

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4,6-Dimethyl-2-(naphthalen-1-yl)pyrimidine

Xiao-Xue Zhang, Deng-Yong Zhu, Xin-Qi Hao, Xin-Ming Dong and Mao-Ping Song*

Department of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China Correspondence e-mail: maopingsong@zzu.edu.cn

Received 5 July 2011; accepted 12 July 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.129; data-to-parameter ratio = 14.4.

The asymmetric unit of the title compound, $C_{16}H_{14}N_2$, contains two independent molecules in which the dihedral angles between the pyrimidine and naphthaline rings are 38.20 (5) and 39.35 (5)°. Intermolecular $C-H\cdots\pi$ contacts and $\pi-\pi$ stacking interactions [centroid–centroid distances = 3.766 (1) and 3.792 (1) Å] are present in the crystal structure.

Related literature

For cyclometalated Ir(III) complexes, see: Chen *et al.* (2010); Talarico *et al.* (2010); Xu *et al.* (2011); Yang *et al.* (2006). For the synthesis, see: Wang *et al.* (2011).

Experimental

Crystal data

 $C_{16}H_{14}N_2$ $M_r = 234.29$ Monoclinic, $P2_1/c$ a = 14.9022 (18) Å b = 11.4756 (14) Å

c = 15.9499 (19) Å
$\beta = 111.028 \ (1)^{\circ}$
$V = 2546.0 (5) \text{ Å}^3$
Z = 8
Mo Ka radiation

organic compounds

 $0.50 \times 0.37 \times 0.29 \text{ mm}$

18638 measured reflections 4733 independent reflections

 $R_{\rm int} = 0.023$

3442 reflections with $I > 2\sigma(I)$

 $\mu = 0.07 \text{ mm}^{-1}$ T = 296 K

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.965, T_{\rm max} = 0.979$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ 329 parameters $wR(F^2) = 0.129$ H-atom parameters constrainedS = 1.06 $\Delta \rho_{max} = 0.24$ e Å $^{-3}$ 4733 reflections $\Delta \rho_{min} = -0.18$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

Cg1, Cg2, Cg5 and Cg6 are the centroids of the N1/N2/C11–C14, C1/C2/C7–C10, N3/N4,C27–C30 and C17–C21/C26 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C22-H22\cdots Cg1^{i}$	0.93	2.74	3.651 (4)	167
$C13 - H13 \cdots Cg2^{ii}$	0.93	2.76	3.597 (4)	150
$C6-H6\cdots Cg5$	0.93	2.75	3.665 (2)	168
$C29-H29\cdots Cg6^{iii}$	0.93	2.72	3.546 (3)	149

Symmetry codes: (i) x, y - 1, z; (ii) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) -x, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

This work was sponsored by the National Natural Science Foundation of China (No. 20872133) and the Natural Science Foundation of Henan Education Department (No. 2009 A150027).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2364).

References

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, Z. Q., Bian, Z. Q. & Huang, C. H. (2010). Adv. Mater. 22, 1534–1539.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155.
- Talarico, A. M., Aiello, I., Bellusci, A., Crispini, A., Ghedini, M., Godbert, N., Pugliese, T. & Szerb, E. (2010). *Dalton Trans.* 39, 1709–1712.
- Wang, Z. Q., Xu, C., Dong, X. M., Zhang, Y. P., Hao, X. Q., Gong, J. F., Song, M. P. & Ji, B. M. (2011). *Inorg. Chem. Commun.* 14, 316–319.
- Xu, C., Wang, Z. Q., Dong, X. M., Hao, X. Q., Zhao, X. M., Ji, B. M. & Song, M. P. (2011). *Inorg. Chim. Acta*, **373**, 306–310.

Yang, C. H., Chen, C. H. & Sun, I. W. (2006). Polyhedron, 25, 2407-2414.

supporting information

Acta Cryst. (2011). E67, o2109 [doi:10.1107/S1600536811027875]

4,6-Dimethyl-2-(naphthalen-1-yl)pyrimidine

Xiao-Xue Zhang, Deng-Yong Zhu, Xin-Qi Hao, Xin-Ming Dong and Mao-Ping Song

S1. Comment

In recent years, various types of cyclometalated Ir(III) complexes have been developed, such as homoleptic complexes, heteroleptic neutral complexes and cationic complexes (Chen *et al.*, 2010; Talarico *et al.*, 2010). In contrast to the most phenylpyridine ligands, few examples of naphthalenylpyrimidine iridium complexes have been reported (Xu *et al.*, 2011; Yang *et al.*, 2006). The title compound was obtained from the Suzuki coupling reaction with 1-naphthaleneboronic acid and 2-iodo-4,6-dimethylpyrimidine.

The crystal structure analysis of the title compound revealed that the asymmetric unit consists of two independent molecules (Fig. 1). The pyrimidine ring and naphthaline ring are not coplanar with the dihedral angles of 38.20 (5)° and 39.35 (5)°. All the bond distances and angles are within normal ranges. In the crystal of title compound there exist intermolecular C—H··· π interactions (Table 1) and π — π stacking interactions [centroid-centroid distances *Cg*1 (N1,C11,N2,C12,C13,C14)···*Cg*7ⁱⁱ (C21–C26) and *Cg*3 (C2–C7)···*Cg*5ⁱⁱⁱ (N3,C27,N4,C28,C29,C30) are 3.7659 (12) and 3.7915 (12) Å, the perpendicular distances *Cg*1 on *Cg*7ⁱⁱ and *Cg*3 on *Cg*5ⁱⁱⁱ are 3.4761 (7) and 3.5318 (8) Å, respectively; [symmetry codes: ii = 1 - *x*, 1/2 + *y*, 1/2 - *z*; iii = - *x*, 1/2 + *y*, 1/2 - *z*] (see also Table 1). Cg2 and Cg6 are the centroids of the six-membered rings of the independent naphthyl units (C1,C2,C7,C8,C9,C10) and (C17 - C21,C26), respectively.

S2. Experimental

The title compound was obtained from the coupling reaction of 1-naphthaleneboronic acid and 2-iodo-4,6-dimethylpyrimidine as described in literature (Wang *et al.*, 2011) and recrystallized from dichloromethane- petroleum ether solution at room temperature to give the desired crystals suitable for single-crystal X-ray diffraction.

S3. Refinement

H atoms attached to C atoms of the title compound were placed in geometrically idealized positions and treated as riding with C—H distances constrained to 0.93–0.96 Å, and with $U_{iso}(H)=1.2 \cdot U_{eq}(C)$, $1.5 \cdot U_{eq}(methyl H)$.

Figure 1

The molecular structure of the title compound with displacement ellipsoids at the 30% probability level.

4,6-Dimethyl-2-(naphthalen-1-yl)pyrimidine

Crystal data F(000) = 992C₁₆H₁₄N₂ $M_r = 234.29$ $D_{\rm x} = 1.222 {\rm Mg m^{-3}}$ Monoclinic, $P2_1/c$ Mo *K* α radiation, $\lambda = 0.71073$ Å a = 14.9022 (18) ÅCell parameters from 5588 reflections *b* = 11.4756 (14) Å $\theta = 2.4 - 27.4^{\circ}$ *c* = 15.9499 (19) Å $\mu = 0.07 \text{ mm}^{-1}$ $\beta = 111.028 (1)^{\circ}$ T = 296 KV = 2546.0 (5) Å³ Block, colourless Z = 8 $0.50 \times 0.37 \times 0.29 \text{ mm}$ Data collection Bruker SMART APEX CCD area-detector 18638 measured reflections diffractometer 4733 independent reflections Radiation source: fine-focus sealed tube

Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.965, T_{\max} = 0.979$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.129$ S = 1.064733 reflections 329 parameters 0 restraints Primary atom site location: structure-invariant direct methods 18638 measured reflections 4733 independent reflections 3442 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$ $\theta_{max} = 25.5^{\circ}, \ \theta_{min} = 2.4^{\circ}$ $h = -18 \rightarrow 18$ $k = -13 \rightarrow 13$ $l = -19 \rightarrow 19$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0523P)^2 + 0.8594P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.24$ e Å⁻³ $\Delta\rho_{min} = -0.18$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.33022 (12)	0.56804 (15)	0.19201 (11)	0.0391 (4)
C2	0.28518 (12)	0.54003 (15)	0.25537 (11)	0.0382 (4)
C3	0.31319 (13)	0.58798 (17)	0.34283 (12)	0.0466 (5)
H3	0.3632	0.6417	0.3614	0.056*
C4	0.26816 (14)	0.55681 (19)	0.40020 (13)	0.0545 (5)
H4	0.2882	0.5891	0.4575	0.065*
C5	0.19230 (15)	0.47692 (19)	0.37416 (14)	0.0574 (5)
Н5	0.1631	0.4549	0.4144	0.069*
C6	0.16151 (14)	0.43166 (18)	0.29020 (14)	0.0535 (5)
H6	0.1102	0.3797	0.2729	0.064*
C7	0.20588 (12)	0.46173 (16)	0.22806 (12)	0.0429 (4)
C8	0.17279 (13)	0.41556 (17)	0.14022 (13)	0.0493 (5)
H8	0.1219	0.3630	0.1230	0.059*
C9	0.21425 (13)	0.44683 (17)	0.08061 (13)	0.0507 (5)
H9	0.1905	0.4175	0.0224	0.061*
C10	0.29303 (12)	0.52348 (16)	0.10659 (12)	0.0453 (4)
H10	0.3206	0.5445	0.0649	0.054*
C11	0.41918 (12)	0.63937 (15)	0.21483 (12)	0.0399 (4)
C12	0.50852 (13)	0.76663 (16)	0.16641 (13)	0.0466 (4)
C13	0.58104 (13)	0.75808 (17)	0.24906 (13)	0.0481 (5)
H13	0.6379	0.7995	0.2612	0.058*
C14	0.56827 (13)	0.68750 (16)	0.31349 (12)	0.0450 (4)
C15	0.51631 (16)	0.8421 (2)	0.09295 (15)	0.0643 (6)
H15A	0.4803	0.8079	0.0358	0.097*
H15B	0.5826	0.8489	0.0991	0.097*
H15C	0.4910	0.9180	0.0968	0.097*
C16	0.64365 (14)	0.67278 (19)	0.40496 (13)	0.0588 (5)
H16A	0.6343	0.7300	0.4450	0.088*
H16B	0.7061	0.6828	0.4014	0.088*
H16C	0.6388	0.5962	0.4271	0.088*
C17	0.12658 (11)	0.06318 (15)	0.19754 (11)	0.0357 (4)
C18	0.09762 (13)	0.01305 (17)	0.11404 (11)	0.0435 (4)
H18	0.0368	0.0304	0.0729	0.052*
C19	0.15642 (13)	-0.06341 (16)	0.08848 (12)	0.0454 (4)

H19	0.1345	-0.0962	0.0313	0.054*
C20	0.24584 (13)	-0.08964 (16)	0.14757 (12)	0.0440 (4)
H20	0.2842	-0.1420	0.1311	0.053*
C21	0.28081 (12)	-0.03786 (15)	0.23378 (11)	0.0381 (4)
C22	0.37491 (13)	-0.06205 (18)	0.29471 (13)	0.0501 (5)
H22	0.4136	-0.1140	0.2783	0.060*
C23	0.40930 (13)	-0.0107 (2)	0.37641 (13)	0.0561 (5)
H23	0.4709	-0.0283	0.4159	0.067*
C24	0.35244 (13)	0.06895 (18)	0.40169 (12)	0.0500 (5)
H24	0.3771	0.1048	0.4576	0.060*
C25	0.26154 (12)	0.09449 (16)	0.34545 (11)	0.0413 (4)
H25	0.2250	0.1479	0.3634	0.050*
C26	0.22168 (11)	0.04068 (14)	0.25978 (10)	0.0345 (4)
C27	0.05443 (11)	0.13401 (15)	0.21966 (11)	0.0360 (4)
C28	-0.01736 (12)	0.18418 (16)	0.31890 (12)	0.0425 (4)
C29	-0.08211 (12)	0.25082 (16)	0.25319 (12)	0.0432 (4)
H29	-0.1305	0.2911	0.2649	0.052*
C30	-0.07448 (12)	0.25720 (15)	0.16983 (12)	0.0407 (4)
C31	-0.02058 (15)	0.1730 (2)	0.41097 (13)	0.0608 (6)
H31A	0.0023	0.0973	0.4347	0.091*
H31B	-0.0855	0.1828	0.4082	0.091*
H31C	0.0195	0.2317	0.4493	0.091*
C32	-0.14053 (14)	0.33086 (18)	0.09602 (13)	0.0548 (5)
H32A	-0.1143	0.4079	0.0998	0.082*
H32B	-0.2023	0.3348	0.1019	0.082*
H32C	-0.1473	0.2971	0.0390	0.082*
N1	0.48627 (10)	0.62722 (13)	0.29660 (10)	0.0437 (4)
N2	0.42607 (10)	0.70672 (13)	0.14848 (10)	0.0443 (4)
N3	-0.00560 (10)	0.19787 (12)	0.15203 (9)	0.0395 (3)
N4	0.05243 (10)	0.12487 (13)	0.30227 (9)	0.0406 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0340 (9)	0.0402 (10)	0.0421 (10)	0.0027 (7)	0.0125 (7)	0.0004 (8)
C2	0.0324 (8)	0.0386 (10)	0.0423 (10)	0.0043 (7)	0.0119 (7)	0.0018 (7)
C3	0.0382 (9)	0.0543 (12)	0.0478 (11)	-0.0007 (8)	0.0160 (8)	-0.0062 (9)
C4	0.0525 (12)	0.0654 (13)	0.0480 (11)	0.0035 (10)	0.0212 (9)	-0.0036 (10)
C5	0.0562 (12)	0.0655 (14)	0.0593 (13)	-0.0010 (10)	0.0315 (10)	0.0055 (11)
C6	0.0465 (11)	0.0546 (12)	0.0631 (13)	-0.0071 (9)	0.0240 (10)	0.0014 (10)
C7	0.0358 (9)	0.0429 (10)	0.0493 (11)	0.0013 (8)	0.0145 (8)	0.0025 (8)
C8	0.0402 (10)	0.0505 (12)	0.0530 (11)	-0.0065 (8)	0.0118 (9)	-0.0033 (9)
C9	0.0485 (11)	0.0533 (12)	0.0447 (11)	-0.0035 (9)	0.0100 (9)	-0.0068 (9)
C10	0.0433 (10)	0.0496 (11)	0.0437 (10)	0.0003 (8)	0.0165 (8)	0.0014 (8)
C11	0.0382 (9)	0.0386 (10)	0.0453 (10)	0.0041 (7)	0.0178 (8)	-0.0016 (8)
C12	0.0456 (10)	0.0429 (11)	0.0573 (12)	0.0013 (8)	0.0257 (9)	-0.0002 (9)
C13	0.0406 (10)	0.0461 (11)	0.0606 (12)	-0.0068 (8)	0.0220 (9)	-0.0064 (9)
C14	0.0396 (9)	0.0449 (11)	0.0516 (11)	0.0005 (8)	0.0179 (8)	-0.0064 (9)

C15	0.0676 (14)	0.0621 (14)	0.0678 (14)	-0.0064 (11)	0.0298 (11)	0.0121 (11)
C16	0.0483 (11)	0.0662 (14)	0.0560 (12)	-0.0050 (10)	0.0115 (9)	-0.0046 (10)
C17	0.0349 (9)	0.0390 (9)	0.0348 (9)	0.0030 (7)	0.0143 (7)	0.0021 (7)
C18	0.0406 (9)	0.0518 (11)	0.0356 (9)	0.0068 (8)	0.0108 (8)	-0.0008 (8)
C19	0.0510 (11)	0.0490 (11)	0.0377 (10)	0.0040 (9)	0.0179 (8)	-0.0056 (8)
C20	0.0470 (10)	0.0450 (11)	0.0468 (10)	0.0067 (8)	0.0251 (8)	-0.0020 (8)
C21	0.0360 (9)	0.0390 (10)	0.0433 (10)	0.0033 (7)	0.0190 (8)	0.0053 (7)
C22	0.0404 (10)	0.0549 (12)	0.0557 (12)	0.0135 (9)	0.0182 (9)	0.0046 (9)
C23	0.0373 (10)	0.0699 (14)	0.0528 (12)	0.0095 (10)	0.0061 (9)	0.0055 (10)
C24	0.0425 (10)	0.0611 (13)	0.0412 (10)	-0.0032 (9)	0.0086 (8)	-0.0025 (9)
C25	0.0380 (9)	0.0453 (10)	0.0418 (10)	0.0000 (8)	0.0159 (8)	-0.0017 (8)
C26	0.0340 (8)	0.0365 (9)	0.0366 (9)	0.0012 (7)	0.0169 (7)	0.0035 (7)
C27	0.0333 (8)	0.0366 (9)	0.0375 (9)	0.0001 (7)	0.0121 (7)	-0.0011 (7)
C28	0.0379 (9)	0.0501 (11)	0.0412 (10)	0.0036 (8)	0.0163 (8)	-0.0003 (8)
C29	0.0380 (9)	0.0469 (11)	0.0458 (10)	0.0099 (8)	0.0165 (8)	-0.0017 (8)
C30	0.0381 (9)	0.0391 (10)	0.0435 (10)	0.0044 (8)	0.0129 (8)	-0.0002 (8)
C31	0.0629 (13)	0.0800 (16)	0.0458 (11)	0.0202 (11)	0.0271 (10)	0.0076 (10)
C32	0.0602 (12)	0.0546 (12)	0.0471 (11)	0.0209 (10)	0.0162 (9)	0.0075 (9)
N1	0.0383 (8)	0.0447 (9)	0.0482 (9)	-0.0011 (7)	0.0158 (7)	-0.0022 (7)
N2	0.0426 (8)	0.0431 (9)	0.0499 (9)	0.0018 (7)	0.0200 (7)	0.0003 (7)
N3	0.0381 (8)	0.0402 (8)	0.0399 (8)	0.0045 (6)	0.0136 (6)	0.0015 (6)
N4	0.0377 (8)	0.0465 (9)	0.0392 (8)	0.0066 (7)	0.0159 (6)	0.0019 (7)

Geometric parameters (Å, °)

C1—C10	1.372 (2)	C17—C18	1.371 (2)
C1—C2	1.436 (2)	C17—C26	1.432 (2)
C1-C11	1.488 (2)	C17—C27	1.488 (2)
C2—C3	1.416 (2)	C18—C19	1.400 (2)
С2—С7	1.423 (2)	C18—H18	0.9300
C3—C4	1.362 (3)	C19—C20	1.361 (2)
С3—Н3	0.9300	C19—H19	0.9300
C4—C5	1.398 (3)	C20—C21	1.415 (2)
C4—H4	0.9300	C20—H20	0.9300
C5—C6	1.354 (3)	C21—C22	1.418 (2)
С5—Н5	0.9300	C21—C26	1.422 (2)
C6—C7	1.417 (3)	C22—C23	1.353 (3)
С6—Н6	0.9300	C22—H22	0.9300
С7—С8	1.411 (3)	C23—C24	1.400 (3)
С8—С9	1.355 (3)	C23—H23	0.9300
С8—Н8	0.9300	C24—C25	1.361 (2)
C9—C10	1.405 (3)	C24—H24	0.9300
С9—Н9	0.9300	C25—C26	1.421 (2)
C10—H10	0.9300	C25—H25	0.9300
C11—N1	1.336 (2)	C27—N4	1.333 (2)
C11—N2	1.344 (2)	C27—N3	1.345 (2)
C12—N2	1.346 (2)	C28—N4	1.347 (2)
C12—C13	1.376 (3)	C28—C29	1.374 (2)

C12 C15	1 405 (3)	C28 C31	1 402 (2)
$C_{12} = C_{13}$	1.475(3)	C_{20} C_{30}	1.752(2)
C13 H12	1.374(3)	$C_{29} = C_{30}$	1.370(2)
C14 N1	0.9300	$C_{23} = 1123$	1.244(2)
	1.343(2)	C_{30} C_{30} C_{32}	1.344(2)
	1.498 (3)	$C_{30} - C_{32}$	1.496 (2)
CI5—HI5A	0.9600	C31—H31A	0.9600
CI5—HI5B	0.9600	C31—H31B	0.9600
C15—H15C	0.9600	С31—Н31С	0.9600
C16—H16A	0.9600	C32—H32A	0.9600
C16—H16B	0.9600	C32—H32B	0.9600
C16—H16C	0.9600	C32—H32C	0.9600
C10—C1—C2	119.41 (16)	C26—C17—C27	123.63 (14)
C10-C1-C11	117.06 (15)	C17—C18—C19	122.29 (16)
C2-C1-C11	123.47 (15)	C17—C18—H18	118.9
C3—C2—C7	117.77 (16)	C19—C18—H18	118.9
C3—C2—C1	124.01 (16)	C20-C19-C18	119.77 (16)
C7—C2—C1	118.20 (16)	C20—C19—H19	120.1
C4—C3—C2	121.16 (18)	C18—C19—H19	120.1
С4—С3—Н3	119.4	C19—C20—C21	120.51 (16)
С2—С3—Н3	119.4	С19—С20—Н20	119.7
C3—C4—C5	120.89 (19)	C21—C20—H20	119.7
C3—C4—H4	119.6	C20—C21—C22	120.85 (16)
C5—C4—H4	119.6	C_{20} C_{21} C_{26}	119.93 (15)
C6-C5-C4	119.76 (18)	$C_{22} = C_{21} = C_{26}$	119.22 (16)
С6—С5—Н5	120.1	C_{23} C_{22} C_{21} C_{20}	120.97(17)
C4-C5-H5	120.1	C_{23} C_{22} C_{21} C_{23} C_{22} H_{22}	119.5
C_{5} C_{6} C_{7}	120.1	$C_{23} = C_{22} = H_{22}$	119.5
C5 C6 H6	121.38 (19)	$C_{21} = C_{22} = C_{122}$	119.5 120.18 (17)
C7 C6 H6	119.5	$C_{22} = C_{23} = C_{24}$	120.18 (17)
$C^{\circ} = C^{\circ} = C^{\circ}$	117.5	$C_{22} = C_{23} = H_{23}$	119.9
$C_{8} = C_{7} = C_{8}$	121.22(17) 110.81(16)	$C_{24} = C_{23} = H_{23}$	119.9
$C_8 = C_7 = C_2$	119.81 (10)	$C_{25} = C_{24} = C_{25}$	120.84 (18)
	118.97 (17)	C25—C24—H24	119.6
C9—C8—C7	120.82 (17)	C23—C24—H24	119.6
C9—C8—H8	119.6	C24—C25—C26	120.92 (17)
С7—С8—Н8	119.6	С24—С25—Н25	119.5
C8—C9—C10	120.13 (18)	C26—C25—H25	119.5
С8—С9—Н9	119.9	C25—C26—C21	117.83 (15)
С10—С9—Н9	119.9	C25—C26—C17	123.81 (15)
C1—C10—C9	121.54 (17)	C21—C26—C17	118.34 (15)
C1-C10-H10	119.2	N4—C27—N3	126.26 (15)
C9—C10—H10	119.2	N4—C27—C17	117.76 (14)
N1-C11-N2	125.94 (16)	N3—C27—C17	115.91 (14)
N1-C11-C1	118.07 (15)	N4—C28—C29	120.77 (16)
N2—C11—C1	115.91 (15)	N4—C28—C31	116.77 (16)
N2—C12—C13	120.69 (17)	C29—C28—C31	122.47 (16)
N2-C12-C15	116.82 (17)	C28—C29—C30	119.18 (16)
C13—C12—C15	122.50 (18)	С28—С29—Н29	120.4

C14—C13—C12	119.12 (17)	С30—С29—Н29	120.4
C14—C13—H13	120.4	N3—C30—C29	120.73 (16)
C12—C13—H13	120.4	N3—C30—C32	117.18 (16)
N1—C14—C13	120.87 (17)	C29—C30—C32	122.09 (16)
N1—C14—C16	116.57 (17)	C28—C31—H31A	109.5
C13—C14—C16	122.56 (17)	C28—C31—H31B	109.5
C12—C15—H15A	109.5	H31A—C31—H31B	109.5
C12—C15—H15B	109.5	C28—C31—H31C	109.5
H15A—C15—H15B	109.5	H31A—C31—H31C	109.5
C12—C15—H15C	109.5	H31B—C31—H31C	109.5
H15A—C15—H15C	109.5	С30—С32—Н32А	109.5
H15B—C15—H15C	109.5	С30—С32—Н32В	109.5
C14—C16—H16A	109.5	H32A—C32—H32B	109.5
C14—C16—H16B	109.5	С30—С32—Н32С	109.5
H16A—C16—H16B	109.5	H32A—C32—H32C	109.5
C14—C16—H16C	109.5	H32B—C32—H32C	109.5
H16A—C16—H16C	109.5	C11 - N1 - C14	116.74 (15)
H16B—C16—H16C	109.5	C11 - N2 - C12	116.63 (15)
C18 - C17 - C26	119.09 (15)	C_{30} N3 C_{27}	116.44 (14)
C18 - C17 - C27	117.21 (14)	$C_{27} - N_{4} - C_{28}$	116.61 (14)
C10—C1—C2—C3	-175.15 (17)	C21—C22—C23—C24	-0.8 (3)
C11—C1—C2—C3	7.8 (3)	C22—C23—C24—C25	1.1 (3)
C10—C1—C2—C7	3.1 (2)	C23—C24—C25—C26	0.3 (3)
C11—C1—C2—C7	-173.91 (16)	C24—C25—C26—C21	-1.9(3)
C7—C2—C3—C4	2.5 (3)	C24—C25—C26—C17	179.75 (17)
C1—C2—C3—C4	-179.26 (18)	C20—C21—C26—C25	-177.21 (15)
C2—C3—C4—C5	-0.4 (3)	C22—C21—C26—C25	2.0 (2)
C3—C4—C5—C6	-1.5 (3)	C20-C21-C26-C17	1.3 (2)
C4—C5—C6—C7	1.3 (3)	C22—C21—C26—C17	-179.48 (15)
C5—C6—C7—C8	-179.16 (19)	C18—C17—C26—C25	175.28 (16)
C5—C6—C7—C2	0.8 (3)	C27—C17—C26—C25	-7.9 (3)
C3—C2—C7—C8	177.34 (16)	C18—C17—C26—C21	-3.1(2)
C1—C2—C7—C8	-1.0 (3)	C27—C17—C26—C21	173.76 (15)
C3—C2—C7—C6	-2.6 (3)	C18—C17—C27—N4	140.10 (17)
C1—C2—C7—C6	179.01 (16)	C26—C17—C27—N4	-36.8 (2)
C6—C7—C8—C9	178.50 (19)	C18—C17—C27—N3	-37.2 (2)
C2—C7—C8—C9	-1.5 (3)	C26—C17—C27—N3	145.92 (16)
C7—C8—C9—C10	1.9 (3)	N4—C28—C29—C30	-0.5(3)
C2-C1-C10-C9	-2.8(3)	C31—C28—C29—C30	179.84 (19)
C11—C1—C10—C9	174.40 (16)	C_{28} C_{29} C_{30} N_{3}	1.0 (3)
C8-C9-C10-C1	0.3 (3)	C_{28} C_{29} C_{30} C_{32}	-178.10(17)
C10-C1-C11-N1	-140.99(17)	N_{2} C_{11} N_{1} C_{14}	-0.5(3)
C2-C1-C11-N1	36.1 (2)	C1-C11-N1-C14	176.14 (15)
C10-C1-C11-N2	35.9 (2)	C13—C14—N1—C11	0.2 (2)
$C_2 - C_1 - C_{11} - N_2$	-146.97(16)	C16-C14-N1-C11	-179.46(16)
N2-C12-C13-C14	-0.1 (3)	N1-C11-N2-C12	0.4 (3)
C_{15} C_{12} C_{13} C_{14}	179 50 (18)	C1-C11-N2-C12	-17627(15)
010 012 013 014	1, 2.20 (10)	01 011 112 012	1,0.27 (12)

supporting information

C12—C13—C14—N1	0.0 (3)	C13—C12—N2—C11	-0.1 (2)
C12—C13—C14—C16	179.70 (18)	C15—C12—N2—C11	-179.72 (17)
C26—C17—C18—C19	2.7 (3)	C29—C30—N3—C27	-0.5 (2)
C27—C17—C18—C19	-174.41 (17)	C32—C30—N3—C27	178.65 (16)
C17—C18—C19—C20	-0.2 (3)	N4—C27—N3—C30	-0.6 (3)
C18—C19—C20—C21	-1.7 (3)	C17—C27—N3—C30	176.45 (15)
C19—C20—C21—C22	-178.11 (18)	N3—C27—N4—C28	1.0 (3)
C19—C20—C21—C22	1.1 (3)	C17—C27—N4—C28	-175.97 (15)
C20—C21—C22—C23	178.51 (18)	C29—C28—N4—C27	-0.4 (3)
C26—C21—C22—C23	-0.7 (3)	C31—C28—N4—C27	170.27 (17)
C26—C21—C22—C23	-0.7 (3)	C31—C28—N4—C27	179.27 (17)

Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg5 and Cg6 are the centroids of the N1/N2/C11–C14, C1/C2/C7–C10, N3/N4, C27–C30 and C17–C21/C26 rings, respectively.

<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
0.93	2.74	3.651 (4)	167
0.93	2.76	3.597 (4)	150
0.93	2.75	3.665 (2)	168
0.93	2.72	3.546 (3)	149
	<i>D</i> —H 0.93 0.93 0.93 0.93	D—H H···A 0.93 2.74 0.93 2.76 0.93 2.75 0.93 2.72	D—H H···A D···A 0.93 2.74 3.651 (4) 0.93 2.76 3.597 (4) 0.93 2.75 3.665 (2) 0.93 2.72 3.546 (3)

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) -*x*+1, *y*+1/2, -*z*+1/2; (iii) -*x*, *y*+1/2, -*z*+1/2.