

metal-organic compounds

V = 1822.2 (6) Å³

Mo $K\alpha$ radiation

 $0.51 \times 0.20 \times 0.15 \text{ mm}$

17516 measured reflections

4135 independent reflections

2654 reflections with $I > 2\sigma(I)$

 $\mu = 0.66 \text{ mm}^{-3}$

T = 298 K

 $R_{\rm int} = 0.035$

Z = 2

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(1*H*-imidazole- κN^3)bis(2-methylbenzoato- κO)bis(2-methylbenzoic acid- κO)copper(II)

Sheng-Liang Ni,* Ming-Xing Zhao and Hai-Xia Ge

Department of Chemistry, Huzhou Teachers College, Huzhou, Zhejiang 313000, People's Republic of China Correspondence e-mail: shengliangni@163.com

Received 3 July 2011; accepted 15 July 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; R factor = 0.046; wR factor = 0.164; data-to-parameter ratio = 17.5.

The structure of the title compound, $[Cu(C_8H_7O_2)_2(C_3H_4N_2)_2(C_8H_8O_2)_2]$, consists of centrosymmetric monomeric units, in which the Cu^{II} atom has a tetragonally distorted octahedral coordination involving two imidazole N atoms and two carboxylate O atoms in the square plane [Cu-N = 1.964 (3) and Cu-O = 1.960 (2) Å] and 2-methylbenzoic acid O atoms in axial sites [Cu-O = 2.753 (3) Å]. Within the complex, the carboxylic acid forms intramolecular $O-H \cdots O$ hydrogen bonds, while the molecules are assembled through N- $H \cdots O$ (carboxyl) hydrogen bonds into chains extending along the *a*-axis direction. These chains are further linked by weak $\pi-\pi$ interactions [centroid–centroid separation = 3.930 (2) Å].

Related literature

For applications of transition metal complexes, see: Aakeröy & Seddon (1993). For the use of carboxylate ligands in the construction of supramolecular complexes, see: Moulton & Zaworotko (2001). For Cu-O/N distances in other tetragonally distorted octahedral copper(II) complexes, see: Bonamartini *et al.* (1993); Chen *et al.* (2010); Su *et al.* (1991).

Experimental

Crystal data [Cu(C₈H₇O₂)₂(C₃H₄N₂)₂(C₈H₈O₂)₂] $M_r = 742.27$ Monoclinic, $P2_1/c$ a = 8.0866 (16) Å b = 12.193 (2) Å c = 18.887 (4) Å $\beta = 101.90$ (3)°

Data collection

Rigaku R-AXIS RAPID CCD diffractometer Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\rm min} = 0.846, T_{\rm max} = 0.901$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	H atoms treated by a mixture of
$wR(F^2) = 0.164$	independent and constrained
S = 1.14	refinement
4135 reflections	$\Delta \rho_{\rm max} = 0.61 \ {\rm e} \ {\rm \AA}^{-3}$
236 parameters	$\Delta \rho_{\rm min} = -0.95 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$O_3 - H_2 \cdots O_2$ 0.85 1.67 2.516 (3) 168.9	$D - H \cdot \cdot \cdot A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$12-111\cdots04$ $0.09(5)$ $1.97(5)$ $2.780(4)$ $152($	$O3-H2\cdots O2$	0.85	1.67	2.516 (3)	168.9
	$N2-H1\cdots O4^{i}$	0.89 (5)	1.97 (5)	2.786 (4)	152 (5)

Symmetry code: (i) -x, -y + 1, -z.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This project was supported by the Foundation of the Education Department of Zhejiang Province (ZC200805662).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2128).

References

Aakeröy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397–407.
 Bonamartini, A. C., Bruni, S., Cariati, F., Battaglia, L. P. & Pelosi, G. (1993).
 Inorg. Chim. Acta, 205, 99–104.

Chen, H. Y., Ou, Y. P. & Liao, R. S. (2010). Chin. J. Struct. Chem. 29, 732-736.

- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.

Rigaku (1998). *RAPID-AUTO*. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2004). *CrystalStructure*. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Su, C. C., Tsai, H. L., Ko, F. H., Wang, S. L. & Cheng, C. Y. (1991). Inorg. Chim. Acta, 186, 171–178.

supporting information

Acta Cryst. (2011). E67, m1123-m1124 [doi:10.1107/S160053681102839X]

Bis(1*H*-imidazole- κN^3)bis(2-methylbenzoato- κO)bis(2-methylbenzoic acid- κO)copper(II)

Sheng-Liang Ni, Ming-Xing Zhao and Hai-Xia Ge

S1. Comment

In the past decade, a variety of supramolecular architectures based on non-covalent intermolecular interactions such as hydrogen bonding, van der Waals forces and π - π stacking interactions have been achieved by using transition metal centers and organic ligands. Such complexes may have interesting structural topologies and have potential applications in catalysis, ion exchange, gas storage, and molecular-based magnetic materials (Aakeröy & Seddon, 1993). Carboxylate ligands have been commonly utilized as construction units to obtain a number of supramolecular complexes (Moulton & Zaworotko, 2001). We obtained the mononuclear title complex, $[Cu(C_3H_4N_2)_2(C_8H_7O_2)_2(C_8H_8O_2)_2]$ from the reaction of imidazole and 2-methylbenzoic acid with CuCO₃ in an aqueous ethanolic solution and its crystal structure is reported here.

The centrosymmetric title complex (Fig. 1) has tetragonally distorted octahedral stereochemistry, the coordination sphere about copper(II) comprising two two imidazole N donors and two carboxylate O donors in the square plane [Cu—N, 1.964 (3) Å; Cu—O, 1.960 (2) Å] and two O donors from the 2–methylbenzoic acid molecules in the axial sites [Cu—O, 2.753 (3) Å]. The Cu–O/N distances are similar to those found in other tetragonally distorted octahedral copper(II) complexes (Chen *et al.*, 2010, Bonamartini *et al.*, 1993, Su *et al.*, 1991). Within the complex the carboxylic acid forms intramolecular O—H···O hydrogen bonds (Table 1) while the molecules are assembled through N—H···O(carboxyl) hydrogen bonds into one-dimensional chains extending along the *a* cell direction (Fig. 2) and are further linked by weak π – π stacking [ring centroid separation, 3.930 (2) Å] giving layers extending across (110).

S2. Experimental

Freshly prepared CuCO₃ was essential for an optimal synthesis. An aqueous solution of aqueous Na₂CO₃ (1.0 cm³; 1*M*) was added dropwise to 4 cm³ of a stirred aqueous solution of CuSO₄. 5H₂O (0.2490 g, 1.0 mmol), giving a precipitate of Cu(OH)_{2-2x}(CO₃)_x.*y*H₂O, which was centrifuged and washed with double distilled water until no SO₄²⁻ anions were detected in the washings. The precipitate was subsequently added to a stirred solution of 2-methylbenzoic acid (0.5450 g, 4.0 mmol) and imidazole (0.069 g, 1.0 mmol) in 20 cm³ of 1:1 ethanol–water. The mixture was stirred for 1 h and the solid was removed by filtration, the resulting solution (pH = 4.10) was allowed to stand at room temperature, slow evaporation of the solvent forming blue block crystals after a week (yield: 43%).

S3. Refinement

All H-atoms bonded to C were positioned geometrically and refined using a riding model with C—H(aromatic) = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ or C—H(methyl) = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$. H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with O—H fixed as initially found and with $U_{iso}(H)$ values set at $1.5U_{eq}(O)$.

Figure 1

An *ORTEP* view of the title compound showing atom numbering, with displacement ellipsoids drawn at the 45% probability level. For symmetry code (#1): -x + 1, -y + 1, -z.

Figure 2

The structure of the title compound formed through hydrogen bonding and weak π - π packing interactions

Bis(1*H*-imidazole- κN^3)bis(2-methylbenzoato- κO)bis(2-methylbenzoic acid- κO)copper(II)

F(000) = 774

 $\theta = 3.0-27.4^{\circ}$ $\mu = 0.66 \text{ mm}^{-1}$

T = 298 K

Block, blue

 $D_{\rm x} = 1.353 {\rm Mg} {\rm m}^{-3}$

 $0.51 \times 0.20 \times 0.15 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 25 reflections

Crystal data

 $[Cu(C_8H_7O_2)_2(C_3H_4N_2)_2(C_8H_8O_2)_2]$ $M_r = 742.27$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.0866 (16) Å b = 12.193 (2) Å c = 18.887 (4) Å $\beta = 101.90 (3)^\circ$ $V = 1822.2 (6) \text{ Å}^3$ Z = 2

Data collection

Rigaku R-AXIS RAPID CCD	17516 measured reflections
diffractometer	4135 independent reflections
Radiation source: fine-focus sealed tube	2654 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.035$
ωscans	$\theta_{\rm max} = 27.4^{\circ}, \ \theta_{\rm min} = 3.0^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 10$
(ABSCOR; Higashi, 1995)	$k = -15 \rightarrow 15$
$T_{\min} = 0.846, \ T_{\max} = 0.901$	$l = -24 \rightarrow 24$
Refinement	

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: inferred from
$wR(F^2) = 0.164$	neighbouring sites
<i>S</i> = 1.14	H atoms treated by a mixture of independent
4135 reflections	and constrained refinement
236 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0599P)^2 + 1.5834P]$
0 restraints	where $P = (F_0^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.61 \ { m e} \ { m \AA}^{-3}$
	$\Delta ho_{ m min} = -0.95 \ { m e} \ { m \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$
Cu	0.5000	0.5000	0.0000	0.0496 (2)
01	0.4213 (3)	0.64617 (17)	0.02095 (14)	0.0596 (6)
02	0.2854 (4)	0.6947 (2)	-0.08906 (16)	0.0783 (8)

C1	0.3427 (4)	0.7153 (2)	-0.0237 (2)	0.0513 (8)
C2	0.3180 (4)	0.8272 (2)	0.00562 (19)	0.0511 (8)
C3	0.3655 (6)	0.8403 (3)	0.0799 (2)	0.0726 (11)
H3A	0.4116	0.7813	0.1085	0.087*
C4	0.3455 (7)	0.9400 (4)	0.1122 (3)	0.0979 (17)
H4A	0.3769	0.9477	0.1622	0.117*
C5	0.2799 (7)	1.0264 (3)	0.0705 (3)	0.0948 (16)
H5A	0.2671	1.0938	0.0918	0.114*
C6	0.2329 (7)	1.0143 (3)	-0.0021 (3)	0.0848 (14)
H6A	0.1882	1.0745	-0.0297	0.102*
C7	0.2485 (5)	0.9156 (3)	-0.0373 (2)	0.0640 (10)
C8	0.1914 (8)	0.9123 (4)	-0.1184 (2)	0.1054 (18)
H8A	0.1491	0.9831	-0.1356	0.158*
H8B	0.1035	0.8586	-0.1314	0.158*
H8C	0.2852	0.8931	-0.1399	0.158*
O3	0.3580 (3)	0.51870 (19)	-0.14514 (16)	0.0670 (7)
H2	0.3217	0.5742	-0.1255	0.080*
04	0.0849 (4)	0.4803 (2)	-0.16537 (18)	0.0801 (9)
С9	0.2279 (5)	0.4565 (3)	-0.17091 (18)	0.0536 (8)
C10	0.2697 (4)	0.3551 (3)	-0.20755 (17)	0.0510 (8)
C11	0.4218 (5)	0.3531 (3)	-0.2315 (2)	0.0611 (9)
H11A	0.4940	0.4132	-0.2227	0.073*
C12	0.4669 (6)	0.2638 (3)	-0.2680(2)	0.0715 (11)
H12A	0.5672	0.2642	-0.2848	0.086*
C13	0.3628 (6)	0.1750 (3)	-0.2791 (2)	0.0772 (12)
H13A	0.3924	0.1143	-0.3037	0.093*
C14	0.2145 (6)	0.1743 (3)	-0.2545 (2)	0.0746 (11)
H14A	0.1468	0.1119	-0.2616	0.089*
C15	0.1622 (5)	0.2648 (3)	-0.21914 (19)	0.0599 (9)
C16	-0.0046 (6)	0.2574 (4)	-0.1956 (3)	0.0896 (14)
H16A	-0.0250	0.3245	-0.1723	0.134*
H16B	-0.0014	0.1974	-0.1624	0.134*
H16C	-0.0935	0.2455	-0.2372	0.134*
N1	0.2954 (3)	0.4336 (2)	0.02226 (15)	0.0499 (6)
N2	0.0739 (4)	0.4079 (3)	0.06931 (18)	0.0614 (8)
H1	-0.003 (6)	0.426 (4)	0.095 (3)	0.101 (16)*
C17	0.1960 (5)	0.4773 (3)	0.0623 (2)	0.0553 (8)
H17A	0.2098	0.5470	0.0828	0.066*
C18	0.0930 (5)	0.3148 (3)	0.0321 (2)	0.0677 (10)
H18A	0.0249	0.2527	0.0272	0.081*
C19	0.2311 (5)	0.3312 (3)	0.0036 (2)	0.0606 (9)
H19A	0.2757	0.2808	-0.0243	0.073*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Cu	0.0522 (3)	0.0276 (3)	0.0718 (4)	0.0049 (2)	0.0195 (3)	0.0006 (2)
01	0.0704 (16)	0.0301 (11)	0.0816 (16)	0.0099 (11)	0.0236 (13)	0.0000 (11)

O2	0.109 (2)	0.0432 (14)	0.0782 (19)	0.0115 (14)	0.0089 (16)	-0.0148 (13)
C1	0.0493 (18)	0.0308 (15)	0.077 (2)	0.0002 (13)	0.0212 (17)	-0.0053 (15)
C2	0.0526 (18)	0.0305 (15)	0.071 (2)	-0.0009 (13)	0.0140 (16)	-0.0058 (14)
C3	0.094 (3)	0.0404 (19)	0.076 (3)	0.0172 (19)	-0.001 (2)	-0.0058 (17)
C4	0.136 (4)	0.062 (3)	0.082 (3)	0.028 (3)	-0.009 (3)	-0.026 (2)
C5	0.123 (4)	0.043 (2)	0.105 (4)	0.024 (2)	-0.006 (3)	-0.026 (2)
C6	0.111 (4)	0.038 (2)	0.097 (3)	0.019 (2)	0.002 (3)	-0.005 (2)
C7	0.081 (3)	0.0335 (16)	0.075 (2)	0.0052 (16)	0.011 (2)	-0.0013 (16)
C8	0.178 (6)	0.059 (3)	0.074 (3)	0.023 (3)	0.012 (3)	0.007 (2)
O3	0.0695 (17)	0.0451 (14)	0.0900 (19)	-0.0034 (12)	0.0250 (15)	-0.0162 (12)
O4	0.0636 (17)	0.0740 (19)	0.104 (2)	0.0116 (14)	0.0206 (16)	-0.0226 (16)
C9	0.062 (2)	0.0457 (17)	0.0527 (19)	0.0034 (16)	0.0119 (16)	0.0010 (15)
C10	0.062 (2)	0.0423 (17)	0.0481 (17)	0.0031 (15)	0.0102 (15)	-0.0023 (14)
C11	0.069 (2)	0.052 (2)	0.064 (2)	0.0015 (17)	0.0177 (18)	-0.0044 (17)
C12	0.076 (3)	0.070 (3)	0.071 (2)	0.015 (2)	0.023 (2)	-0.009 (2)
C13	0.097 (3)	0.060 (2)	0.071 (3)	0.017 (2)	0.009 (2)	-0.017 (2)
C14	0.094 (3)	0.052 (2)	0.071 (3)	-0.009 (2)	0.003 (2)	-0.0131 (19)
C15	0.068 (2)	0.055 (2)	0.054 (2)	-0.0033 (17)	0.0062 (17)	-0.0018 (16)
C16	0.080 (3)	0.094 (3)	0.097 (3)	-0.029 (3)	0.025 (3)	-0.017 (3)
N1	0.0511 (15)	0.0373 (14)	0.0620 (17)	0.0039 (11)	0.0133 (13)	0.0012 (12)
N2	0.0509 (17)	0.066 (2)	0.070 (2)	0.0089 (15)	0.0193 (15)	0.0117 (16)
C17	0.058 (2)	0.0468 (19)	0.062 (2)	0.0105 (15)	0.0143 (17)	0.0008 (15)
C18	0.060 (2)	0.051 (2)	0.095 (3)	-0.0049 (17)	0.023 (2)	0.005 (2)
C19	0.062 (2)	0.0398 (17)	0.083 (3)	-0.0035 (15)	0.0226 (19)	-0.0059 (17)

Geometric parameters (Å, °)

Cu-O1 ⁱ	1.960 (2)	O4—C9	1.217 (4)
Cu—O1	1.960 (2)	C9—C10	1.489 (5)
$Cu-O3^i$	2.753 (3)	C10—C15	1.392 (5)
Cu—O3	2.753 (3)	C10—C11	1.396 (5)
Cu—N1 ⁱ	1.964 (3)	C11—C12	1.377 (5)
Cu—N1	1.964 (3)	C11—H11A	0.9300
01—C1	1.267 (4)	C12—C13	1.360 (6)
O2—C1	1.252 (4)	C12—H12A	0.9300
C1—C2	1.501 (4)	C13—C14	1.373 (6)
С2—С3	1.385 (5)	C13—H13A	0.9300
С2—С7	1.395 (5)	C14—C15	1.400 (5)
C3—C4	1.385 (5)	C14—H14A	0.9300
С3—НЗА	0.9300	C15—C16	1.507 (6)
C4—C5	1.356 (6)	C16—H16A	0.9600
C4—H4A	0.9300	C16—H16B	0.9600
С5—С6	1.353 (7)	C16—H16C	0.9600
C5—H5A	0.9300	N1—C17	1.325 (4)
С6—С7	1.393 (5)	N1—C19	1.371 (4)
С6—Н6А	0.9300	N2—C17	1.327 (5)
С7—С8	1.506 (6)	N2—C18	1.361 (5)
C8—H8A	0.9600	N2—H1	0.89 (5)

C8—H8B	0.9600	С17—Н17А	0.9300
C8—H8C	0.9600	C18—C19	1.350 (5)
O3—C9	1.307 (4)	C18—H18A	0.9300
O3—H2	0.8519	С19—Н19А	0.9300
Ol ⁱ —Cu—Ol	180.00 (15)	C15—C10—C9	122.4 (3)
O1 ⁱ —Cu—N1 ⁱ	90.49 (10)	C11—C10—C9	117.7 (3)
O1—Cu—N1 ⁱ	89.51 (10)	C12—C11—C10	121.2 (4)
O1 ⁱ —Cu—N1	89.51 (10)	C12—C11—H11A	119.4
O1—Cu—N1	90.49 (10)	C10-C11-H11A	119.4
N1 ⁱ —Cu—N1	180.0	C13—C12—C11	119.2 (4)
C1—O1—Cu	127.6 (2)	C13—C12—H12A	120.4
O2—C1—O1	123.8 (3)	C11—C12—H12A	120.4
O2—C1—C2	119.7 (3)	C12—C13—C14	120.6 (4)
O1—C1—C2	116.5 (3)	C12—C13—H13A	119.7
C3—C2—C7	119.6 (3)	C14—C13—H13A	119.7
C3—C2—C1	116.6 (3)	C13—C14—C15	121.8 (4)
C7—C2—C1	123.8 (3)	C13—C14—H14A	119.1
C2—C3—C4	121.0 (4)	C15—C14—H14A	119.1
С2—С3—Н3А	119.5	C10—C15—C14	117.3 (4)
С4—С3—Н3А	119.5	C10—C15—C16	124.7 (4)
C5—C4—C3	119.6 (4)	C14—C15—C16	118.0 (4)
C5—C4—H4A	120.2	C15—C16—H16A	109.5
C3—C4—H4A	120.2	C15—C16—H16B	109.5
C6—C5—C4	119.9 (4)	H16A—C16—H16B	109.5
С6—С5—Н5А	120.1	C15—C16—H16C	109.5
C4—C5—H5A	120.1	H16A—C16—H16C	109.5
C5—C6—C7	123.0 (4)	H16B—C16—H16C	109.5
С5—С6—Н6А	118.5	C17—N1—C19	105.7 (3)
С7—С6—Н6А	118.5	C17—N1—Cu	126.5 (2)
C6—C7—C2	117.1 (4)	C19—N1—Cu	127.8 (2)
C6—C7—C8	118.0 (4)	C17—N2—C18	108.3 (3)
C2—C7—C8	124.9 (3)	C17—N2—H1	121 (3)
С7—С8—Н8А	109.5	C18—N2—H1	131 (3)
С7—С8—Н8В	109.5	N1—C17—N2	110.6 (3)
H8A—C8—H8B	109.5	N1—C17—H17A	124.7
С7—С8—Н8С	109.5	N2—C17—H17A	124.7
H8A—C8—H8C	109.5	C19—C18—N2	105.8 (3)
H8B—C8—H8C	109.5	C19—C18—H18A	127.1
С9—О3—Н2	107.4	N2—C18—H18A	127.1
04—C9—O3	122.4 (3)	C18—C19—N1	109.5 (3)
O4—C9—C10	123.3 (3)	C18—C19—H19A	125.2
O3—C9—C10	114.3 (3)	N1-C19-H19A	125.2
C15—C10—C11	119.9 (3)		

Symmetry code: (i) -x+1, -y+1, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O3—H2…O2	0.85	1.67	2.516 (3)	168.9
N2—H1···O4 ⁱⁱ	0.89 (5)	1.97 (5)	2.786 (4)	152 (5)

Symmetry code: (ii) -x, -y+1, -z.