

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

{2,2'-[(2,2-Dimethylpropane-1,3-diyldinitrilo)bis(phenylmethylidyne)]diphenolato}copper(II)

Hadi Kargar,^a* Reza Kia,^{b,c} Majid Moghadam,^d Fatemeh Froozandeh^a and Muhammad Nawaz Tahir^e*

^aChemistry Department, Payame Noor University, Tehran 19395-4697, Iran, ^bX-ray Crystallography Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran, ^cDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, ^dCatalysis Division, Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran, and ^eDepartment of Physics, University of Sargodha, Punjab, Pakistan Correspondence e-mail: hkargar@pnu.ac.ir, dmntahir_uos@yahoo.com

Received 14 July 2011; accepted 18 July 2011

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.008 Å; R factor = 0.070; wR factor = 0.064; data-to-parameter ratio = 14.4.

The complete molecule of the title complex, $[Cu(C_{31}H_{28}N_2O_2)]$, is generated by the application of twofold symmetry; the Cu and CMe₂ atoms lie on the axis. The geometry around the Cu^{II} atom is distorted square-planar. The dihedral angle between the two phenyl rings is 76.0 (3) °. The crystal packing is stabilized by intermolecular C-H··· π interactions.

Related literature

For background to tetradentate Schiff bases and their complexes, see, for example: Kargar *et al.* (2009, 2010).

Experimental

Crystal data $[Cu(C_{31}H_{28}N_2O_2)]$ $M_r = 524.09$ Tetragonal, $P4_12_32$ a = 9.7435 (14) Å c = 25.717 (6) Å V = 2441.5 (8) Å³

Z = 4Mo K α radiation $\mu = 0.93 \text{ mm}^{-1}$ T = 291 K $0.21 \times 0.11 \times 0.08 \text{ mm}$ $R_{\rm int} = 0.088$

5595 measured reflections

2376 independent reflections

1380 reflections with $I > 2\sigma(I)$

Data collection

STOE IPDS 2T Image Plate diffractometer
Absorption correction: multi-scan [MULABS (Blessing, 1995) in PLATON (Spek, 2009)] T_{min} = 0.995, T_{max} = 1.000

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.070$	$\Delta \rho_{\rm max} = 0.83 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.064$	$\Delta \rho_{\rm min} = -0.47 \ {\rm e} \ {\rm \AA}^{-3}$
S = 0.84	Absolute structure: Flack (1983)
2376 reflections	918 Friedel pairs
165 parameters	Flack parameter: 0.00 (3)
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Cu1-O1	1.891 (3)	Cu1-N1	1.966 (4)
O1-Cu1-N1 O1 ⁱ -Cu1-O1	93.11 (16) 95.6 (2)	N1 ⁱ -Cu1-N1	95.7 (2)
Symmetry code: (i) -v	$-x, -z + \frac{3}{2}$		

Table 2

Hydrogen-bond geometry (Å, °).

Cg1, Cg2 and Cg3 are the centroids of the Cu/O1/C1/C6/C7/N1, Cu/O1'/C1'/C6'/C7'/N1' and C1–C6 rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C3-H3\cdots Cg1^{ii}$ $C3-H3\cdots Cg2^{iii}$ $C12-H12A\cdots Cg3^{iv}$	0.93 0.93 0.93	2.85 2.85 2.76	3.415 (6) 3.415 (6) 3.458 (6)	120 120 132
Symmetry codes: (ii) $-y + \frac{1}{2}, x - \frac{1}{2}, z + \frac{5}{2}$	$-y - \frac{1}{2}, x - \frac{1}{2}$	$+\frac{1}{2}, z + \frac{5}{4};$ (iii	i) $-x - \frac{1}{2}, y + \frac{1}{2}$	$z_{1}, -z_{1} - \frac{3}{4};$ (iv)

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HK and FF thank PNU for financial support. RK thanks the Science and Research Branch, Islamic Azad University, Tehran for support. MNT thanks Sargodha University for the research facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2765).

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Kargar, H., Kia, R., Jamshidvand, A. & Fun, H.-K. (2009). Acta Cryst. E65, 0776–0777.
- Kargar, H., Kia, R., Ullah Khan, I. & Sahraei, A. (2010). *Acta Cryst.* E66, o539. Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155.
- Stoe & Cie (2009). X-AREA Stoe & Cie, Darmstadt, Germany.

supporting information

Acta Cryst. (2011). E67, m1145 [doi:10.1107/S1600536811028844]

{2,2'-[(2,2-Dimethylpropane-1,3-diyldinitrilo)bis(phenylmethylidyne)]diphenolato}copper(II)

Hadi Kargar, Reza Kia, Majid Moghadam, Fatemeh Froozandeh and Muhammad Nawaz Tahir

S1. Comment

Schiff base ligands are one of the most prevalent systems in coordination chemistry. As part of a general study of potentially tetradentate Schiff bases and their complexes (Kargar *et al.*, 2009; Kargar *et al.*, 2010), we have determined the crystal structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, comprises half of the Schiff base complex as the molecule has crystallographically imposed 2-fold symmetry. The geometry around the Cu^{II} atom is distorted square planar, Table 1. The dihedral angle between the two phenyl rings is 76.0 (3)°. The crystal packing is stabilized by the intermolecular C— $H \cdots \pi$ interactions, Table 2.

S2. Experimental

The title compound was synthesized by adding an methanolic solution (25 ml) of bis(2-hydroxybenzophenone)-2,2'-dimethyl propanediimine (2 mmol) to a solution of CuCl₂.4H₂O (2 mmol in 25 ml ethanol). The mixture was refluxed with stirring for half an hour. The resultant green solution was filtered. Dark-green single crystals for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

S3. Refinement

The C-bound H atoms were geometrically placed (C–H = 0.93–0.97 Å) and refined as riding with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$.

Figure 1

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering.

{2,2'-[(2,2-Dimethylpropane-1,3- diyldinitrilo)bis(phenylmethylidyne)]diphenolato}copper(II)

Crystal data

2009)]'

$[Cu(C_{31}H_{28}N_2O_2)]$	$D_{\rm x} = 1.426 {\rm ~Mg} {\rm ~m}^{-3}$
$M_r = 524.09$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Tetragonal, P4 ₁ 2 ₁ 2	Cell parameters from 374 reflections
Hall symbol: P 4abw 2nw	$\theta = 2.2 - 24.9^{\circ}$
a = 9.7435 (14) Å	$\mu = 0.93 \text{ mm}^{-1}$
c = 25.717 (6) Å	T = 291 K
V = 2441.5 (8) Å ³	Block, dark-green
Z = 4	$0.21 \times 0.11 \times 0.08 \text{ mm}$
F(000) = 1092	
Data collection	
STOE IPDS 2T Image Plate	$T_{\rm min} = 0.995, T_{\rm max} = 1.000$
diffractometer	5595 measured reflections
Radiation source: fine-focus sealed tube	2376 independent reflections
Graphite monochromator	1380 reflections with $I > 2\sigma(I)$
Detector resolution: 0.15 mm pixels mm ⁻¹	$R_{\rm int} = 0.088$
ω scans	$\theta_{\rm max} = 26.0^\circ, \ \theta_{\rm min} = 2.2^\circ$
Absorption correction: multi-scan	$h = -10 \rightarrow 3$
[MULABS (Blessing, 1995) in PLATON (Spek,	$k = -11 \rightarrow 12$

 $l = -27 \rightarrow 31$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.070$	H-atom parameters constrained
$wR(F^2) = 0.064$	$w = 1/[\sigma^2(F_o^2) + (0.0005P)^2]$
S = 0.84	where $P = (F_o^2 + 2F_c^2)/3$
2376 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
165 parameters	$\Delta ho_{ m max} = 0.83 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta ho_{ m min} = -0.47$ e Å ⁻³
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 918 Friedel pairs
Secondary atom site location: difference Fourier map	Absolute structure parameter: 0.00 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cu1	-0.17381 (7)	0.17381 (7)	0.7500	0.0303 (2)	
01	-0.1851 (4)	0.3469 (4)	0.71702 (12)	0.0358 (9)	
N1	-0.0615 (4)	0.0946 (4)	0.69403 (16)	0.0277 (11)	
C1	-0.1327 (5)	0.3836 (5)	0.6724 (2)	0.0241 (14)	
C2	-0.1492 (6)	0.5209 (6)	0.6563 (2)	0.0368 (16)	
H2	-0.1866	0.5835	0.6797	0.044*	
C3	-0.1129 (5)	0.5662 (6)	0.6081 (3)	0.0409 (17)	
H3	-0.1289	0.6570	0.5987	0.049*	
C4	-0.0523 (6)	0.4770 (6)	0.5734 (2)	0.0442 (18)	
H4	-0.0287	0.5068	0.5402	0.053*	
C5	-0.0271 (6)	0.3441 (7)	0.5881 (2)	0.0359 (16)	
Н5	0.0148	0.2852	0.5644	0.043*	
C6	-0.0622 (5)	0.2935 (5)	0.6374 (2)	0.0253 (13)	
C7	-0.0273 (5)	0.1505 (6)	0.6502 (2)	0.0255 (13)	
C8	0.0569 (6)	0.0710 (6)	0.61152 (19)	0.0285 (13)	
C9	0.0001 (6)	-0.0316 (6)	0.5810(2)	0.0365 (17)	
H9	-0.0939	-0.0476	0.5828	0.044*	
C10	0.0788 (7)	-0.1105 (7)	0.5483 (2)	0.0459 (19)	
H10	0.0380	-0.1793	0.5286	0.055*	
C11	0.2187 (7)	-0.0879 (7)	0.5445 (3)	0.0479 (19)	
H11	0.2731	-0.1408	0.5226	0.058*	
C12	0.2746 (6)	0.0156 (7)	0.5742 (2)	0.048 (2)	
H12A	0.3684	0.0325	0.5720	0.058*	

C13	0.1964 (5)	0.0942 (5)	0.6069 (2)	0.0352 (16)
H13	0.2374	0.1639	0.6261	0.042*
C14	-0.0324 (6)	-0.0503 (5)	0.70648 (18)	0.0356 (15)
H14A	0.0016	-0.0953	0.6754	0.043*
H14B	-0.1176	-0.0948	0.7162	0.043*
C15	0.0712 (6)	-0.0712 (6)	0.7500	0.046 (2)
C16	0.2175 (5)	-0.0535 (7)	0.7303 (2)	0.069 (2)
H16A	0.2807	-0.0680	0.7584	0.104*
H16B	0.2289	0.0377	0.7169	0.104*
H16C	0.2351	-0.1190	0.7033	0.104*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Cul	0.0317 (3)	0.0317 (3)	0.0277 (5)	0.0088 (6)	0.0062 (4)	0.0062 (4)
01	0.044 (2)	0.034 (2)	0.029 (2)	0.013 (3)	0.012 (2)	0.005 (2)
N1	0.030 (3)	0.026 (3)	0.027 (3)	0.001 (2)	-0.001 (2)	0.005 (2)
C1	0.016 (3)	0.028 (3)	0.028 (3)	0.002 (3)	0.000 (3)	0.006 (3)
C2	0.027 (4)	0.033 (4)	0.050 (4)	0.002 (3)	0.000 (4)	0.007 (3)
C3	0.030 (4)	0.033 (4)	0.060 (5)	0.002 (3)	0.003 (4)	0.021 (4)
C4	0.043 (4)	0.047 (4)	0.042 (4)	0.006 (4)	0.005 (4)	0.021 (4)
C5	0.033 (4)	0.043 (4)	0.032 (4)	-0.005 (4)	0.005 (3)	0.008 (4)
C6	0.021 (3)	0.028 (4)	0.027 (3)	-0.001 (3)	-0.002 (3)	0.009 (3)
C7	0.020 (3)	0.036 (4)	0.021 (3)	-0.001 (3)	-0.006 (3)	0.001 (3)
C8	0.034 (4)	0.032 (4)	0.019 (3)	0.000 (3)	-0.007 (3)	0.010 (3)
C9	0.032 (4)	0.037 (4)	0.041 (4)	0.002 (3)	0.000 (3)	-0.006 (3)
C10	0.061 (5)	0.044 (5)	0.032 (4)	0.008 (4)	0.002 (4)	-0.007 (3)
C11	0.050 (5)	0.058 (5)	0.035 (4)	0.022 (4)	0.010 (4)	-0.008 (4)
C12	0.024 (4)	0.076 (5)	0.044 (5)	0.010 (4)	0.014 (3)	0.020 (4)
C13	0.024 (4)	0.040 (4)	0.042 (4)	-0.011 (3)	0.000 (3)	0.004 (3)
C14	0.044 (4)	0.024 (3)	0.038 (4)	0.005 (3)	0.019 (3)	0.000 (3)
C15	0.048 (3)	0.048 (3)	0.040 (5)	0.018 (5)	0.023 (4)	0.023 (4)
C16	0.048 (5)	0.113 (6)	0.047 (5)	0.037 (4)	0.020 (3)	0.028 (4)

Geometric parameters (Å, °)

Cu1—O1 ⁱ	1.891 (3)	С8—С9	1.386 (7)	_
Cu1—01	1.891 (3)	C9—C10	1.373 (7)	
Cu1—N1 ⁱ	1.966 (4)	С9—Н9	0.9300	
Cu1—N1	1.966 (4)	C10—C11	1.384 (7)	
01—C1	1.305 (5)	C10—H10	0.9300	
N1—C7	1.295 (6)	C11—C12	1.377 (8)	
N1-C14	1.475 (6)	C11—H11	0.9300	
C1—C2	1.410 (7)	C12—C13	1.369 (7)	
C1—C6	1.433 (7)	C12—H12A	0.9300	
C2—C3	1.362 (7)	C13—H13	0.9300	
С2—Н2	0.9300	C14—C15	1.521 (6)	
C3—C4	1.380 (8)	C14—H14A	0.9700	

С3—Н3	0.9300	C14—H14B	0.9700
C4—C5	1.371 (8)	C15—C14 ⁱ	1.521 (6)
C4—H4	0.9300	C15—C16 ⁱ	1.522 (6)
C5—C6	1.405 (6)	C15—C16	1.522 (6)
С5—Н5	0.9300	C16—H16A	0.9600
C6—C7	1.471 (7)	C16—H16B	0.9600
C7—C8	1.504 (7)	C16—H16C	0.9600
C8—C13	1.383 (7)		
01—Cu1—N1	93.11 (16)	C10—C9—C8	121.8 (6)
$O1^{i}$ - Cu1 - O1	95.6 (2)	C10-C9-H9	119.1
$O1^{i}$ $Cu1$ $N1^{i}$	93 11 (16)	C8-C9-H9	119.1
01 — $Cu1$ — $N1^{i}$	147.96 (16)	C9-C10-C11	120.3 (7)
$O1^{i}$ $Cu1$ $N1$	147.96 (16)	C9-C10-H10	119.9
$N1^{i}$ Cu1 N1	957(2)	C_{11} C_{10} H_{10}	119.9
$C_1 = C_1 = C_1$	1280(3)	C_{12} C_{11} C_{10}	117.8 (6)
C7 N1 C14	120.0(3) 122.8(4)	$C_{12} = C_{11} = C_{10}$	121.1
C7 N1 Cu1	122.8(4) 127.0(4)	C_{12} C_{11} H_{11}	121.1
$C_1 = N_1 = C_{11}$	127.9(4) 108.0(2)	C_{10} C_{12} C_{11}	121.1 122.0(6)
C14 $C1$ $C2$	100.9(5)	$C_{12} = C_{12} = C_{11}$	122.0 (0)
01 - C1 - C2	110.5(5)	C13 - C12 - H12A	119.0
01 - 01 - 00	124.9(3)	C12 - C12 - C12	119.0
$C_2 = C_1 = C_0$	110.8 (5)	C12 - C13 - C8	120.6 (6)
$C_3 = C_2 = C_1$	123.1 (6)	C12—C13—H13	119.7
C3—C2—H2	118.5	C8—C13—H13	119.7
C1 = C2 = H2	118.5	NI-CI4-CI5	114.6 (4)
C2—C3—C4	119.8 (6)	NI—CI4—HI4A	108.6
С2—С3—Н3	120.1	C15—C14—H14A	108.6
C4—C3—H3	120.1	N1—C14—H14B	108.6
C5—C4—C3	119.6 (6)	C15—C14—H14B	108.6
C5—C4—H4	120.2	H14A—C14—H14B	107.6
C3—C4—H4	120.2	$C14-C15-C14^{i}$	111.3 (7)
C4—C5—C6	122.5 (6)	$C14-C15-C16^{i}$	107.1 (3)
C4—C5—H5	118.8	$C14^{i}$ — $C15$ — $C16^{i}$	111.2 (3)
С6—С5—Н5	118.8	C14—C15—C16	111.2 (3)
C5—C6—C1	118.0 (5)	C14 ⁱ —C15—C16	107.1 (3)
C5—C6—C7	118.6 (5)	C16 ⁱ —C15—C16	108.9 (7)
C1—C6—C7	123.4 (5)	C15—C16—H16A	109.5
N1—C7—C6	122.2 (5)	C15—C16—H16B	109.5
N1—C7—C8	119.9 (5)	H16A—C16—H16B	109.5
C6—C7—C8	117.8 (5)	C15—C16—H16C	109.5
C13—C8—C9	117.4 (5)	H16A—C16—H16C	109.5
C13—C8—C7	120.6 (5)	H16B—C16—H16C	109.5
C9—C8—C7	121.9 (5)		
01 ⁱ —Cu1—O1—C1	-148.3 (5)	C14—N1—C7—C8	-5.7 (8)
N1 ⁱ —Cu1—O1—C1	106.7 (5)	Cu1—N1—C7—C8	-178.3 (3)
N1—Cu1—O1—C1	0.9 (5)	C5-C6-C7-N1	-176.9 (5)
O1 ⁱ —Cu1—N1—C7	100.2 (5)	C1—C6—C7—N1	1.7 (8)

01 0 1 11 07			
OI-CuI-NI-C/	-5.5 (5)	C5-C6-C/-C8	6.1 (7)
$N1^{i}$ —Cu1—N1—C7	-154.7 (5)	C1—C6—C7—C8	-175.2 (4)
O1 ⁱ —Cu1—N1—C14	-73.3 (5)	N1—C7—C8—C13	-101.0 (6)
O1—Cu1—N1—C14	-178.9 (3)	C6—C7—C8—C13	76.0 (6)
N1 ⁱ —Cu1—N1—C14	31.9 (3)	N1—C7—C8—C9	76.0 (7)
Cu1—O1—C1—C2	-177.3 (4)	C6—C7—C8—C9	-107.0 (6)
Cu1—O1—C1—C6	4.5 (8)	C13—C8—C9—C10	1.7 (8)
O1—C1—C2—C3	-172.2 (5)	C7—C8—C9—C10	-175.5 (6)
C6—C1—C2—C3	6.2 (9)	C8—C9—C10—C11	-0.7 (10)
C1—C2—C3—C4	-2.5 (9)	C9—C10—C11—C12	-0.3 (10)
C2—C3—C4—C5	-1.1 (9)	C10-C11-C12-C13	0.3 (10)
C3—C4—C5—C6	0.8 (9)	C11—C12—C13—C8	0.7 (9)
C4—C5—C6—C1	3.0 (8)	C9—C8—C13—C12	-1.7 (8)
C4—C5—C6—C7	-178.2 (5)	C7—C8—C13—C12	175.5 (5)
O1—C1—C6—C5	172.0 (5)	C7—N1—C14—C15	113.2 (5)
C2-C1-C6-C5	-6.2 (7)	Cu1—N1—C14—C15	-73.0 (5)
O1—C1—C6—C7	-6.7 (8)	N1-C14-C15-C14 ⁱ	39.7 (3)
C2-C1-C6-C7	175.1 (5)	N1-C14-C15-C16 ⁱ	161.4 (5)
C14—N1—C7—C6	177.4 (4)	N1-C14-C15-C16	-79.7 (7)
Cu1—N1—C7—C6	4.8 (8)		

Symmetry code: (i) -y, -x, -z+3/2.

Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the Cu/O1/C1/C6/C7/N1, Cu/O1'/C1'/C6'/C7'/N1' and C1-C6 rings, respectively.

D—H···A	D—H	Н…А	$D \cdots A$	D—H···A
C3—H3…Cg1 ⁱⁱ	0.93	2.85	3.415 (6)	120
C3—H3… <i>Cg</i> 2 ⁱⁱⁱ	0.93	2.85	3.415 (6)	120
C12—H12 A ···Cg3 ^{iv}	0.93	2.76	3.458 (6)	132

Symmetry codes: (ii) -y-1/2, x+1/2, z+5/4; (iii) -x-1/2, y+1/2, -z-3/4; (iv) -y+1/2, x-1/2, z+5/4.