Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N, N^{\prime}-Bis(4-chlorophenylsulfonyl)adipamide

Vinola Z. Rodrigues, ${ }^{\text {a }}$ Sabine Foro ${ }^{\text {b }}$ and B. Thimme Gowda ${ }^{\mathbf{a} *}$

${ }^{\text {a }}$ Department of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and ${ }^{\mathbf{b}}$ Institute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
Correspondence e-mail: gowdabt@yahoo.com
Received 18 July 2011; accepted 25 July 2011
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$; R factor $=0.081 ; w R$ factor $=0.104 ;$ data-to-parameter ratio $=12.6$.

In the title compound, $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$, the asymmetric unit contains half a molecule with a center of symmetry at the midpoint of the central $\mathrm{C}-\mathrm{C}$ bond. The dihedral angle between the benzene ring and the $\mathrm{SO}_{2}-\mathrm{NH}-\mathrm{C}(\mathrm{O})$ segment in the two halves of the molecule is $83.5(2)^{\circ}$. In the crystal, $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}(\mathrm{S})$ intermolecular hydrogen bonds link the molecules into infinite chains running along the c axis. The O atom involved in the hydrogen bond has a longer $\mathrm{S}-\mathrm{O}$ bond than the other O atom bonded to $\mathrm{S}[1.403$ (4) versus 1.361 (4) \AA].

Related literature

For hydrogen-bonding preferences of sulfonamides, see; Adsmond \& Grant (2001). For our studies on the effects of substituents on the structures of N-(aryl)-amides, see: Bhat \& Gowda (2000); Gowda et al. (2000, 2007). For those on N -(arylsulfonyl)-amides, see: Rodrigues et al. (2011a,b). For those on N-(aryl)-arylsulfonamides, see: Gowda et al. (2005).

Experimental

Crystal data
$\begin{array}{ll}\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2} & \text { Triclinic, } P \overline{1} \\ M_{r}=493.36 & a=5.593 \text { (1) } \AA\end{array}$

$$
\begin{aligned}
& b=8.827(2) \AA \\
& c=9.908(2) \AA \\
& \alpha=89.28(2)^{\circ} \\
& \beta=87.75(2)^{\circ} \\
& \gamma=81.16(1)^{\circ} \\
& V=482.96(17) \AA^{3}
\end{aligned}
$$

$Z=1$
Mo $K \alpha$ radiation
$\mu=0.60 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.12 \times 0.08 \times 0.04 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
Absorption correction: multi-scan (CrysAlis RED; Oxford

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.081$
$w R\left(F^{2}\right)=0.104$
$S=0.99$
1757 reflections
139 parameters
2 restraints

Diffraction, 2009)
$T_{\text {min }}=0.932, T_{\text {max }}=0.977$
2942 measured reflections 1757 independent reflections 775 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.063$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max }=0.41 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.36 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O}^{\mathrm{i}}$	$0.85(2)$	$2.03(3)$	$2.839(7)$	$160(6)$

Symmetry code: (i) $-x,-y+1,-z+1$.
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of an RFSMS research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2018).

References

Adsmond, D. A. \& Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058-2077. Bhat, D. K. \& Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279-284.
Gowda, B. T., Foro, S. \& Fuess, H. (2007). Acta Cryst. E63, o1975-o1976.
Gowda, B. T., Shetty, M. \& Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106-112.
Gowda, B. T., Svoboda, I. \& Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 779790.

Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
Rodrigues, V. Z., Foro, S. \& Gowda, B. T. (2011a). Acta Cryst. E67, 0837.
Rodrigues, V. Z., Foro, S. \& Gowda, B. T. (2011b). Acta Cryst. E67, o2101.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2011). E67, o2179 [doi:10.1107/S1600536811030029]

N, N^{\prime}-Bis(4-chlorophenylsulfonyl)adipamide

Vinola Z. Rodrigues, Sabine Foro and B. Thimme Gowda

S1. Comment

The amide moiety is an important constituent of many biologically significant compounds. As part of our studies on the effects of ring and side chain substitutions on the structures of N-(aryl)-amides (Bhat \& Gowda, 2000; Gowda et al., 2000, 2007), N-(arylsulfonyl)-amides (Rodrigues et al., 2011a,b) and N-(aryl)-arylsulfonamides (Gowda et al., 2005), the crystal structure of N, N-bis(4-chlorophenylsulfonyl)- adipamide has been determined (I) (Fig. 1).

In the two $\mathrm{C}-\mathrm{SO}_{2}-\mathrm{NH}-\mathrm{CO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ central segments of the structure, the $\mathrm{N}-\mathrm{H}, \mathrm{C}=\mathrm{O}$ and $\mathrm{C}-\mathrm{H}$ bonds are anti to the adjacent bonds, similar to that observed in N, N - bis(2-chlorophenylsulfonyl)-adipamide (II) (Rodrigues et al., 2011a) and N, N-bis(4-chlorophenylsulfonyl)-suberamide (III) (Rodrigues et al., 2011b). The orientations of sulfonamide groups with respect to the attached phenyl rings are given by the torsion angles of $\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1-\mathrm{N} 1=-117.1(6)^{\circ}$ and $\mathrm{C} 6-\mathrm{C} 1-\mathrm{S} 1-\mathrm{N} 1=60.5(6)^{\circ}$. The molecule is bent at the S atom with the $\mathrm{C} 1-\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 7$ torsion angle of $55.0(6)^{\circ}$, compared to the value of -65.1 (6) ${ }^{\circ}$ in (II).

The dihedral angle between the benzene ring and the $\mathrm{SO}_{2}-\mathrm{NH}-\mathrm{C}(\mathrm{O})$ segment in the two halves of the molecule is $83.5(2)^{\circ}$, compared to the values of $89.6(2)^{\circ}$ in (II) and $79.5(2)^{\circ}$ in (III).
$\mathrm{N}-\mathrm{H} \cdots \mathrm{O} 2(\mathrm{~S}) \mathrm{H}$-bond formation results in an $\mathrm{S}=\mathrm{O} 2$ bond longer than the $\mathrm{S}=\mathrm{O} 1$ bond [1.403 (4) \AA versus 1.361 (4) \AA].
A series of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}(\mathrm{S})$ intermolecular hydrogen bonds (Table 1) link the molecules into infinite chains running along c axis (Fig. 2). The hydrogen bonding preferences of sulfonamides is described elsewhere (Adsmond \& Grant, 2001)

S2. Experimental

N, N-Bis(4-chlorophenylsulfonyl)-adipamide was prepared by refluxing a mixture of adipic acid (0.01 mol) with 4-chlorobenzenesulfonamide $(0.02 \mathrm{~mol})$ and POCl_{3} for 1 hr on a water bath. The reaction mixture was allowed to cool and added ether to it. The solid product obtained was filtered, washed thoroughly with ether and hot ethanol. The compound was recrystallized to the constant melting point and was characterized by its infrared and NMR spectra.
Needle like colorless single crystals used in the X-ray diffraction studies were grown by a slow evaporation of a solution of the compound in ethanol at room temperature.

S3. Refinement

The H atom of the NH group was located in a difference map and later restrained to $\mathrm{N}-\mathrm{H}=0.86$ (2) \%A. The other H atoms were positioned with idealized geometry using a riding model with the aromatic $\mathrm{C}-\mathrm{H}=0.93 \AA$ and the methylene $\mathrm{C}-\mathrm{H}=0.97 \AA$. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the $U_{\text {eq }}$ of the parent atom).
The distance $\mathrm{C} 1-\mathrm{C} 6$ in the benzene ring was restrained to 1.39 (1) \AA.

Figure 1

Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50\% probability level and H atoms are represented as small spheres of arbitrary radii.

Figure 2
Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

N, N^{\prime}-Bis(4-chlorophenylsulfonyl)adipamide

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$
$M_{r}=493.36$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=5.593$ (1) \AA
$b=8.827$ (2) \AA
$c=9.908$ (2) \AA
$\alpha=89.28(2)^{\circ}$
$\beta=87.75(2)^{\circ}$

$$
\begin{aligned}
& \gamma=81.16(1)^{\circ} \\
& V=482.96(17) \AA^{3} \\
& Z=1 \\
& F(000)=254 \\
& D_{\mathrm{x}}=1.696 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 528 \text { reflections } \\
& \theta=3.1-28.0^{\circ} \\
& \mu=0.60 \mathrm{~mm}^{-1}
\end{aligned}
$$

$T=293 \mathrm{~K}$
Needle, colourless

Data collection

Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Radiation source: fine-focus sealed tube
Graphite monochromator
Rotation method data acquisition using ω scans
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
$T_{\min }=0.932, T_{\text {max }}=0.977$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.081$
$w R\left(F^{2}\right)=0.104$
$S=0.99$
1757 reflections
139 parameters
2 restraints
Primary atom site location: structure-invariant
direct methods
$0.12 \times 0.08 \times 0.04 \mathrm{~mm}$

2942 measured reflections
1757 independent reflections
775 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.063$
$\theta_{\text {max }}=25.4^{\circ}, \theta_{\text {min }}=3.1^{\circ}$
$h=-6 \rightarrow 6$
$k=-10 \rightarrow 10$
$l=-11 \rightarrow 11$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0 . P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.007$
$\Delta \rho_{\text {max }}=0.41$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.36$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
C1	$0.1041(11)$	$0.6193(7)$	$0.8224(6)$	$0.0293(17)$
C2	$0.2221(12)$	$0.6416(7)$	$0.9348(6)$	$0.042(2)$
H2	0.3810	0.5932	0.9421	0.051^{*}
C3	$0.1175(13)$	$0.7325(8)$	$1.0388(7)$	$0.047(2)$
H3	0.2030	0.7448	1.1155	0.057^{*}
C4	$-0.1031(13)$	$0.8010(8)$	$1.0280(7)$	$0.042(2)$
C5	$-0.2239(12)$	$0.7794(8)$	$0.9163(7)$	$0.045(2)$
H5	-0.3822	0.8291	0.9100	0.054^{*}
C6	$-0.1242(11)$	$0.6877(7)$	$0.8116(7)$	$0.0433(19)$
H6	-0.2120	0.6738	0.7361	0.052^{*}
C7	$0.3253(12)$	$0.7659(8)$	$0.5567(7)$	$0.0357(18)$
C8	$0.2725(11)$	$0.8657(7)$	$0.4335(6)$	$0.0394(18)$
H8A	0.4234	0.8879	0.3921	0.047^{*}

H8B	0.1936	0.8111	0.3683	0.047^{*}
C9	$0.1140(10)$	$1.0122(8)$	$0.4692(6)$	$0.054(2)$
H9A	0.1970	1.0689	0.5309	0.065^{*}
H9B	0.0846	1.0738	0.3881	0.065^{*}
N1	$0.2328(10)$	$0.6336(6)$	$0.5582(5)$	$0.0371(15)$
H1N	$0.149(9)$	$0.600(6)$	$0.499(4)$	0.044^{*}
O1	$0.4677(8)$	$0.4551(5)$	$0.7221(4)$	$0.0501(14)$
O2	$0.0961(8)$	$0.4035(5)$	$0.6456(4)$	$0.0508(14)$
O3	$0.4340(7)$	$0.8007(5)$	$0.6492(5)$	$0.0491(14)$
C11	$-0.2314(4)$	$0.9221(2)$	$1.15456(19)$	$0.0695(7)$
S1	$0.2378(4)$	$0.5111(2)$	$0.68742(19)$	$0.0419(5)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.032(4)$	$0.030(4)$	$0.026(4)$	$-0.004(4)$	$-0.006(3)$	$0.003(3)$
C2	$0.035(5)$	$0.049(5)$	$0.039(5)$	$0.004(4)$	$-0.001(4)$	$0.002(4)$
C3	$0.047(5)$	$0.060(6)$	$0.031(5)$	$0.005(5)$	$-0.011(4)$	$-0.001(4)$
C4	$0.049(5)$	$0.042(5)$	$0.031(5)$	$0.002(4)$	$0.004(4)$	$0.009(4)$
C5	$0.026(4)$	$0.056(5)$	$0.049(5)$	$0.005(4)$	$0.000(4)$	$0.005(4)$
C6	$0.032(4)$	$0.050(5)$	$0.048(5)$	$-0.004(4)$	$-0.012(4)$	$0.001(4)$
C7	$0.024(4)$	$0.040(5)$	$0.041(5)$	$-0.001(4)$	$0.004(4)$	$-0.013(4)$
C8	$0.035(4)$	$0.045(5)$	$0.036(5)$	$0.000(4)$	$0.000(3)$	$0.005(4)$
C9	$0.042(5)$	$0.064(6)$	$0.053(5)$	$0.001(5)$	$-0.001(4)$	$0.017(4)$
N1	$0.041(4)$	$0.037(4)$	$0.035(4)$	$-0.008(3)$	$-0.010(3)$	$-0.005(3)$
O1	$0.036(3)$	$0.058(3)$	$0.050(3)$	$0.013(3)$	$-0.006(2)$	$-0.003(3)$
O2	$0.067(4)$	$0.042(3)$	$0.047(3)$	$-0.017(3)$	$-0.018(3)$	$0.000(3)$
O3	$0.031(3)$	$0.062(4)$	$0.055(4)$	$-0.008(3)$	$-0.012(3)$	$-0.005(3)$
C11	$0.0784(16)$	$0.0701(16)$	$0.0514(14)$	$0.0107(12)$	$0.0185(12)$	$-0.0023(12)$
S1	$0.0447(13)$	$0.0403(13)$	$0.0394(12)$	$-0.0009(11)$	$-0.0076(10)$	$-0.0022(11)$

Geometric parameters (\AA, ${ }^{\circ}$)

C1-C6	1.333 (6)	C7-N1	1.348 (7)
$\mathrm{C} 1-\mathrm{C} 2$	1.348 (8)	C7-C8	1.508 (8)
C1-S1	1.731 (6)	C8-C9	1.489 (7)
C2-C3	1.370 (7)	C8-H8A	0.9700
C2-H2	0.9300	C8-H8B	0.9700
C3-C4	1.295 (8)	C9-C9 ${ }^{\text {i }}$	1.437 (10)
C3-H3	0.9300	C9-H9A	0.9700
C4-C5	1.350 (8)	C9-H9B	0.9700
C4-Cl1	1.719 (7)	N1-S1	1.664 (6)
C5-C6	1.371 (7)	N1-H1N	0.85 (2)
C5-H5	0.9300	O1-S1	1.361 (4)
C6-H6	0.9300	$\mathrm{O} 2-\mathrm{S} 1$	1.403 (4)
C7-O3	1.188 (7)		
C6- $\mathrm{C} 1-\mathrm{C} 2$	119.0 (6)	C9-C8-C7	111.2 (5)

$\mathrm{C} 6-\mathrm{C} 1-\mathrm{S} 1$	$117.8(5)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	$123.2(5)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$122.7(7)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	118.7
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	118.7
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$118.6(7)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.7
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.7
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$119.4(7)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 11$	$119.0(6)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 11$	$121.6(6)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$123.1(7)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	118.4
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	118.4
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$117.2(6)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6$	121.4
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	121.4
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{N} 1$	$121.0(7)$
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 8$	$123.7(7)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$115.3(6)$
$\mathrm{C} 5-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	
$\mathrm{~S} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.3(10)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$177.3(5)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.6(11)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{Cl} 1$	$0.8(11)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-177.1(5)$
$\mathrm{C} 11-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.2(11)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$177.8(5)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$1.0(10)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$-176.8(4)$
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-63.7(9)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$114.2(6)$

$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	109.4
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	109.4
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	109.4
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	109.4
$\mathrm{H} 8 \mathrm{~A}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	108.0
$\mathrm{C} 9-\mathrm{C} 9-\mathrm{C} 8$	$112.4(7)$
$\mathrm{C} 9-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	109.1
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	109.1
$\mathrm{C} 9-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	109.1
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	109.1
$\mathrm{H} 9 \mathrm{~A}-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	107.9
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{S} 1$	$125.5(5)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	$128(4)$
$\mathrm{S} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	$106(4)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2$	$116.6(3)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{N} 1$	$112.0(3)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1$	$103.7(3)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1$	$106.7(3)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1$	$112.4(3)$
$\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 1$	$105.0(3)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 9$	
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{N} 1-\mathrm{S} 1$	$-59.2(9)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{N} 1-\mathrm{S} 1$	$4.7(9)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{S} 1-\mathrm{O} 1$	$-173.2(4)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{S} 1-\mathrm{O} 2$	$-60.3(6)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 1$	$173.2(5)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{S} 1-\mathrm{O} 1$	$55.0(6)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1-\mathrm{O} 1$	$179.5(5)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{S} 1-\mathrm{O} 2$	$1.8(6)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1-\mathrm{O} 2$	$-51.6(6)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{S} 1-\mathrm{N} 1$	$130.8(5)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1-\mathrm{N} 1$	$60.5(6)$
	$-117.1(6)$

Symmetry code: (i) $-x,-y+2,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 N \cdots \mathrm{O} 2^{2 i}$	$0.85(2)$	$2.03(3)$	$2.839(7)$	$160(6)$

Symmetry code: (ii) $-x,-y+1,-z+1$.

