, -x$	$z + \frac{3}{2};$ (iii)

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

GJ and KS thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the X-ray intensity data collection, and Dr V. Murugan, HOD, Department of Physics, for providing facilities in the department to carry out this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2286).

References

- Bruker (2008). APEX2 and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hirsch, S. S. & Bailey, W. J. (1978). J. Org. Chem. 43, 4090-4094.
- Judaš, N. & Kaitner, B. (2005). Acta Cryst. E61, 04008-04010.
- Khan, F. N., Manivel, P., Prabakaran, K., Hathwar, V. R. & Ng, S. W. (2009). Acta Cryst. E65, 02745.
- Liang, F. S., Zhou, Q. G., Cheng, Y. X., Wang, L. X., Ma, D. G., Jing, X. B. & Wang, F. S. (2003). Chem. Mater. 15, 193–1937.
- Narayanan, P., Sethusankar, K., Nandakumar, M. & Mohanakrishnan, A. K. (2011). Acta Cryst. E67, o2120.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

organic compounds

 $0.30 \times 0.25 \times 0.20$ mm

3862 independent reflections

2827 reflections with $I > 2\sigma(I)$

T = 295 K

 $R_{\rm int} = 0.030$

supporting information

Acta Cryst. (2011). E67, o2177 [doi:10.1107/S1600536811029965]

(2-Benzoylphenyl)(3,4-dimethylphenyl)methanone

G. Jagadeesan, K. Sethusankar, R. Sivasakthikumaran and Arasambattu K. Mohanakrishnan

S1. Comment

Diketones are important synthetic intermediates and starting materials in the synthesis of many heterocyclic compounds (Hirsch & Bailey, 1978) and also employed as effective chelating reagents for a large number of metallic systems (Liang *et al.*, 2003).

X-ray analysis confirms the molecular structure and atom connectivity of the title compound as illustrated in the Fig. 1. The bond lengths and bond angles are normal and correspond to those observed in 2-benzyl-1,3-diphenylpropane-1,3-dione (Judaš & Kaitner, 2005). The central phenyl ring (C8–C13) of the compound forms dihedral angles of 76.0 (1)° and 73.1 (1)° with the other phenyl rings (C1–C6) and (C15–C20), respectively. The central phenyl ring (C8–C13) forms dihedral angles of 53.3 (6)° and 58.8 (6)° with the mean plane of the ketone groups (C13–C15/O1) and (C6–C8/O2), respectively.

In the dimethyl substituted phenyl ring (C15–C20) the deviation of atoms C21 and C22 are -0.014 (2) Å and -0.049 (2) Å, respectively. The atom O1 deviates by -0.582 (1) Å from the plane of the phenyl ring (C1–C6). Also the atom O2 deviate by 0.546 (1) Å from the plane of the phenyl ring (C15–C20). The title compound exhibits the structural similarities with the already reported related structures (Khan *et al.*, 2009; Narayanan *et al.*, 2011).

The molecular structure is stabilized by C—H···*Cg* interactions - look Table 1. The *Cg*1 is center of gravity of (C1–C6) ring and *Cg*3 is center of gravity of (C15–C20) ring. Symmetry codes: (i) -*x*, *y* - 1/2, -*z* + 5/2; (ii) -*x* + 1, *y* - 1/2, -*z* + 3/2; (iii) -*x* + 1, -*y* + 1, -*z* + 2.

S2. Experimental

To a stirred suspension of 1-(3,4-dimethylphenyl)-3-phenyl-2-benzofuran (1 g, 3.22 mmol) in dry THF (20 ml), lead tetraacetate (1.52 g, 3.42 mmol) was added and refluxed at 343 K for half an hour. The reaction mixture was then poured into water (200 ml) and extracted with ethyl acetate (2×20 ml), washed with brine solution and dried (Na₂SO₄). The removal of solvent *in vacuo* afforded crude product. The crude product upon crystallization from methanol furnished the title compound as a colourless solid.

S3. Refinement

Hydrogen atoms were placed in calculated positions with C—H = 0.93 Å and 0.96 Å refined in the riding model with fixed isotropic displacement parameters: $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl atoms and $U_{iso}(H) = 1.2U_{eq}(C)$ for aryl atoms.

Figure 1

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.

(2-Benzoylphenyl)(3,4-dimethylphenyl)methanone

Crystal data

C₂₂H₁₈O₂ $M_r = 314.36$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 17.8606 (14) Å b = 7.7590 (6) Å c = 11.9722 (11) Å $\beta = 93.942 (3)^{\circ}$ $V = 1655.2 (2) \text{ Å}^3$ Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
17270 measured reflections
3862 independent reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.129$ S = 1.013862 reflections 219 parameters 0 restraints F(000) = 664 $D_x = 1.262 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3862 reflections $\theta = 2.3-27.7^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 295 KBlock, colourless $0.30 \times 0.25 \times 0.20 \text{ mm}$

2827 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 27.7^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = -23 \rightarrow 21$ $k = -10 \rightarrow 10$ $l = -15 \rightarrow 15$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0581P)^{2} + 0.4044P] \qquad \Delta \rho_{\max} = 0.22 \text{ e } \text{\AA}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{\min} = -0.18 \text{ e } \text{\AA}^{-3}$ $(\Delta/\sigma)_{\max} < 0.001$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordin	ates and isotropic of	or equivalent isotropic	displacement	parameters ($(Å^2)$
				r	/

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.05252 (9)	0.7620 (2)	1.04279 (14)	0.0501 (4)	
H1	0.0669	0.8384	0.9884	0.060*	
C2	-0.02238 (9)	0.7235 (3)	1.04997 (17)	0.0655 (5)	
H2	-0.0582	0.7729	0.9998	0.079*	
C3	-0.04421 (11)	0.6128 (3)	1.1308 (2)	0.0731 (6)	
Н3	-0.0948	0.5871	1.1354	0.088*	
C4	0.00862 (12)	0.5398 (3)	1.20492 (18)	0.0722 (6)	
H4	-0.0064	0.4659	1.2603	0.087*	
C5	0.08396 (10)	0.5754 (2)	1.19788 (14)	0.0555 (4)	
Н5	0.1196	0.5245	1.2477	0.067*	
C6	0.10627 (8)	0.68748 (18)	1.11613 (12)	0.0397 (3)	
C7	0.18732 (8)	0.71909 (18)	1.10391 (11)	0.0375 (3)	
C8	0.20890 (7)	0.88500 (17)	1.05002 (12)	0.0361 (3)	
C9	0.19085 (8)	1.04058 (19)	1.09856 (14)	0.0481 (4)	
H9	0.1628	1.0414	1.1612	0.058*	
C10	0.21426 (9)	1.1940 (2)	1.05444 (17)	0.0579 (5)	
H10	0.2032	1.2977	1.0887	0.070*	
C11	0.25395 (9)	1.1945 (2)	0.95989 (18)	0.0607 (5)	
H11	0.2678	1.2984	0.9285	0.073*	
C12	0.27318 (8)	1.04049 (19)	0.91177 (15)	0.0516 (4)	
H12	0.3010	1.0412	0.8489	0.062*	
C13	0.25147 (7)	0.88492 (17)	0.95623 (12)	0.0377 (3)	
C14	0.26870 (7)	0.71987 (17)	0.89837 (11)	0.0364 (3)	
C15	0.34810 (7)	0.68460 (16)	0.87551 (11)	0.0338 (3)	
C16	0.40683 (7)	0.74660 (17)	0.94594 (11)	0.0343 (3)	
H16	0.3961	0.8163	1.0060	0.041*	
C17	0.48140 (7)	0.70753 (16)	0.92943 (11)	0.0343 (3)	
C18	0.49709 (8)	0.60617 (17)	0.83744 (11)	0.0363 (3)	
C19	0.43783 (8)	0.54581 (18)	0.76678 (11)	0.0412 (3)	
H19	0.4482	0.4791	0.7052	0.049*	
C20	0.36435 (8)	0.58169 (18)	0.78516 (11)	0.0395 (3)	
H20	0.3257	0.5375	0.7375	0.047*	

C21	0.57643 (9)	0.5594 (2)	0.81499 (14)	0.0500 (4)
H21A	0.5760	0.4796	0.7537	0.075*
H21B	0.6007	0.5073	0.8806	0.075*
H21C	0.6032	0.6615	0.7964	0.075*
C22	0.54257 (9)	0.7725 (2)	1.00999 (13)	0.0472 (4)
H22A	0.5211	0.8371	1.0682	0.071*
H22B	0.5756	0.8454	0.9712	0.071*
H22C	0.5703	0.6767	1.0423	0.071*
01	0.21870 (6)	0.61966 (14)	0.87004 (10)	0.0530 (3)
O2	0.23523 (6)	0.61759 (14)	1.13704 (10)	0.0545 (3)

Atomic displacement parameters $(Å^2)$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.0023 \ (7) \\ -0.0035 \ (9) \\ 0.0185 \ (10) \\ 0.0288 \ (11) \\ 0.0110 \ (8) \\ 0.0066 \ (6) \\ 0.0020 \ (6) \\ -0.0004 \ (6) \\ 0.0033 \ (7) \end{array}$	$\begin{array}{c} 0.0058\ (7)\\ 0.0008\ (10)\\ -0.0055\ (12)\\ 0.0111\ (11)\\ 0.0100\ (8)\\ -0.0025\ (6)\\ -0.0020\ (6)\\ -0.0019\ (6) \end{array}$
C2 0.0382 (9) 0.0726 (12) 0.0846 (13) -0.0041 (8)C3 0.0435 (10) 0.0785 (14) 0.0991 (15) -0.0173 (9)C4 0.0656 (13) 0.0712 (13) 0.0830 (13) -0.0172 (10)C5 0.0547 (10) 0.0568 (10) 0.0560 (9) -0.0037 (8)C6 0.0370 (7) 0.0390 (7) 0.0436 (7) -0.0022 (6)	$\begin{array}{c} -0.0035 \ (9) \\ 0.0185 \ (10) \\ 0.0288 \ (11) \\ 0.0110 \ (8) \\ 0.0066 \ (6) \\ 0.0020 \ (6) \\ -0.0004 \ (6) \\ 0.0033 \ (7) \end{array}$	$\begin{array}{c} 0.0008 (10) \\ -0.0055 (12) \\ 0.0111 (11) \\ 0.0100 (8) \\ -0.0025 (6) \\ -0.0020 (6) \\ -0.0019 (6) \end{array}$
C3 0.0435 (10) 0.0785 (14) 0.0991 (15) -0.0173 (9) C4 0.0656 (13) 0.0712 (13) 0.0830 (13) -0.0172 (10) C5 0.0547 (10) 0.0568 (10) 0.0560 (9) -0.0037 (8) C6 0.0370 (7) 0.0390 (7) 0.0436 (7) -0.0022 (6)	$\begin{array}{c} 0.0185 \ (10) \\ 0.0288 \ (11) \\ 0.0110 \ (8) \\ 0.0066 \ (6) \\ 0.0020 \ (6) \\ -0.0004 \ (6) \\ 0.0033 \ (7) \end{array}$	-0.0055 (12) 0.0111 (11) 0.0100 (8) -0.0025 (6) -0.0020 (6) -0.0019 (6)
C4 0.0656 (13) 0.0712 (13) 0.0830 (13) -0.0172 (10) C5 0.0547 (10) 0.0568 (10) 0.0560 (9) -0.0037 (8) C6 0.0370 (7) 0.0390 (7) 0.0436 (7) -0.0022 (6)	$\begin{array}{c} 0.0288 \ (11) \\ 0.0110 \ (8) \\ 0.0066 \ (6) \\ 0.0020 \ (6) \\ -0.0004 \ (6) \\ 0.0033 \ (7) \end{array}$	0.0111 (11) 0.0100 (8) -0.0025 (6) -0.0020 (6) -0.0019 (6)
C5 0.0547 (10) 0.0568 (10) 0.0560 (9) -0.0037 (8) C6 0.0370 (7) 0.0390 (7) 0.0436 (7) -0.0022 (6)	0.0110 (8) 0.0066 (6) 0.0020 (6) -0.0004 (6) 0.0033 (7)	0.0100 (8) -0.0025 (6) -0.0020 (6) -0.0019 (6)
C6 0.0370 (7) 0.0390 (7) 0.0436 (7) -0.0022 (6) C6 0.0370 (7) 0.0390 (7) 0.0436 (7) -0.0022 (6)	0.0066 (6) 0.0020 (6) -0.0004 (6) 0.0033 (7)	-0.0025 (6) -0.0020 (6) -0.0019 (6)
	0.0020 (6) -0.0004 (6) 0.0033 (7)	-0.0020 (6) -0.0019 (6)
C7 0.0367(7) 0.0368(7) 0.0390(7) 0.0029(6)	-0.0004 (6) 0.0033 (7)	-0.0019 (6)
C8 0.0263 (6) 0.0331 (7) 0.0485 (8) 0.0009 (5)	0.0033 (7)	· · /
C9 0.0377 (8) 0.0434 (8) 0.0630 (9) 0.0063 (6)		-0.0088 (7)
C10 0.0392 (8) 0.0334 (8) 0.1004 (14) 0.0050 (7)	-0.0008 (9)	-0.0130 (8)
C11 0.0389 (8) 0.0320 (8) 0.1117 (15) -0.0032 (7)	0.0077 (9)	0.0111 (9)
C12 0.0362 (8) 0.0408 (8) 0.0791 (11) -0.0023 (6)	0.0132 (8)	0.0099 (8)
C13 0.0254 (6) 0.0340 (7) 0.0537 (8) -0.0008 (5)	0.0035 (6)	0.0017 (6)
C14 0.0319 (7) 0.0358 (7) 0.0419 (7) -0.0028 (6)	0.0048 (6)	0.0031 (6)
C15 0.0323 (7) 0.0313 (6) 0.0382 (7) -0.0011 (5)	0.0046 (5)	0.0030 (5)
C16 0.0369 (7) 0.0321 (7) 0.0347 (6) 0.0004 (5)	0.0074 (5)	-0.0017 (5)
C17 0.0343 (7) 0.0320 (6) 0.0365 (7) -0.0009 (5)	0.0027 (5)	0.0047 (5)
C18 0.0370 (7) 0.0336 (7) 0.0394 (7) 0.0045 (6)	0.0091 (6)	0.0066 (5)
C19 0.0477 (8) 0.0401 (8) 0.0366 (7) 0.0035 (6)	0.0080 (6)	-0.0057 (6)
C20 0.0397 (8) 0.0404 (7) 0.0381 (7) -0.0031 (6)	0.0009 (6)	-0.0031 (6)
C21 0.0418 (8) 0.0538 (9) 0.0557 (9) 0.0106 (7)	0.0122 (7)	0.0022 (7)
C22 0.0397 (8) 0.0523 (9) 0.0489 (8) -0.0027 (7)	-0.0023 (6)	-0.0010 (7)
O1 0.0388 (6) 0.0506 (7) 0.0701 (7) -0.0122 (5)	0.0088 (5)	-0.0117 (5)
O2 0.0459 (6) 0.0471 (6) 0.0703 (7) 0.0103 (5)	0.0029 (5)	0.0112 (5)

Geometric parameters (Å, °)

C1—C2	1.379 (2)	C12—C13	1.3853 (19)
C1—C6	1.382 (2)	C12—H12	0.9300
С1—Н1	0.9300	C13—C14	1.4980 (19)
C2—C3	1.371 (3)	C14—O1	1.2146 (16)
C2—H2	0.9300	C14—C15	1.4880 (18)
C3—C4	1.372 (3)	C15—C16	1.3861 (19)
С3—Н3	0.9300	C15—C20	1.3911 (18)

C4—C5	1.382 (3)	C16—C17	1.3932 (18)
C4—H4	0.9300	C16—H16	0.9300
C5—C6	1.388 (2)	C17—C18	1.3973 (18)
С5—Н5	0.9300	C17—C22	1.494 (2)
C6—C7	1.4854 (19)	C18—C19	1.390 (2)
C7—O2	1.2095 (17)	C18—C21	1.5046 (19)
С7—С8	1.5020 (19)	C19—C20	1.374 (2)
C8—C9	1.3873 (19)	С19—Н19	0.9300
C8—C13	1.399 (2)	С20—Н20	0.9300
C9—C10	1.379 (2)	C21—H21A	0.9600
С9—Н9	0.9300	C21—H21B	0.9600
C10—C11	1.376 (3)	C21—H21C	0.9600
С10—Н10	0.9300	С22—Н22А	0.9600
C11—C12	1.380 (2)	С22—Н22В	0.9600
С11—Н11	0.9300	С22—Н22С	0.9600
C2—C1—C6	120.27 (16)	C12—C13—C8	119.34 (13)
C2—C1—H1	119.9	C12—C13—C14	119.69 (13)
С6—С1—Н1	119.9	C8—C13—C14	120.79 (12)
C3—C2—C1	120.25 (18)	O1—C14—C15	121.51 (12)
С3—С2—Н2	119.9	O1—C14—C13	120.39 (12)
C1—C2—H2	119.9	C15—C14—C13	118.09 (11)
C2—C3—C4	119.92 (17)	C16—C15—C20	118.85 (12)
C2—C3—H3	120.0	C16—C15—C14	121.02 (12)
C4—C3—H3	120.0	C20—C15—C14	120.07 (12)
C3—C4—C5	120.49 (18)	C15—C16—C17	121.94 (12)
C3—C4—H4	119.8	С15—С16—Н16	119.0
C5—C4—H4	119.8	С17—С16—Н16	119.0
C4—C5—C6	119.76 (17)	C16—C17—C18	118.67 (12)
C4—C5—H5	120.1	C16—C17—C22	119.91 (12)
С6—С5—Н5	120.1	C18 - C17 - C22	121.41 (13)
C1—C6—C5	119.30 (14)	C19—C18—C17	118.93 (12)
C1—C6—C7	120.48 (13)	C19—C18—C21	119.81 (13)
C5—C6—C7	120.13 (14)	C17—C18—C21	121.26 (13)
02	122.17 (13)	C20—C19—C18	122.01 (13)
02	120.16 (12)	C20—C19—H19	119.0
C6-C7-C8	117.67 (12)	С18—С19—Н19	119.0
C9—C8—C13	119.44 (13)	C19 - C20 - C15	119.57 (13)
C9—C8—C7	119.47 (13)	С19—С20—Н20	120.2
C13—C8—C7	120.94 (11)	С15—С20—Н20	120.2
C10—C9—C8	120.37 (15)	C18—C21—H21A	109.5
C10—C9—H9	119.8	C18 - C21 - H21B	109.5
С8—С9—Н9	119.8	$H_{21}A - C_{21} - H_{21}B$	109.5
C11—C10—C9	120.26 (15)	C18—C21—H21C	109.5
C11—C10—H10	119.9	$H_{21}A - C_{21} - H_{21}C$	109.5
C9—C10—H10	119.9	H21B—C21—H21C	109.5
C10—C11—C12	119.89 (15)	C17—C22—H22A	109.5
C10-C11-H11	120.1	C17—C22—H22B	109.5

C12—C11—H11	120.1	H22A—C22—H22B	109.5
C11—C12—C13	120.64 (15)	С17—С22—Н22С	109.5
C11—C12—H12	119.7	H22A—C22—H22C	109.5
C13—C12—H12	119.7	H22B—C22—H22C	109.5
C6—C1—C2—C3	0.8 (3)	C7—C8—C13—C12	-177.13 (13)
C1—C2—C3—C4	0.0 (3)	C9—C8—C13—C14	-176.94 (13)
C2—C3—C4—C5	-0.8 (3)	C7—C8—C13—C14	7.6 (2)
C3—C4—C5—C6	0.8 (3)	C12-C13-C14-O1	-124.06 (16)
C2-C1-C6-C5	-0.8 (2)	C8—C13—C14—O1	51.2 (2)
C2-C1-C6-C7	175.82 (15)	C12-C13-C14-C15	55.03 (18)
C4—C5—C6—C1	0.0 (3)	C8—C13—C14—C15	-129.72 (14)
C4—C5—C6—C7	-176.65 (16)	O1—C14—C15—C16	-150.17 (14)
C1—C6—C7—O2	-153.93 (15)	C13—C14—C15—C16	30.75 (18)
C5—C6—C7—O2	22.7 (2)	O1—C14—C15—C20	27.0 (2)
C1—C6—C7—C8	27.09 (19)	C13—C14—C15—C20	-152.12 (13)
C5—C6—C7—C8	-156.27 (14)	C20-C15-C16-C17	-0.6 (2)
O2—C7—C8—C9	-118.70 (16)	C14—C15—C16—C17	176.55 (12)
C6—C7—C8—C9	60.30 (17)	C15—C16—C17—C18	1.55 (19)
O2—C7—C8—C13	56.75 (19)	C15—C16—C17—C22	-177.87 (13)
C6—C7—C8—C13	-124.25 (14)	C16—C17—C18—C19	-0.98 (19)
C13—C8—C9—C10	0.4 (2)	C22-C17-C18-C19	178.44 (13)
C7—C8—C9—C10	175.91 (14)	C16—C17—C18—C21	-179.98 (12)
C8—C9—C10—C11	1.8 (2)	C22-C17-C18-C21	-0.6 (2)
C9—C10—C11—C12	-2.8 (3)	C17—C18—C19—C20	-0.5 (2)
C10-C11-C12-C13	1.5 (3)	C21—C18—C19—C20	178.50 (13)
C11—C12—C13—C8	0.8 (2)	C18—C19—C20—C15	1.5 (2)
C11—C12—C13—C14	176.08 (15)	C16—C15—C20—C19	-0.9 (2)
C9—C8—C13—C12	-1.7 (2)	C14—C15—C20—C19	-178.09 (12)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring and Cg3 is the centroid of the C15–C20 ring.

D—H···A	D—H	Н…А	D···A	D—H···A
C4—H4··· $Cg1^{i}$	0.93	2.86	3.747 (2)	159
C21—H21 <i>A</i> ··· <i>Cg</i> 3 ⁱⁱ	0.96	2.91	3.8144 (17)	157
C22—H22 <i>C</i> ··· <i>Cg</i> 3 ⁱⁱⁱ	0.96	2.78	3.6484 (17)	152

Symmetry codes: (i) -x, y-1/2, -z+5/2; (ii) -x+1, y-1/2, -z+3/2; (iii) -x+1, -y+1, -z+2.