Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 4-Phenyl-1-(prop-2-yn-1-yl)-1H-1,5benzodiazepin-2(3H)-one

#### Mohamed Loughzail,<sup>a</sup> José A. Fernandes,<sup>b</sup> Abdesselam Baouid,<sup>a</sup>\* Mohamed Essaber,<sup>a</sup> José A. S. Cavaleiro<sup>c</sup> and Filipe A. Almeida Paz<sup>b</sup>\*

<sup>a</sup>Laboratoire de Chimie Moléculaire, Département de Chimie, Faculté des Sciences -Semlalia, BP 2390, Université Cadi Ayyad, 40001, Marrakech, Morocco, <sup>b</sup>Department of Chemistry, University of Aveiro, CICECO, 3810-193, Aveiro, Portugal, and <sup>c</sup>Department of Chemistry, University of Aveiro, QOPNA, 3810-193, Aveiro, Portugal

Correspondence e-mail: baouid@yahoo.fr, filipe.paz@ua.pt

Received 30 June 2011; accepted 7 July 2011

Key indicators: single-crystal X-ray study; T = 150 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.052; wR factor = 0.143; data-to-parameter ratio = 27.5.

4-Phenyl-1*H*-1,5-benzodiazepin-2(3*H*)-one reacts in the presence of a concentrated aqueous solution of sodium hydroxide and a quaternary ammonium salt (as catalyst) in benzene (phase transfer catalysis) with propargyl bromide, affording the title benzodiazepine derivative, C<sub>18</sub>H<sub>14</sub>N<sub>2</sub>O. In the molecule, the mean plane of the propargyl substituent is almost perpendicular with that of the amide group [dihedral angle =  $87.81 (8)^{\circ}$ ]. In the crystal, the molecules are linked by C- $H \cdots O$  and  $C - H \cdots N$  interactions.

#### **Related literature**

For general background to applications of benzodiazepines, see: Ahmed et al. (1983); Bird (1996); Di Braccio et al. (1990, 2001); Goetzke et al. (1983); Kavita et al. (1988); Sieghart & Schuster (1984); Wolff (1996). For examples of benzodiazepines used as medicine, see: Wolff (1996). For the pharmacological effects of benzodiazepines, see: Meldrum & Chapman (1986). For examples of synthetic pathways of new benzodiazepines, see: Aatif et al. (2000); Baouid et al. (2001); Boudina et al. (2007); Nardi et al. (1973). For previous work from our groups on organic crystals, see: Fernandes et al. (2011); Amarante, Figueiredo et al. (2009); Amarante, Gonçalves & Almeida Paz (2009); Paz & Klinowski (2003); Paz et al. (2002).



V = 1387.1 (4) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.12 \times 0.08 \times 0.04 \text{ mm}$ 

11049 measured reflections

5228 independent reflections 3621 reflections with  $I > 2\sigma(I)$ 

 $\mu = 0.08 \text{ mm}^-$ 

T = 150 K

 $R_{\rm int} = 0.034$ 

Z = 4

#### **Experimental**

| Crystal data                    |
|---------------------------------|
| $C_{18}H_{14}N_2O$              |
| $M_r = 274.31$                  |
| Monoclinic, $P2_1/n$            |
| a = 8.2574 (14)  Å              |
| b = 18.961 (3) Å                |
| c = 9.0914 (15)  Å              |
| $\beta = 102.962 \ (4)^{\circ}$ |

#### Data collection

| Bruker X8 Kappa CCD APEX II                |
|--------------------------------------------|
| diffractometer                             |
| Absorption correction: multi-scan          |
| (SADABS; Sheldrick, 1997)                  |
| $T_{\rm min} = 0.990, T_{\rm max} = 0.997$ |

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.052$ | 190 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.143$               | H-atom parameters constrained                              |
| S = 1.05                        | $\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 5228 reflections                | $\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$ |

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                                                  | $D-\mathrm{H}$ | $H \cdot \cdot \cdot A$ | $D{\cdots}A$ | $D - \mathbf{H} \cdots A$ |
|-----------------------------------------------------------------------------------|----------------|-------------------------|--------------|---------------------------|
| $ \begin{array}{c} C1 - H1A \cdots O1^{i} \\ C3 - H3 \cdots N2^{ii} \end{array} $ | 0.99           | 2.14                    | 3.1074 (15)  | 166                       |
|                                                                                   | 0.95           | 2.58                    | 3.4269 (18)  | 149                       |

Symmetry codes: (i)  $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$ ; (ii)  $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$ .

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL.

We are grateful to the Fundação para a Ciência e a Tecnologia (FCT, Portugal) for their general financial support, for the post-doctoral research grant No. SFRH/BPD/63736/ 2009 (to JAF) and for specific funding toward the purchase of the single-crystal diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2762).

#### References

- Aatif, A., Baouid, A., Hasnaoui, A. & Pierrot, M. (2000). Acta Cryst. C56, e459–e460.
- Ahmed, F., Rittmeyer, G., Goetzke, E. & Koster, J. (1983). Brit. J. Clin. Pharmacol. 16, 419S-423S.
- Amarante, T. R., Figueiredo, S., Lopes, A. D., Gonçalves, I. S. & Almeida Paz, F. A. (2009). *Acta Cryst.* E65, o2047.
- Amarante, T. R., Gonçalves, I. S. & Almeida Paz, F. A. (2009). Acta Cryst. E65, 01962–01963.
- Baouid, A., Elhazazi, S., Hasnaoui, A., Compain, P., Lavergne, J. P. & Huet, F. (2001). New J. Chem. 25, 1479–1481.
- Bird, C. W. (1996). Comprehensive Heterocyclic Chemistry. Oxford: Pergamon. Boudina, A., Baouid, A., Hasnaoui, A., Aatif, A., Eddike, D. & Tillard, M. (2007). Acta Cryst. E63, 01544–01545.
- Brandenburg, K. (2009). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Bruker (2005). *SAINT-Plus*. Bruker AXS, Inc. Madison, Wisconsin, USA.
- Bruker (2006). APEX2. Bruker AXS, Delft, The Netherlands.
- Di Braccio, M., Grossi, G., Roma, G., Vargiu, L., Mura, M. & Marongiu, M. E. (2001). Eur. J. Med. Chem. 36, 935–949.

- Di Braccio, M., Roma, G., Grossi, G. C., Ghima, M. & Mereto, E. (1990). *Eur. J. Med. Chem.* **25**, 681–687.
- Fernandes, J. A., Almeida Paz, F. A., Marques, J., Marques, M. P. M. & Braga, S. S. (2011). Acta Cryst. C67, 057–059.
- Goetzke, E., Findeisen, P., Welbers, I. B. & Koster, J. (1983). Brit. J. Clin. Pharmacol. 16, 397S-402S.
- Kavita, D. T., Achaiah, G. & Reddy, V. M. (1988). J. Indian Chem. Soc. 65, 567– 570.
- Meldrum, B. S. & Chapman, A. G. (1986). Epilepsia, 27 (suppl. 1), S3-S13.
- Nardi, D., Tajana, A. & Rossi, S. (1973). J. Heterocycl. Chem. 10, 815-819.
- Paz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002). New J. Chem. 26, 381–383.
- Paz, F. A. A. & Klinowski, J. (2003). CrystEngComm 5, 238-244.
- Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sieghart, W. & Schuster, A. (1984). Biochem. Pharmacol. 33, 4033-4038.
- Wolff, M. E. (1996). Burger's Medicinal Chemistry and Drug Discovery. 5th ed. New York: John Wiley & Sons.

# supporting information

Acta Cryst. (2011). E67, o2075–o2076 [doi:10.1107/S1600536811027371]

# 4-Phenyl-1-(prop-2-yn-1-yl)-1H-1,5-benzodiazepin-2(3H)-one

# Mohamed Loughzail, José A. Fernandes, Abdesselam Baouid, Mohamed Essaber, José A. S. Cavaleiro and Filipe A. Almeida Paz

#### S1. Comment

Benzodiazepine derivatives are an important class of heterocyclic compounds in the field of drugs, pharmaceuticals and synthetic organic chemistry (Bird, 1996; Wolff, 1996), as they show antiviral (Di Braccio *et al.*, 2001), analgesic (Di Braccio *et al.*, 1990), and antipsychotic (Kavita *et al.*, 1988) activities. These compounds are used worldwide as anticonvulsant agents (Sieghart & Schuster, 1984) or as sedative or hypnotics (Goetzke *et al.*, 1983; Ahmed *et al.*, 1983). Examples of well known diazepines are Alprazolam, Diazepam and Flunitrazepam (Wolff, 1996). Their pharmacological effects come from the activation of the benzodiazepine receptor which interacts with the GABA recognition site (Meldrum & Chapman, 1986). Research in this area is highly active being directed towards the synthesis of compounds with enhanced pharmacological activity. Following the research efforts from some of us concerning novel synthetic pathways of new benzodiazepines (Aatif *et al.*, 2000; Baouid *et al.*, 2001; Boudina *et al.*, 2007), and our interest on the structural features of organic crystals (Fernandes *et al.*, 2011; Amarante, Figueiredo *et al.*, 2009; Amarante, Gonçalves & Almeida Paz , 2009; Paz & Klinowski, 2003; Paz *et al.*, 2002), here we wish to report the synthesis *via* phase transfer catalysis and the crystallographic studies of the title compound (I).

The asymmetric unit is composed of a whole molecular moiety of I (Fig. 1). All atoms are distributed over four medium planes (see Table 1 for details), which converge in the diazepine ring. The plane of the substituent aromatic ring is extended to the imine group from the diazepine moiety (plane A) and subtends an angle of 71.78 (4)° with the amide plane (C). The plane of the benzo ring (B) subtends, on the other hand, two almost similar angles with the previously described planes [41.76 (4)° with plane A and 40.75 (4)° with plane C]. The plane of the propargyl substituent (D) is almost perpendicular with that of the amide group [87.81 (8)°].

The crystal packing (Fig. 2) features weak supramolecular interactions (see Table 2 for details), namely the C—H and  $CH_2$  groups of the propargyl moiety interact with N2 from the imine and O1 from the amide of neighbouring molecules, respectively.

#### **S2. Experimental**

Melting points were taken in an open capillary tube on a Buchi 510 apparatus and are uncorrected. The FT—IR spectrum was obtained from KBr pellets using a Bruker Tensor 27 spectrophotometer. NMR Spectra were recorded with the following instruments: <sup>1</sup>H, Bruker AC-300; <sup>13</sup>C, Bruker AC-75. TMS was used as an internal reference. Mass spectra were recorded using a Jeol JMS DX 300 instrument. Column chromatography was carried out using E-Merck silica gel 60F<sub>254</sub>. All reagents were purchased from commercial sources and were used without further purification.

The precursor, 4-phenyl-2,3-dihydro-1*H*-1,5-benzodiazepin-2-one (II), was prepared following literature procedures (Nardi *et al.*, 1973) by refluxing *o*-phenylenediamine and ethyl benzoylacetate for 2 h in xylene.

A mixture of 1 g (4.6 mmol) of II, 0.43 g (2.3 mmol) of benzyltriethylammonium chloride (TBA-Cl) and 3 ml of a 50% sodium hydroxide aqueous solution in benzene (25 ml) was stirred at ambient temperature. After 15 min, propargyl bromide was added slowly. After 6 h of stirring at 298 K, the reaction mixture was diluted with water (30 ml). The organic layer was extracted with benzene ( $3 \times 10$  ml), dried over anhydrous sodium sulfate and evaporated under vacuum. The title compound was isolated by column chromatography on silica gel using hexane/ethyl acetate as eluent. The solid product was recrystallized in dichloromethane to give yellow crystals of I. Yield: 96%. Melting point: 438–440 K.

FT–IR (KBr): 3259(m), 3060(w), 2984(m), 1659(vs), 1602(s), 1586(w), 1570(m), 1496(w), 1479(s), 1452(s), 1431(m), 1379(s), 1362(w), 1321(w), 1307(m), 1293(w), 1279(m), 1262(m), 1211(m), 1162(w), 1014(m), 958(m), 774(s), 688(m), 662(w), 639(w), 598(m), 484(w), 426(w) cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): 7.25-8.14 (9H, Ar-H), 4.19 and 4.27 (AB system, d, *J*= 17.7 Hz, 2H, N-CH<sub>2</sub>-C), 3.04 and 4.76 (AB system, d, *J*=12 Hz, 2H, CH<sub>2</sub>-CO-N), 2.32 (t, *J*= 2.25 Hz, 1H, HC=C) ppm.<sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>): 165 (1C, CO), 160.0 (1C, Ph-C=N), 140.9, 136.9, 133.3, 130.5, 128.1, 127.1, 126.7, 125.7, 125.1, 120.9 (12C, Ar-C), 78.5 (1C, HC=C), 71.9 (1C, HC=C), 39.1 (1C, CH<sub>2</sub>-CO-N), 36.9 (1C, N-CH<sub>2</sub>-C) ppm. MS (EI, *m/z*): 275 [*M*+H]<sup>+</sup>.

#### **S3. Refinement**

Hydrogen atoms bound to carbon were placed at their idealized positions and were included in the final structural model in riding-motion approximation with C—H = 0.95 Å (aromatic and acetylenic), and C—H = 0.99 Å (aliphatic —CH<sub>2</sub>—). The isotropic thermal displacement parameters for these atoms were fixed at  $1.2 \times U_{eq}$  of the respective parent carbon atom.



#### Figure 1

Asymmetric unit of the title compound showing all non-hydrogen atoms represented as thermal ellipsoids drawn at the 50% probability level and hydrogen atoms as small spheres with arbitrary radii.



#### Figure 2

Crystal packing of the title compound viewed in perspective along the [100] direction of the unit cell. C—H···(N,O) weak hydrogen bonds are represented as dashed green lines. H-atoms not involved in hydrogen bonding interactions have been omitted for clarity.

#### 4-Phenyl-1-(prop-2-yn-1-yl)-1H-1,5-benzodiazepin-2(3H)-one

Crystal data C<sub>18</sub>H<sub>14</sub>N<sub>2</sub>O  $M_r = 274.31$ Monoclinic,  $P2_1/n$ Hall symbol: -P 2yn a = 8.2574 (14) Å b = 18.961 (3) Å c = 9.0914 (15) Å  $\beta = 102.962$  (4)° V = 1387.1 (4) Å<sup>3</sup> Z = 4

#### Data collection

Bruker X8 Kappa CCD APEX II diffractometer Radiation source: fine-focus sealed tube Graphite monochromator  $\omega / \varphi$  scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1997)  $T_{\min} = 0.990, T_{\max} = 0.997$  F(000) = 576  $D_x = 1.314 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2335 reflections  $\theta = 2.5-32.7^{\circ}$   $\mu = 0.08 \text{ mm}^{-1}$  T = 150 KBlock, yellow  $0.12 \times 0.08 \times 0.04 \text{ mm}$ 

11049 measured reflections 5228 independent reflections 3621 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.034$  $\theta_{max} = 33.1^{\circ}, \theta_{min} = 3.7^{\circ}$  $h = -12 \rightarrow 11$  $k = -24 \rightarrow 29$  $l = -10 \rightarrow 13$  Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier         |
|-------------------------------------------------|----------------------------------------------------------|
| Least-squares matrix: full                      | map                                                      |
| $R[F^2 > 2\sigma(F^2)] = 0.052$                 | Hydrogen site location: inferred from                    |
| $wR(F^2) = 0.143$                               | neighbouring sites                                       |
| S = 1.05                                        | H-atom parameters constrained                            |
| 5228 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0689P)^2 + 0.095P]$         |
| 190 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                           |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} < 0.001$                      |
| Primary atom site location: structure-invariant | $\Delta \rho_{\rm max} = 0.45 \text{ e} \text{ Å}^{-3}$  |
| direct methods                                  | $\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$ |
|                                                 |                                                          |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|--------------|--------------|--------------|-----------------------------|
| N1  | 0.81747 (12) | 0.20787 (5)  | 0.66080 (10) | 0.01806 (19)                |
| N2  | 0.80660 (13) | 0.05512 (5)  | 0.73647 (10) | 0.0212 (2)                  |
| 01  | 0.73372 (11) | 0.20477 (5)  | 0.40627 (9)  | 0.0263 (2)                  |
| C1  | 0.92473 (14) | 0.26835 (6)  | 0.64614 (12) | 0.0203 (2)                  |
| H1A | 1.0213       | 0.2687       | 0.7333       | 0.024*                      |
| H1B | 0.9675       | 0.2624       | 0.5535       | 0.024*                      |
| C2  | 0.83874 (16) | 0.33625 (6)  | 0.63915 (12) | 0.0247 (2)                  |
| C3  | 0.7724 (2)   | 0.39109 (7)  | 0.63764 (16) | 0.0338 (3)                  |
| H3  | 0.7187       | 0.4355       | 0.6364       | 0.041*                      |
| C4  | 0.72159 (14) | 0.18209 (6)  | 0.52947 (11) | 0.0191 (2)                  |
| C5  | 0.60888 (14) | 0.12224 (6)  | 0.54917 (13) | 0.0218 (2)                  |
| H5A | 0.5294       | 0.1118       | 0.4527       | 0.026*                      |
| H5B | 0.5453       | 0.1343       | 0.6260       | 0.026*                      |
| C6  | 0.72038 (14) | 0.05952 (6)  | 0.59981 (12) | 0.0197 (2)                  |
| C7  | 0.73684 (14) | 0.00310 (6)  | 0.49079 (12) | 0.0203 (2)                  |
| C8  | 0.84549 (16) | -0.05308 (6) | 0.53927 (14) | 0.0250 (2)                  |
| H8  | 0.9068       | -0.0547      | 0.6410       | 0.030*                      |
| C9  | 0.86457 (17) | -0.10638 (7) | 0.44028 (15) | 0.0289 (3)                  |
| Н9  | 0.9375       | -0.1446      | 0.4751       | 0.035*                      |
| C10 | 0.77807 (19) | -0.10440 (7) | 0.29068 (15) | 0.0318 (3)                  |
| H10 | 0.7916       | -0.1410      | 0.2231       | 0.038*                      |
| C11 | 0.67212 (19) | -0.04871 (7) | 0.24087 (14) | 0.0318 (3)                  |
| H11 | 0.6135       | -0.0468      | 0.1383       | 0.038*                      |
| C12 | 0.65061 (17) | 0.00474 (7)  | 0.34008 (13) | 0.0263 (3)                  |
| H12 | 0.5767       | 0.0426       | 0.3048       | 0.032*                      |

| C13 | 0.80668 (15) | 0.11000 (6) | 0.83976 (12) | 0.0206 (2) |  |
|-----|--------------|-------------|--------------|------------|--|
| C14 | 0.81461 (17) | 0.09009 (6) | 0.99013 (13) | 0.0265 (3) |  |
| H14 | 0.8139       | 0.0414      | 1.0143       | 0.032*     |  |
| C15 | 0.82341 (17) | 0.13908 (7) | 1.10369 (13) | 0.0285 (3) |  |
| H15 | 0.8261       | 0.1241      | 1.2039       | 0.034*     |  |
| C16 | 0.82834 (16) | 0.21074 (7) | 1.07035 (13) | 0.0259 (2) |  |
| H16 | 0.8353       | 0.2449      | 1.1480       | 0.031*     |  |
| C17 | 0.82299 (15) | 0.23177 (6) | 0.92394 (12) | 0.0221 (2) |  |
| H17 | 0.8267       | 0.2806      | 0.9020       | 0.026*     |  |
| C18 | 0.81219 (14) | 0.18262 (6) | 0.80699 (11) | 0.0187 (2) |  |
|     |              |             |              |            |  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$   | $U^{23}$    |
|-----|------------|------------|------------|-------------|------------|-------------|
| N1  | 0.0243 (5) | 0.0140 (4) | 0.0163 (4) | -0.0031 (4) | 0.0055 (3) | -0.0011 (3) |
| N2  | 0.0281 (5) | 0.0145 (4) | 0.0223 (4) | 0.0000 (4)  | 0.0083 (4) | -0.0004 (3) |
| O1  | 0.0319 (5) | 0.0288 (5) | 0.0172 (3) | -0.0007 (4) | 0.0036 (3) | 0.0012 (3)  |
| C1  | 0.0248 (5) | 0.0163 (5) | 0.0207 (4) | -0.0036 (4) | 0.0071 (4) | -0.0004 (4) |
| C2  | 0.0341 (6) | 0.0196 (5) | 0.0213 (5) | -0.0056 (5) | 0.0083 (4) | 0.0002 (4)  |
| C3  | 0.0461 (8) | 0.0222 (6) | 0.0355 (6) | 0.0045 (6)  | 0.0145 (6) | 0.0060 (5)  |
| C4  | 0.0209 (5) | 0.0165 (5) | 0.0192 (4) | 0.0034 (4)  | 0.0033 (4) | -0.0012 (4) |
| C5  | 0.0213 (5) | 0.0176 (5) | 0.0258 (5) | -0.0010 (4) | 0.0038 (4) | -0.0033 (4) |
| C6  | 0.0227 (5) | 0.0138 (5) | 0.0241 (5) | -0.0023 (4) | 0.0082 (4) | -0.0015 (4) |
| C7  | 0.0241 (5) | 0.0146 (5) | 0.0242 (5) | -0.0042 (4) | 0.0092 (4) | -0.0029 (4) |
| C8  | 0.0265 (6) | 0.0189 (5) | 0.0310 (5) | 0.0004 (4)  | 0.0094 (4) | -0.0032 (5) |
| С9  | 0.0323 (6) | 0.0204 (6) | 0.0379 (6) | 0.0021 (5)  | 0.0162 (5) | -0.0042 (5) |
| C10 | 0.0422 (8) | 0.0240 (6) | 0.0355 (6) | -0.0056 (6) | 0.0224 (6) | -0.0095 (5) |
| C11 | 0.0438 (8) | 0.0296 (7) | 0.0243 (5) | -0.0063 (6) | 0.0126 (5) | -0.0053 (5) |
| C12 | 0.0350 (7) | 0.0198 (5) | 0.0252 (5) | -0.0019 (5) | 0.0088 (5) | -0.0005 (4) |
| C13 | 0.0263 (5) | 0.0158 (5) | 0.0208 (4) | 0.0005 (4)  | 0.0074 (4) | -0.0009 (4) |
| C14 | 0.0387 (7) | 0.0197 (5) | 0.0229 (5) | 0.0008 (5)  | 0.0105 (5) | 0.0036 (4)  |
| C15 | 0.0397 (7) | 0.0290 (6) | 0.0190 (5) | 0.0015 (5)  | 0.0110 (4) | 0.0023 (5)  |
| C16 | 0.0346 (6) | 0.0254 (6) | 0.0194 (4) | 0.0000 (5)  | 0.0099 (4) | -0.0038 (4) |
| C17 | 0.0299 (6) | 0.0170 (5) | 0.0204 (4) | -0.0007 (4) | 0.0078 (4) | -0.0025 (4) |
| C18 | 0.0224 (5) | 0.0174 (5) | 0.0169 (4) | -0.0002 (4) | 0.0060 (4) | 0.0001 (4)  |

### Geometric parameters (Å, °)

| N1—C4  | 1.3665 (13) | С8—Н8   | 0.9500      |
|--------|-------------|---------|-------------|
| N1—C18 | 1.4226 (13) | C9—C10  | 1.388 (2)   |
| N1-C1  | 1.4731 (14) | С9—Н9   | 0.9500      |
| N2—C6  | 1.2886 (14) | C10—C11 | 1.381 (2)   |
| N2—C13 | 1.4017 (14) | C10—H10 | 0.9500      |
| O1—C4  | 1.2246 (13) | C11—C12 | 1.3942 (17) |
| C1—C2  | 1.4648 (17) | C11—H11 | 0.9500      |
| C1—H1A | 0.9900      | C12—H12 | 0.9500      |
| C1—H1B | 0.9900      | C13—C14 | 1.4056 (16) |
| C2—C3  | 1.1739 (19) | C13—C18 | 1.4115 (16) |
|        |             |         |             |

| С3—Н3        | 0.9500       | C14—C15         | 1.3785 (17) |
|--------------|--------------|-----------------|-------------|
| C4—C5        | 1.5037 (16)  | C14—H14         | 0.9500      |
| C5—C6        | 1.5112 (16)  | C15—C16         | 1.3947 (18) |
| C5—H5A       | 0.9900       | С15—Н15         | 0.9500      |
| С5—Н5В       | 0.9900       | C16—C17         | 1.3807 (16) |
| С6—С7        | 1.4851 (15)  | С16—Н16         | 0.9500      |
| C7—C12       | 1.3956 (16)  | C17—C18         | 1.4015 (15) |
| С7—С8        | 1.3988 (17)  | С17—Н17         | 0.9500      |
| C8—C9        | 1.3855 (17)  |                 |             |
|              |              |                 |             |
| C4—N1—C18    | 124.24 (10)  | C8—C9—C10       | 120.56 (12) |
| C4—N1—C1     | 116.21 (9)   | С8—С9—Н9        | 119.7       |
| C18—N1—C1    | 119.45 (9)   | С10—С9—Н9       | 119.7       |
| C6—N2—C13    | 120.99 (10)  | C11—C10—C9      | 119.40 (12) |
| C2-C1-N1     | 113.12 (10)  | C11—C10—H10     | 120.3       |
| C2—C1—H1A    | 109.0        | С9—С10—Н10      | 120.3       |
| N1—C1—H1A    | 109.0        | C10-C11-C12     | 120.45 (12) |
| C2—C1—H1B    | 109.0        | C10-C11-H11     | 119.8       |
| N1—C1—H1B    | 109.0        | C12—C11—H11     | 119.8       |
| H1A—C1—H1B   | 107.8        | C11—C12—C7      | 120.53 (12) |
| C3—C2—C1     | 178.08 (13)  | C11—C12—H12     | 119.7       |
| С2—С3—Н3     | 180.0        | С7—С12—Н12      | 119.7       |
| O1—C4—N1     | 121.55 (11)  | N2—C13—C14      | 116.43 (10) |
| O1—C4—C5     | 123.62 (10)  | N2-C13-C18      | 125.31 (10) |
| N1-C4-C5     | 114.75 (9)   | C14—C13—C18     | 118.07 (10) |
| C4—C5—C6     | 106.21 (9)   | C15—C14—C13     | 122.04 (11) |
| С4—С5—Н5А    | 110.5        | C15—C14—H14     | 119.0       |
| С6—С5—Н5А    | 110.5        | C13—C14—H14     | 119.0       |
| C4—C5—H5B    | 110.5        | C14—C15—C16     | 119.54 (11) |
| С6—С5—Н5В    | 110.5        | C14—C15—H15     | 120.2       |
| H5A—C5—H5B   | 108.7        | C16—C15—H15     | 120.2       |
| N2—C6—C7     | 118.90 (10)  | C17—C16—C15     | 119.64 (11) |
| N2—C6—C5     | 120.78 (10)  | C17—C16—H16     | 120.2       |
| C7—C6—C5     | 120.28 (9)   | C15—C16—H16     | 120.2       |
| С12—С7—С8    | 118.44 (11)  | C16—C17—C18     | 121.48 (11) |
| С12—С7—С6    | 122.43 (11)  | С16—С17—Н17     | 119.3       |
| C8—C7—C6     | 119.11 (10)  | C18—C17—H17     | 119.3       |
| C9—C8—C7     | 120.60 (12)  | C17—C18—C13     | 119.22 (10) |
| С9—С8—Н8     | 119.7        | C17—C18—N1      | 118.34 (10) |
| С7—С8—Н8     | 119.7        | C13—C18—N1      | 122.33 (10) |
|              |              |                 | 0.6.475     |
| C4—N1—C1—C2  | 84.64 (12)   | C10—C11—C12—C7  | 0.6 (2)     |
| C18—N1—C1—C2 | -91.95 (12)  | C8—C7—C12—C11   | 0.32 (18)   |
| C18—N1—C4—O1 | -178.39 (11) | C6—C7—C12—C11   | 178.80 (11) |
| C1—N1—C4—O1  | 5.21 (16)    | C6—N2—C13—C14   | 144.00 (12) |
| C18—N1—C4—C5 | -1.33 (15)   | C6—N2—C13—C18   | -41.08 (17) |
| C1—N1—C4—C5  | -177.73 (9)  | N2-C13-C14-C15  | 176.89 (12) |
| O1—C4—C5—C6  | 106.80 (12)  | C18—C13—C14—C15 | 1.6 (2)     |

| N1—C4—C5—C6    | -70.19 (12)  | C13—C14—C15—C16 | -1.4 (2)     |
|----------------|--------------|-----------------|--------------|
| C13—N2—C6—C7   | 174.26 (10)  | C14—C15—C16—C17 | 0.5 (2)      |
| C13—N2—C6—C5   | -3.54 (17)   | C15—C16—C17—C18 | 0.18 (19)    |
| C4—C5—C6—N2    | 75.83 (13)   | C16—C17—C18—C13 | -0.01 (18)   |
| C4—C5—C6—C7    | -101.94 (11) | C16—C17—C18—N1  | -176.21 (11) |
| N2-C6-C7-C12   | -178.58 (11) | N2-C13-C18-C17  | -175.69 (11) |
| C5—C6—C7—C12   | -0.77 (17)   | C14—C13—C18—C17 | -0.85 (17)   |
| N2—C6—C7—C8    | -0.12 (16)   | N2-C13-C18-N1   | 0.36 (18)    |
| C5—C6—C7—C8    | 177.70 (11)  | C14—C13—C18—N1  | 175.20 (11)  |
| С12—С7—С8—С9   | -1.09 (18)   | C4—N1—C18—C17   | -140.25 (11) |
| C6—C7—C8—C9    | -179.61 (11) | C1—N1—C18—C17   | 36.05 (15)   |
| C7—C8—C9—C10   | 0.98 (19)    | C4—N1—C18—C13   | 43.68 (17)   |
| C8—C9—C10—C11  | -0.1 (2)     | C1—N1—C18—C13   | -140.03 (11) |
| C9—C10—C11—C12 | -0.7 (2)     |                 |              |
|                |              |                 |              |

## Hydrogen-bond geometry (Å, °)

| D—H···A                   | D—H  | H···A | D····A      | D—H··· $A$ |
|---------------------------|------|-------|-------------|------------|
| C1—H1A····O1 <sup>i</sup> | 0.99 | 2.14  | 3.1074 (15) | 166        |
| C3—H3···N2 <sup>ii</sup>  | 0.95 | 2.58  | 3.4269 (18) | 149        |

Symmetry codes: (i) x+1/2, -y+1/2, z+1/2; (ii) -x+3/2, y+1/2, -z+3/2.