Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

5-Amino-1H-1,2,4-triazol-4-ium-3carboxylate hemihydrate

José A. Fernandes, ${ }^{\text {a }}$ Bing Liu, ${ }^{\text {a,b }}$ João P. C. Tomé, ${ }^{\mathrm{c}}$ Luís Cunha-Silva ${ }^{\text {b }}$ and Filipe A. Almeida Paz ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal, ${ }^{\mathbf{b}}$ REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal, and ${ }^{\text {c }}$ Department of Chemistry, University of Aveiro, QOPNA, 3810-193 Aveiro, Portugal
Correspondence e-mail: filipe.paz@ua.pt

Received 6 July 2011; accepted 13 July 2011

Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$; R factor $=0.066 ; w R$ factor $=0.202$; data-to-parameter ratio $=8.9$.

The asymmetric unit of the title compound, $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{O}_{2}$.$0.5 \mathrm{H}_{2} \mathrm{O}$, comprises two whole molecules of 5-amino- $1 \mathrm{H}-1,2,4-$ triazole-3-carboxylic acid in its zwitterionic form (proton transfer occurs from the carboxylic acid group to the N heteroatom at position 1), plus one water molecule of crystallization. The organic moieties are disposed into supramolecular layers linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds parallel to the bc plane. Additional $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the water molecules and the organic molecules lead to the formation of double-deck supramolecular arrangements which are interconnected along the a axis via $\pi-\pi$ stacking [centroid-centroid distance $=3.507(3) \AA$. .

Related literature

For related compounds with 5-amino-1H-1,2,4-triazole-3carboxylic acid residues, see: Masiukiewicz et al. (2007); Ouakkaf et al. (2011); Sun et al. (2011); Wawrzycka-Gorczyca et al. (2003). For previous work in crystal engineering, see: Amarante, Gonçalves et al. (2009); Amarante, Figueiredo et al. (2009); Shi et al. (2008); Paz \& Klinowski (2004, 2007); Paz et al. (2005). For graph-set notation, see: Grell et al. (1999). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental

Crystal data
$\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
$\gamma=99.703(8)^{\circ}$
$M_{r}=137.11$
Triclinic, $P \overline{1}$
$a=6.5440$ (11) £
$b=6.9490$ (8) A
$c=12.0723(17) \AA$
$\alpha=93.976(7)^{\circ}$
$\beta=105.012(9)^{\circ}$

Data collection

Bruker X8 KappaCCD APEXII diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) $T_{\text {min }}=0.985, T_{\text {max }}=0.994$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066$
$w R\left(F^{2}\right)=0.202$
$S=1.24$
1797 reflections
202 parameters
13 restraints
$V=518.96(13) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.15 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
$0.10 \times 0.07 \times 0.04 \mathrm{~mm}$

4474 measured reflections 1797 independent reflections 1433 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.032$

Table 1
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1{ }^{\text {W }}$	0.95 (1)	1.87 (2)	2.799 (5)	167 (5)
N3-H3 \cdots O1 $W^{\text {i }}$	0.95 (1)	1.87 (3)	2.758 (5)	154 (5)
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 4$	0.94 (1)	1.86 (2)	2.777 (5)	163 (4)
$\mathrm{N} 4-\mathrm{H} 4 B \cdots \mathrm{~N} 6^{\text {i }}$	0.94 (1)	2.29 (3)	3.125 (6)	146 (4)
$\mathrm{N} 5-\mathrm{H} 5 \cdots \mathrm{O} 1^{\text {ii }}$	0.95 (1)	1.75 (1)	2.699 (5)	178 (5)
$\mathrm{N} 7-\mathrm{H} 7 \cdots 3^{\text {iii }}$	0.95 (1)	1.66 (2)	2.579 (5)	161 (5)
$\mathrm{N} 8-\mathrm{H} 8 A \cdots \mathrm{O} 2^{\text {ii }}$	0.94 (1)	2.10 (2)	2.989 (5)	155 (4)
$\mathrm{N} 8-\mathrm{H} 8 B \cdots \mathrm{O} 1^{\text {iv }}$	0.94 (1)	2.17 (1)	3.117 (5)	178 (5)
$\mathrm{O} 1 W-\mathrm{H} 1 X \cdots \mathrm{O}^{\text {v }}$	0.95 (1)	1.94 (2)	2.839 (5)	159 (5)
O1 W - $\mathrm{H} 1 Y \cdots \mathrm{O} 4$	0.95 (1)	1.70 (2)	2.634 (5)	170 (5)

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINTPlus (Bruker, 2005); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL.

We are grateful to the Fundação para a Ciência e a Tecnologia (FCT, Portugal) for their general financial support under the R\&D projects PTDC/QUI-QUI/098098/2008 and PTDC/CTM/100357/2008, and for the post-doctoral research grants, Nos. SFRH/BPD/63736/2009 (to JAF) and SFRH/ BPD/47566/2008 (to BL). Thanks are also due to FCT for specific funding toward the purchase of the single-crystal diffractometer.

[^0]
organic compounds

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388
Amarante, T. R., Figueiredo, S., Lopes, A. D., Gonçalves, I. S. \& Almeida Paz, F. A. (2009). Acta Cryst. E65, o2047.

Amarante, T. R., Gonçalves, I. S. \& Almeida Paz, F. A. (2009). Acta Cryst. E65, o1962-o1963.
Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Grell, J., Bernstein, J. \& Tinhofer, G. (1999). Acta Cryst. B55, 1030-1043.
Masiukiewicz, E., Rzeszotarska, B., Wawrzycka-Gorczyca, I. \& Kołodziejczyk, E. (2007). Synth. Commun. 37, 1917-1925.

Ouakkaf, A., Berrah, F., Bouacida, S. \& Roisnel, T. (2011). Acta Cryst. E67, o1171-o1172.

Paz, F. A. A. \& Klinowski, J. (2004). J. Solid State Chem. 177, 3423-3432.
Paz, F. A. A. \& Klinowski, J. (2007). Pure Appl. Chem. 79, 1097-1110.
Paz, F. A. A., Rocha, J., Klinowski, J., Trindade , T., Shi, F.-N. \& Mafra, L. (2005). Prog. Solid State Chem. 33, 113-125

Sheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shi, F.-N., Cunha-Silva, L., Sá Ferreira, R. A., Mafra, L., Trindade, T., Carlos, L. D., Paz, F. A. A. \& Rocha, J. (2008). J. Am. Chem. Soc. 130, 150-167.

Sun, Y.-G., Xiong, G., Guo, M.-Y., Ding, F., Wang, L., Gao, E.-J., Zhu, M.-C. \& Verpoort, F. (2011). Z. Anorg. Allg. Chem. 637, 293-300.
Wawrzycka-Gorczyca, I., Rzeszotarska, B., Dżygiel, A., Masiukiewicz, E. \& Kozioł, A. E. (2003). Z. Kristallogr. 218, 480-487.

supporting information

Acta Cryst. (2011). E67, o2073-o2074 [doi:10.1107/S160053681102811X]

5-Amino-1 H-1,2,4-triazol-4-ium-3-carboxylate hemihydrate

José A. Fernandes, Bing Liu, João P. C. Tomé, Luís Cunha-Silva and Filipe A. Almeida Paz

S1. Comment

5-Amino-1 H -1,2,4-triazole-3-carboxylic acid $\left(\mathrm{H}_{2} \mathrm{Atrc}\right)$ arises as a promising ligand which can be employed in the preparation of coordination compounds as a consequence of its multiple available sites to establish direct connections with metallic centres. However, surveying the Cambridge Structural Database (Allen, 2002) showed only a handful of crystalline compounds reported to date, namely organic derivatives (Masiukiewicz et al., 2007; Wawrzycka-Gorczyca et al., 2003), the sulfate salt (Ouakkaf et al., 2011) and a three-dimensional metal-organic framework (MOF) with Dy ${ }^{3+}$, very recently reported by Sun et al. (2011). Following our on-going interest on crystal engineering approaches of both organic crystals (Amarante, Gonçalves et al., 2009; Amarante, Figueiredo et al., 2009) and metal-organic frameworks (Shi et al., 2008; Paz \& Klinowski, 2007; Paz et al., 2005; Paz \& Klinowski, 2004), we are currently interested in exploring the coordination capabilities of $\mathrm{H}_{2} \mathrm{Atrc}$ and its residues. The title compound was isolated as a secondary minor product for which we wish to report its crystal structure at the low temperature of 150 K .

The asymmetric unit of title compound comprises two whole molecules of $\mathrm{H}_{2} \mathrm{Atrc}$ in its zwitterionic form (proton transference occurs from the carboxylic acid group to the N heteroatom at position 1) and a water molecule of crystallization as depicted in Fig. 1. The two individual molecular units are almost planar, with the observed deviations being smaller than $0.037 \AA$. The two organic moieties are also mutually located in the same average plane, with the average planes subtending an angle of $c a 7.2^{\circ}$. This planarity is extended throughout the entire crystal structure with the organic moieties being disposed in layers placed in the $b c$ plane of the unit cell.

Due to the presence of a considerable number of proton donors and acceptors, the crystal structure is rich in hydrogen bonding interactions (see Table 1 for further details). In this context, the structural function of the two non-equivalent organic molecules composing the asymmetric unit is not the same since the hydrogen bonding interactions in which each moiety is involved differ considerably. While the moiety coined as A interacts with other symmetry-related moieties and also with B, the residue coined as B only interacts with A and with water molecules of crystallization. Given the coplanarity of the two non-equivalent $\mathrm{H}_{2} \mathrm{Atrc}$ molecules, mutual interactions occur solely along the aforementioned layers, forming several fused hydrogen-bonded rings (green dashed lines in Figs 2 and 3), best described by the graph set motifs $R_{2}{ }^{2}(8), R_{3}{ }^{3}(9)$ and $R_{3}{ }^{2}(11)$ (Grell et al., 1999). Because of the hydrogen bonds directly involving the crystallographically independent water molecule of crystallization (pink dashed lines in Fig. 3), individual moieties are arranged into double decker layers as depicted in Fig. 3. These supramolecular arrays interact between each other along the a-axis of the unit cell via weak interactions such as $\pi-\pi$ stacking. The most structurally relevant of such interactions occurs between two symmetry-equivalent A moieties with an inter-centroid distance of 3.507 (3) \AA (orange dashed lines in Figure 3).

S2. Experimental

5-Amino-1 H -1,2,4-triazole-3-carboxylic acid $\left(\mathrm{H}_{2} \mathrm{Atrc}\right)$ and MnSO_{4} were purchased from Sigma-Aldrich and they were used as received without purification.
$\mathrm{H}_{2} \mathrm{Atrc}(0.1 \mathrm{mmol}, 12.8 \mathrm{mg})$ was dissolved in $c a 15 \mathrm{ml}$ of hot water ($c a 358 \mathrm{~K}$). The solution was then cooled to ambient temperature. A second aqueous solution of $\mathrm{MnSO}_{4}(0.1 \mathrm{mmol}, 11.7 \mathrm{mg}$ in $c a 2 \mathrm{ml})$ was added drop wise to that containing the dissolved H_{2} Atrc ligand. The resulting mixture solution was allowed to stand still over a period of one week and small colourless blocks were formed as a secondary product.

S3. Refinement

All hydrogen atoms bound to nitrogen (organic molecules) and to oxygen (water molecule of crystallization) were directly located from difference Fourier maps and included in the structural model with the $\mathrm{O}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ distances restrained to 0.95 (1) \AA. The $\mathrm{H} \cdots \mathrm{H}$ distances in the water molecule and in the $-\mathrm{NH}_{2}$ groups were further restrained to 1.55 (1) \AA in order to ensure a chemically reasonable geometry for these moieties. The $U_{\text {iso }}$ of these hydrogen atoms were fixed at $1.5 \times U_{\text {eq }}$ of the parent nitrogen or oxygen atoms.

Figure 1

Molecular structures of the units composing the asymmetric unit of the title compound, showing the atomic labelling for all atoms. Non-hydrogen atoms are represented as displacement ellipsoids drawn at the 70% probability level. Hydrogen atoms are depicted as small spheres with arbitrary radii.

Figure 2
$\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions (dashed green lines) forming the supramolecular layer placed in the bc plane of the unit cell. The two distinct H_{2} Atrc residues are depicted as molecules A and B. Supramolecular arrangements are described by their graph set notation following Grell et al. (1999). For geometric details on the represented supramolecular contacts see Table 1. Symmetry transformations used to generate equivalent atoms have been omitted for clarity.

Figure 3
Crystal packing of the title compound viewed in perspective along the [010] direction of the unit cell. Hydrogen bonding interactions between H_{2} Atrc moieties are depicted as dashed green lines, while those involving the water molecules of crystallization are represented as dashed pink lines. $\pi-\pi$ stacking interactions are represented as dashed orange lines.

5-Amino-1H-1,2,4-triazol-4-ium-3-carboxylate hemihydrate

Crystal data

$\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=137.11$
Triclinic, $P 1$
Hall symbol: -P 1
$a=6.5440$ (11) \AA
$b=6.9490$ (8) \AA
$c=12.0723(17) \AA$
$\alpha=93.976$ (7) ${ }^{\circ}$
$\beta=105.012$ (9) ${ }^{\circ}$
$\gamma=99.703(8)^{\circ}$
$V=518.96(13) \AA^{3}$

Data collection

Bruker X8 KappaCCD APEXII diffractometer
Radiation source: fine-focus sealed tube Graphite monochromator
ω and φ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
$T_{\text {min }}=0.985, T_{\text {max }}=0.994$
$Z=4$
$F(000)=284$
$D_{\mathrm{x}}=1.755 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2284 reflections
$\theta=3.0-26.5^{\circ}$
$\mu=0.15 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Block, colourless
$0.10 \times 0.07 \times 0.04 \mathrm{~mm}$

4474 measured reflections
1797 independent reflections
1433 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=25.3^{\circ}, \theta_{\text {min }}=3.7^{\circ}$
$h=-7 \rightarrow 7$
$k=-8 \rightarrow 8$
$l=-14 \rightarrow 14$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066$
$w R\left(F^{2}\right)=0.202$
$S=1.24$
1797 reflections
202 parameters
13 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier map
> Hydrogen site location: inferred from neighbouring sites
> H atoms treated by a mixture of independent and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.053 P)^{2}+2.637 P\right]$
> where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
> $(\Delta / \sigma)_{\text {max }}<0.001$
> $\Delta \rho_{\text {max }}=0.42$ e \AA^{-3}
> $\Delta \rho_{\text {min }}=-0.46$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$0.2627(6)$	$0.4287(5)$	$1.1942(3)$	$0.0210(8)$
O2	$0.2494(6)$	$0.6539(5)$	$1.0686(3)$	$0.0204(8)$
C1	$0.2566(8)$	$0.4869(7)$	$1.0970(4)$	$0.0181(11)$
C2	$0.2597(8)$	$0.3319(7)$	$1.0033(4)$	$0.0145(10)$
C3	$0.2551(8)$	$0.2009(7)$	$0.8332(4)$	$0.0151(10)$
N1	$0.2483(7)$	$0.3692(6)$	$0.8926(3)$	$0.0156(9)$
H1	$0.230(9)$	$0.492(4)$	$0.867(5)$	0.023^{*}
N2	$0.2760(7)$	$0.1506(6)$	$1.0170(3)$	$0.0190(10)$
N3	$0.2736(7)$	$0.0699(6)$	$0.9090(3)$	$0.0180(9)$
H3	$0.262(9)$	$-0.066(2)$	$0.887(5)$	0.027^{*}
N4	$0.2452(7)$	$0.1709(6)$	$0.7223(3)$	$0.0185(10)$
H4A	$0.234(9)$	$0.266(5)$	$0.670(3)$	0.028^{*}
H4B	$0.251(9)$	$0.049(3)$	$0.685(3)$	0.028^{*}
O3	$0.2553(6)$	$0.3765(5)$	$0.4390(3)$	$0.0227(9)$
O4	$0.2348(6)$	$0.5057(5)$	$0.6096(3)$	$0.0219(9)$
C4	$0.2476(8)$	$0.5132(7)$	$0.5087(4)$	$0.0151(10)$
C5	$0.2534(8)$	$0.7084(7)$	$0.4618(4)$	$0.0146(10)$
C6	$0.2720(8)$	$0.9152(7)$	$0.3368(4)$	$0.0146(10)$
N5	$0.2730(7)$	$0.7267(6)$	$0.3525(3)$	$0.0149(9)$
H5	$0.272(9)$	$0.622(5)$	$0.298(4)$	0.022^{*}
N6	$0.2409(7)$	$0.8740(6)$	$0.5147(3)$	$0.0167(9)$
N7	$0.2527(7)$	$1.0044(6)$	$0.4344(3)$	$0.0157(9)$
H7	$0.248(9)$	$1.139(3)$	$0.452(5)$	0.024^{*}
N8	$0.2862(8)$	$0.9965(6)$	$0.2414(4)$	$0.0232(10)$

H8A	$0.274(10)$	$0.918(6)$	$0.172(2)$	0.035^{*}
H8B	$0.276(10)$	$1.127(3)$	$0.228(4)$	0.035^{*}
O1W	$0.1593(6)$	$0.7013(5)$	$0.7849(3)$	$0.0225(9)$
H1X	$0.009(2)$	$0.672(8)$	$0.775(4)$	0.034^{*}
H1Y	$0.194(7)$	$0.645(8)$	$0.720(3)$	0.034^{*}

Atomic displacement parameters (\hat{A}^{2})

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	$U^{2^{3}}$
O1	$0.036(2)$	$0.0223(19)$	$0.0072(17)$	$0.0083(16)$	$0.0077(15)$	$0.0024(14)$
O2	$0.030(2)$	$0.0150(18)$	$0.0164(18)$	$0.0058(15)$	$0.0074(16)$	$0.0005(14)$
C1	$0.016(3)$	$0.018(3)$	$0.020(3)$	$0.004(2)$	$0.005(2)$	$-0.002(2)$
C2	$0.018(3)$	$0.016(2)$	$0.010(2)$	$0.004(2)$	$0.0032(19)$	$0.0037(19)$
C3	$0.016(3)$	$0.014(2)$	$0.014(2)$	$0.004(2)$	$0.002(2)$	$0.0019(19)$
N1	$0.023(2)$	$0.0101(19)$	$0.015(2)$	$0.0050(17)$	$0.0064(17)$	$0.0020(16)$
N2	$0.029(2)$	$0.019(2)$	$0.009(2)$	$0.0048(19)$	$0.0049(18)$	$0.0018(17)$
N3	$0.030(2)$	$0.013(2)$	$0.012(2)$	$0.0046(18)$	$0.0065(18)$	$0.0002(17)$
N4	$0.035(3)$	$0.015(2)$	$0.009(2)$	$0.0097(19)$	$0.0079(19)$	$0.0047(17)$
O3	$0.040(2)$	$0.0126(17)$	$0.0193(19)$	$0.0071(16)$	$0.0121(17)$	$0.0045(15)$
O4	$0.037(2)$	$0.0174(18)$	$0.0149(19)$	$0.0090(16)$	$0.0099(16)$	$0.0077(14)$
C4	$0.022(3)$	$0.013(2)$	$0.011(3)$	$0.005(2)$	$0.005(2)$	$0.0067(19)$
C5	$0.018(3)$	$0.014(2)$	$0.012(2)$	$0.004(2)$	$0.006(2)$	$0.0017(19)$
C6	$0.018(2)$	$0.013(2)$	$0.014(2)$	$0.005(2)$	$0.004(2)$	$0.0044(19)$
N5	$0.025(2)$	$0.011(2)$	$0.011(2)$	$0.0052(17)$	$0.0065(17)$	$0.0043(16)$
N6	$0.023(2)$	$0.015(2)$	$0.013(2)$	$0.0035(17)$	$0.0045(18)$	$0.0066(17)$
N7	$0.024(2)$	$0.0088(19)$	$0.015(2)$	$0.0058(17)$	$0.0059(18)$	$0.0024(16)$
N8	$0.038(3)$	$0.018(2)$	$0.017(2)$	$0.009(2)$	$0.011(2)$	$0.0064(18)$
O1W	$0.033(2)$	$0.0174(18)$	$0.0194(19)$	$0.0064(16)$	$0.0098(16)$	$-0.0001(15)$

Geometric parameters (A, ${ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 1$	1.260 (6)	O4-C4	1.246 (6)
$\mathrm{O} 2-\mathrm{C} 1$	1.238 (6)	C4-C5	1.504 (6)
C1-C2	1.513 (7)	C5-N6	1.302 (6)
C2-N2	1.300 (6)	C5-N5	1.370 (6)
C2-N1	1.364 (6)	C6-N8	1.335 (6)
C3-N4	1.324 (6)	C6-N5	1.337 (6)
C3-N3	1.332 (6)	C6-N7	1.339 (6)
C3-N1	1.343 (6)	N5-H5	0.947 (10)
N1-H1	0.946 (11)	N6-N7	1.380 (5)
N2-N3	1.378 (6)	N7-H7	0.948 (10)
N3-H3	0.947 (11)	N8-H8A	0.944 (10)
N4-H4A	0.943 (10)	N8-H8B	0.944 (10)
N4-H4B	0.944 (10)	O1W-H1X	0.946 (10)
O3-C4	1.241 (6)	O1W-H1Y	0.945 (10)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	128.4 (4)	O3-C4-C5	114.0 (4)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	116.0 (4)	O4-C4-C5	118.2 (4)

$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$115.5(4)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{N} 1$	$111.7(4)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	$125.4(4)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$122.9(4)$
$\mathrm{N} 4-\mathrm{C} 3-\mathrm{N} 3$	$127.0(5)$
$\mathrm{N} 4-\mathrm{C} 3-\mathrm{N} 1$	$127.2(4)$
$\mathrm{N} 3-\mathrm{C} 3-\mathrm{N} 1$	$105.8(4)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2$	$107.2(4)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{H} 1$	$130(3)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1$	$123(3)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{N} 3$	$103.7(4)$
$\mathrm{C} 3-\mathrm{N} 3-\mathrm{N} 2$	$111.6(4)$
$\mathrm{C} 3-\mathrm{N} 3-\mathrm{H} 3$	$123(3)$
$\mathrm{N} 2-\mathrm{N} 3-\mathrm{H} 3$	$125(3)$
$\mathrm{C} 3-\mathrm{N} 4-\mathrm{H} 4 \mathrm{~A}$	$126(3)$
$\mathrm{C} 3-\mathrm{N} 4-\mathrm{H} 4 \mathrm{~B}$	$123(3)$
$\mathrm{H} 4 \mathrm{~A}-\mathrm{N} 4-\mathrm{H} 4 \mathrm{~B}$	$110.9(16)$
$\mathrm{O} 3-\mathrm{C} 4-\mathrm{O} 4$	$127.8(4)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	$177.0(5)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	$-2.7(7)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	$-2.0(7)$
$\mathrm{N} 4-\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2$	$178.2(5)$
$\mathrm{N} 3-\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2$	$179.0(5)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3$	$-1.0(5)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3$	$0.8(6)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 2-\mathrm{N} 3$	$180.0(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2-\mathrm{N} 3$	$-0.3(6)$
$\mathrm{N} 4-\mathrm{C} 3-\mathrm{N} 3-\mathrm{N} 2$	$-179.5(5)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{N} 3-\mathrm{N} 2$	$-179.1(5)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 3$	$-0.3(6)$

N6-C5-N5	$112.4(4)$
N6-C5-C4	$126.8(4)$
N5-C5-C4	$120.8(4)$
N8-C6-N5	$126.1(4)$
N8-C6-N7	$127.1(4)$
N5-C6-N7	$106.7(4)$
C6-N5-C5	$106.3(4)$
C6-N5-H5	$128(3)$
C5—N5-H5	$126(3)$
C5-N6-N7	$103.5(4)$
C6-N7-N6	$111.1(4)$
C6-N7-H7	$128(3)$
N6-N7-H7	$121(3)$
C6-N8-H8A	$121(3)$
C6-N8-H8B	$127(3)$
H8A-N8-H8B	$111(4)$
H1X-O1W-H1Y	$111(4)$

$\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 6$	$177.7(5)$
$\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 6$	$-1.9(8)$
$\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 5$	$-2.0(7)$
$\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 5$	$178.3(5)$
$\mathrm{N} 8-\mathrm{C} 6-\mathrm{N} 5-\mathrm{C} 5$	$-179.5(5)$
$\mathrm{N} 7-\mathrm{C} 6-\mathrm{N} 5-\mathrm{C} 5$	$0.1(5)$
$\mathrm{N} 6-\mathrm{C} 5-\mathrm{N} 5-\mathrm{C} 6$	$-0.1(6)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 5-\mathrm{C} 6$	$179.7(4)$
$\mathrm{N} 5-\mathrm{C} 5-\mathrm{N} 6-\mathrm{N} 7$	$0.1(5)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 6-\mathrm{N} 7$	$-179.7(5)$
$\mathrm{N} 8-\mathrm{C} 6-\mathrm{N} 7-\mathrm{N} 6$	$179.6(5)$
$\mathrm{N} 5-\mathrm{C} 6-\mathrm{N} 7-\mathrm{N} 6$	$0.0(5)$
$\mathrm{C} 5-\mathrm{N} 6-\mathrm{N} 7-\mathrm{C} 6$	$-0.1(5)$

Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{O} 1 W$	$0.95(1)$	$1.87(2)$	$2.799(5)$	$167(5)$
$\mathrm{N} 3 — \mathrm{H} 3 \cdots \mathrm{O} 1 W^{\mathrm{i}}$	$0.95(1)$	$1.87(3)$	$2.758(5)$	$154(5)$
$\mathrm{N} 4 — \mathrm{H} 4 A \cdots \mathrm{O} 4$	$0.94(1)$	$1.86(2)$	$2.777(5)$	$163(4)$
$\mathrm{N} 4 — \mathrm{H} 4 B \cdots \mathrm{~N}^{\mathrm{i}}$	$0.94(1)$	$2.29(3)$	$3.125(6)$	$146(4)$
$\mathrm{N} 5 — \mathrm{H} 5 \cdots \mathrm{O} 1^{\mathrm{ii}}$	$0.95(1)$	$1.75(1)$	$2.699(5)$	$178(5)$
$\mathrm{N} 7 — \mathrm{H} 7 \cdots 3^{\mathrm{iii}}$	$0.95(1)$	$1.66(2)$	$2.579(5)$	$161(5)$
$\mathrm{N} 8 — \mathrm{H} 8 A \cdots \mathrm{O}^{\mathrm{ii}}$	$0.94(1)$	$2.10(2)$	$2.989(5)$	$155(4)$
$\mathrm{N} 8 — \mathrm{H} 8 B \cdots \mathrm{O}^{\mathrm{iv}}$	$0.94(1)$	$2.17(1)$	$3.117(5)$	$178(5)$
$\mathrm{O} 1 W — \mathrm{H} 1 X \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.95(1)$	$1.94(2)$	$2.839(5)$	$159(5)$
$\mathrm{O} 1 W — \mathrm{H} 1 Y \cdots \mathrm{O} 4$	$0.95(1)$	$1.70(2)$	$2.634(5)$	$170(5)$

Symmetry codes: (i) $x, y-1, z$; (ii) $x, y, z-1$; (iii) $x, y+1, z$; (iv) $x, y+1, z-1$; (v) $-x,-y+1,-z+2$.

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2764).

