

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-Chloro-1-[(4-methoxyphenyl)hydrazinylidene]propan-2-one

Abdullah M. Asiri,^{a,b} Abdulrahman O. Al-Youbi,^a Mohie E. M. Zayed^a and Seik Weng Ng^{c,a}*

^aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, ^bThe Center of Excellence for Advanced Materials Research, King Abdul Aziz University, PO Box 8020 Jeddah, Saudi Arabia, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 29 June 2011; accepted 3 July 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.038; wR factor = 0.102; data-to-parameter ratio = 14.7.

The non-H atoms of the title compound, $C_{10}H_{11}ClN_2O_2$, lie nearly on a plane (r.m.s. deviation = 0.150 Å), and the C—N double bond has a Z configuration. In the crystal, adjacent molecules are linked by an N-H···O_{carbonyl} hydrogen bond, forming a chain running along [201].

Related literature

For the synthesis, see: Benincori *et al.* (1990); Sayed *et al.* (2002). For background to the title compound, see: Asiri *et al.* (2010).

Experimental

Crystal data $C_{10}H_{11}CIN_2O_2$ $M_r = 226.66$

Monoclinic, $P2_1/c$ a = 5.8873 (3) Å b = 25.0467 (10) Å c = 7.3041 (3) Å $\beta = 99.016 (4)^{\circ}$ $V = 1063.74 (8) \text{ Å}^{3}$ Z = 4

Data collection

Agilent SuperNova Dual	3802 measured reflections
diffractometer with an Atlas	2090 independent reflections
detector	1776 reflections with $I > 2\sigma(I)$
Absorption correction: multi-scan	$R_{\rm int} = 0.026$
(CrysAlis PRO; Agilent, 2010)	
$T_{\min} = 0.415, T_{\max} = 0.863$	

Refinement

ł

S

2

1

$R[F^2 > 2\sigma(F^2)] = 0.038$	H atoms treated by a mixture of
$vR(F^2) = 0.102$	independent and constrained
S = 1.05	refinement
090 reflections	$\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$
42 parameters	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2\cdots O1^i$	0.87 (3)	2.22 (3)	3.021 (2)	153 (2)
Symmetry code: (i)	$x + 1, -y + \frac{1}{2}, z - \frac{1}{2}$	$+\frac{1}{2}$.		

Data collection: *CrysAlis PRO* (Agilent, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank King Abdulaziz University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5259).

References

- Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England. Asiri, A. M., Zayed, M. E. M. & Ng, S. W. (2010). Acta Cryst. E66, 02374.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Benincori, T., Fusco, R. & Sannicolo, F. (1990). Gazz. Chim. Ital. 120, 635-659.
- Sayed, S. M., Khalil, M. A., Ahmed, M. A. & Raslan, M. A. (2002). Synth. Commun. 32, 481–495.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Cu $K\alpha$ radiation $\mu = 3.05 \text{ mm}^{-1}$

 $0.35 \times 0.10 \times 0.05 \text{ mm}$

T = 100 K

supporting information

Acta Cryst. (2011). E67, o1961 [doi:10.1107/S1600536811026389]

1-Chloro-1-[(4-methoxyphenyl)hydrazinylidene]propan-2-one

Abdullah M. Asiri, Abdulrahman O. Al-Youbi, Mohie E. M. Zayed and Seik Weng Ng

S1. Comment

We have previously reported the synthesis of ethyl (*Z*)-2-chloro-2-(2-phenylhydrazin-1-ylidene) acetate by the reaction of benzenediazonium chloride with ethyl 2-chloro-3-oxobutanoate (Asiri *et al.*, 2010). The compound is an ester. In the present study, the use of a substituted benzenediazonium chloride and the methyl ester (instead of the ethyl ester) afforded a 1-chloro-1-(arylhydrazono)-2-propanone. Such ketones are intermediates in the synthesis of pyrazoles (Sayed *et al.*, 2002) and other heterocycles (Benincori *et al.*, 1990). In the 4-methoxy substituted compound (Scheme I, Fig. 1), the non-hydrogen atoms lie on a plane [r.m.s. deviation 0.150 Å] (Scheme I, Fig. 1). The C_{aryl}–N(H)–N= C(S)=O portion adopts an extended zigzag conformation. Adjacent molecules are linked by an *N*–*H*…O_{carbonyl} hydrogen bond to form a chain running [2 0 1].

S2. Experimental

To a stirred solution of methyl 2-chloro-3-oxobutanoate (1.64 g, 10 mmol) in ethanol (100 ml) was added sodium acetate trihydrate (1.30 g, 10 mmol). The mixture was chilled to 273 K and then treated with a cold solution of *p*-nitrobenzenediazonium chloride, prepared by diazotizing *p*-methoxyaniline (1.23 g, 10 mmol) dissolved in 6*M* hydrochloric acid (6 ml) with a solution of sodium nitrite (0.70 g, 10 mmol) in water (10 ml). The addition of the diazonium salt solution was carried out with rapid stirring over a period of 20 min. The reaction mixture was stirred for further 15 min. and left for 3 h in refrigerator. The resulting solid was collected by filtration and washed thoroughly with water. The crude product was crystallized from ethanol to give the corresponding hydrazonoyl chloride.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, U_{iso} (H) 1.2 to 1.5 U_{eq} (C)] and were included in the refinement in the riding model approximation.

The amino H-atom was located in a difference Fourier map, and was freely refined.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $C_{10}H_{11}N_2O_2$ at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

1-Chloro-1-[(4-methoxyphenyl)hydrazinylidene]propan-2-one

Crystal data

C₁₀H₁₁ClN₂O₂ $M_r = 226.66$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 5.8873 (3) Å b = 25.0467 (10) Å c = 7.3041 (3) Å $\beta = 99.016$ (4)° V = 1063.74 (8) Å³ Z = 4

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector Radiation source: SuperNova (Cu) X-ray Source Mirror monochromator Detector resolution: 10.4041 pixels mm⁻¹ ω scan Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2010)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.102$ S = 1.052090 reflections F(000) = 472 $D_x = 1.415 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 1678 reflections $\theta = 3.5-74.0^{\circ}$ $\mu = 3.05 \text{ mm}^{-1}$ T = 100 KPrism, yellow $0.35 \times 0.10 \times 0.05 \text{ mm}$

 $T_{\min} = 0.415, T_{\max} = 0.863$ 3802 measured reflections
2090 independent reflections
1776 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.026$ $\theta_{\text{max}} = 74.2^{\circ}, \theta_{\text{min}} = 3.5^{\circ}$ $h = -5 \rightarrow 7$ $k = -20 \rightarrow 31$ $l = -8 \rightarrow 7$

142 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_o^2) + (0.0508P)^2 + 0.2595P]$
neighbouring sites	where $P = (F_0^2 + 2F_c^2)/3$
H atoms treated by a mixture of independent	$(\Delta/\sigma)_{\rm max} = 0.001$
and constrained refinement	$\Delta \rho_{\rm max} = 0.25 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

Fractional	atomic	coordinates	and	isotropic or	equivalent	isotropic	displacement	parameters ((A^2))
				ree e e e e e e e e e e e e e e e e e e		r.	r	r		/

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C11	0.79949 (8)	0.222023 (16)	0.49001 (6)	0.02053 (15)
01	0.3432 (2)	0.23571 (5)	0.2668 (2)	0.0248 (3)
O2	1.2583 (2)	0.53251 (5)	0.8487 (2)	0.0247 (3)
N1	0.7372 (3)	0.32750 (6)	0.4928 (2)	0.0162 (3)
N2	0.9408 (3)	0.33231 (6)	0.5974 (2)	0.0165 (3)
H2	1.023 (4)	0.3046 (10)	0.634 (4)	0.038 (7)*
C1	0.3119 (3)	0.33074 (8)	0.2551 (3)	0.0240 (4)
H1A	0.3295	0.3380	0.1263	0.036*
H1B	0.3820	0.3597	0.3348	0.036*
H1C	0.1481	0.3282	0.2646	0.036*
C2	0.4288 (3)	0.27892 (7)	0.3161 (3)	0.0184 (4)
C3	0.6546 (3)	0.28185 (7)	0.4355 (3)	0.0168 (4)
C4	1.0117 (3)	0.38372 (7)	0.6642 (2)	0.0155 (4)
C5	1.2413 (3)	0.39119 (7)	0.7442 (3)	0.0182 (4)
Н5	1.3455	0.3620	0.7566	0.022*
C6	1.3153 (3)	0.44152 (7)	0.8052 (3)	0.0202 (4)
H6	1.4710	0.4467	0.8599	0.024*
C7	1.1642 (3)	0.48447 (7)	0.7872 (3)	0.0179 (4)
C8	0.9350 (3)	0.47698 (7)	0.7091 (3)	0.0185 (4)
H8	0.8307	0.5062	0.6972	0.022*
C9	0.8601 (3)	0.42636 (7)	0.6485 (3)	0.0186 (4)
H9	0.7037	0.4210	0.5960	0.022*
C10	1.1081 (4)	0.57745 (7)	0.8382 (3)	0.0242 (4)
H10A	1.1951	0.6090	0.8875	0.036*
H10B	0.9851	0.5704	0.9112	0.036*
H10C	1.0408	0.5838	0.7086	0.036*

Atomic displacement parameters (A

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
Cl1	0.0247 (3)	0.0108 (2)	0.0250 (3)	0.00228 (17)	0.00048 (18)	0.00008 (17)	
O1	0.0238 (7)	0.0152 (7)	0.0340 (8)	-0.0046 (6)	-0.0002 (6)	-0.0032 (6)	
O2	0.0255 (7)	0.0124 (6)	0.0348 (8)	-0.0011 (6)	0.0000 (6)	-0.0050 (6)	
N1	0.0174 (7)	0.0134 (7)	0.0174 (8)	-0.0007 (6)	0.0016 (6)	0.0004 (6)	
N2	0.0169 (8)	0.0101 (7)	0.0211 (8)	-0.0006 (6)	-0.0010 (6)	-0.0004 (6)	
C1	0.0216 (10)	0.0160 (9)	0.0321 (11)	0.0011 (8)	-0.0032 (8)	-0.0006 (8)	
C2	0.0185 (9)	0.0147 (9)	0.0214 (9)	-0.0011 (7)	0.0018 (7)	-0.0002 (7)	
C3	0.0179 (9)	0.0107 (9)	0.0220 (9)	0.0013 (7)	0.0035 (7)	0.0007 (7)	
C4	0.0190 (9)	0.0113 (8)	0.0162 (9)	-0.0007 (7)	0.0033 (7)	-0.0003 (7)	
C5	0.0181 (9)	0.0120 (9)	0.0241 (10)	0.0018 (7)	0.0020 (7)	-0.0006 (7)	

supporting information

C6	0.0167 (9)	0.0172 (9)	0.0260 (10)	0.0009 (7)	0.0014 (7)	-0.0022 (8)	
C7	0.0241 (10)	0.0116 (9)	0.0180 (9)	-0.0014 (7)	0.0035 (7)	-0.0014 (7)	
C8	0.0207 (9)	0.0127 (9)	0.0221 (9)	0.0044 (7)	0.0029 (7)	0.0014 (7)	
C9	0.0172 (9)	0.0169 (9)	0.0213 (9)	0.0018 (7)	0.0019 (7)	-0.0006 (8)	
C10	0.0355 (11)	0.0102 (9)	0.0268 (11)	0.0010 (8)	0.0047 (9)	-0.0005 (8)	

Geometric parameters (Å, °)

Cl1—C3	1.7395 (18)	С4—С9	1.385 (2)
O1—C2	1.224 (2)	C4—C5	1.398 (3)
O2—C7	1.371 (2)	C5—C6	1.384 (3)
O2—C10	1.426 (2)	С5—Н5	0.9500
N1-C3	1.287 (2)	C6—C7	1.389 (3)
N1—N2	1.322 (2)	С6—Н6	0.9500
N2C4	1.417 (2)	C7—C8	1.393 (3)
N2—H2	0.87 (3)	C8—C9	1.392 (3)
C1—C2	1.503 (2)	C8—H8	0.9500
C1—H1A	0.9800	С9—Н9	0.9500
C1—H1B	0.9800	C10—H10A	0.9800
C1—H1C	0.9800	C10—H10B	0.9800
C2—C3	1.473 (3)	C10—H10C	0.9800
C7 02 C10	117.26 (15)	C(C5 115	120.2
C/O2C10	117.36 (15)	C6C5H5	120.3
C3-NI-N2	122.09 (16)	C4—C5—H5	120.3
NI - N2 - C4	118.27 (15)	C5-C6-C7	120.67 (18)
NI - N2 - H2	121.2 (18)	C5—C6—H6	119.7
C4—N2—H2	120.3 (18)	C/C6H6	119.7
C2—CI—HIA	109.5	O2-C7-C6	115.38 (17)
C2—C1—H1B	109.5	02	124.65 (17)
H1A—C1—H1B	109.5	C6—C7—C8	119.96 (17)
C2—C1—H1C	109.5	C9—C8—C7	119.43 (17)
H1A—C1—H1C	109.5	С9—С8—Н8	120.3
H1B—C1—H1C	109.5	С7—С8—Н8	120.3
O1—C2—C3	120.66 (17)	C4—C9—C8	120.53 (18)
O1—C2—C1	121.88 (18)	С4—С9—Н9	119.7
C3—C2—C1	117.45 (16)	С8—С9—Н9	119.7
N1—C3—C2	119.81 (16)	O2—C10—H10A	109.5
N1—C3—C11	122.97 (15)	O2—C10—H10B	109.5
C2—C3—C11	117.21 (13)	H10A-C10-H10B	109.5
C9—C4—C5	119.98 (17)	O2—C10—H10C	109.5
C9—C4—N2	121.38 (17)	H10A-C10-H10C	109.5
C5—C4—N2	118.63 (16)	H10B—C10—H10C	109.5
C6—C5—C4	119.42 (17)		
C3—N1—N2—C4	-175.92 (16)	C4—C5—C6—C7	-0.2 (3)
N2—N1—C3—C2	-178.79 (16)	C10—O2—C7—C6	-178.14 (16)
N2—N1—C3—Cl1	0.3 (3)	C10—O2—C7—C8	2.5 (3)
01-C2-C3-N1	-176.92 (18)	C5—C6—C7—O2	-178.62 (17)

supporting information

C1—C2—C3—N1	4.3 (3)	С5—С6—С7—С8	0.8 (3)
01—C2—C3—Cl1	3.9 (3)	O2—C7—C8—C9	178.87 (17)
C1—C2—C3—Cl1	-174.89 (14)	C6—C7—C8—C9	-0.5 (3)
N1—N2—C4—C9	10.9 (3)	C5—C4—C9—C8	1.1 (3)
N1—N2—C4—C5	-167.94 (16)	N2-C4-C9-C8	-177.73 (17)
C9—C4—C5—C6	-0.7 (3)	C7—C8—C9—C4	-0.5 (3)
N2-C4-C5-C6	178.08 (17)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N2—H2···O1 ⁱ	0.87 (3)	2.22 (3)	3.021 (2)	153 (2)

Symmetry code: (i) x+1, -y+1/2, z+1/2.