Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N'-[(1E,2E)-1-(2-Phenylhydrazin-1-ylidene)-1-(phenylsulfonyl)propan-2-ylidene]benzohydrazide

Hatem A. Abdel-Aziz,^a‡ Seik Weng Ng^{b,c} and Edward R. T. Tiekink^b*

^aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^cChemistry Department, Faculty of, Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: edward.tiekink@gmail.com

Received 6 August 2011; accepted 7 August 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.031; wR factor = 0.085; data-to-parameter ratio = 14.1.

The configuration about each C=N bond in the title compound, C₂₂H₂₀N₄O₃S, is *E*. While to a first approximation the phenylhydrazin-1-ylidene and benzohydrazide residues are coplanar, in part due to the presence of an intramolecular $N-H \cdots N$ hydrogen bond, significant twists are evident in the orientations of the hydrazine [N-N-C-C torsion angle = $-170.74 (11)^{\circ}$ and benzovl benzene [N-C-C-C = $-21.72 (18)^{\circ}$ rings. The sulfort benzene ring occupies a position almost normal to the rest of the molecule [C-S-C- $N = -92.28 (10)^{\circ}$]. Centrosymmetric aggregates mediated by pairs of hydrazide-sulfonyl N-H···O hydrogen bonds are the predominant packing motif in the crystal. These are connected into linear supramolecular chains via C-H···O interactions which are, in turn, linked into layers in the ac plane via $C-H \cdots \pi$ interactions. Connections between layers along the *b*-axis direction are of the π - π type and occur between centrosymmetrically related hydrazine-bound benzene rings [centroid–centroid separation = 3.7425 (9) Å].

Related literature

For background to the biological activity of bis-hydrazones, see: Abdel-Aziz & Mekawey (2009); Abdel-Aziz *et al.* (2010).

Experimental

Crystal data $C_{22}H_{20}N_4O_3S$ $M_r = 420.48$ Triclinic, $P\overline{1}$ a = 8.1609 (3) Å b = 9.6632 (5) Å c = 14.1261 (7) Å $\alpha = 92.027$ (4)° $\beta = 102.822$ (4)°

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2010) $T_{\rm min} = 0.825, T_{\rm max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.085$ S = 1.043942 reflections 280 parameters $V = 998.55 \text{ (8) } \text{\AA}^{3}$ Z = 2Cu K\alpha radiation $\mu = 1.72 \text{ mm}^{-1}$ T = 100 K $0.30 \times 0.25 \times 0.05 \text{ mm}$

 $\gamma = 111.984 \ (4)^{\circ}$

6674 measured reflections 3942 independent reflections 3658 reflections with $I > 2\sigma(I)$ $R_{int} = 0.017$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.34 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.42 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1-C6 and C17-C22 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N2-H2···N3	0.901 (19)	1.860 (18)	2.5584 (15)	132.8 (16)
N4−H4···O1 ⁱ	0.856 (18)	2.089 (19)	2.8946 (14)	156.4 (16)
C2−H2a···O3 ⁱⁱ	0.95	2.38	3.0977 (16)	132
$C20-H20\cdots Cg1^{iii}$	0.95	2.72	3.4980 (15)	140
$C15-H15a\cdots Cg2^{iii}$	0.98	2.79	3.4052 (15)	121
Symmetry codes:	(i) $-x + 1, -$	-y + 1, -z + 1;	(ii) $x + 1, y$	+1, z; (iii)

-x + 1, -y, -z + 1.

Data collection: *CrysAlis PRO* (Agilent, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The authors thank King Saud University and the University of Malaya for supporting this study.

[‡] Additional correspondence author, e-mail: hatem_741@yahoo.com.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6353).

References

Abdel-Aziz, H. A., Abdel-Wahab, B. F. & Badria, F. A. (2010). Arch. Pharm. 343, 152–159.

Abdel-Aziz, H. A. & Mekawey, A. A. I. (2009). Eur. J. Med. Chem. 44, 3985–4997.

Agilent (2010). *CrysAlis PRO*. Agilent Technologies, Yarnton, England. Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Farrugia, L. J. (1997). *J. Appl. Cryst.* **30**, 565. Sheldrick, G. M. (2008). *Acta Cryst.* **A64**, 112–122. Westrip, S. P. (2010). *J. Appl. Cryst.* **43**, 920–925.

supporting information

Acta Cryst. (2011). E67, o2317-o2318 [doi:10.1107/S1600536811031953]

N'-[(1*E*,2*E*)-1-(2-Phenylhydrazin-1-ylidene)-1-(phenylsulfonyl)propan-2-yl-idene]benzohydrazide

Hatem A. Abdel-Aziz, Seik Weng Ng and Edward R. T. Tiekink

S1. Comment

The title compound (I) was characterized in relation to on-going studies of bis-hydrazone derivatives which have been investigated for biological activity (Abdel-Aziz & Mekawey, 2009; Abdel-Aziz *et al.*, 2010). The molecular structure of (I), Fig. 1, shows an *E* configuration about each of the C=N bonds [C7=N1 = 1.3130 (16) Å and C14=N3 = 1.2936 (17) Å]. The presence of an intramolecular N—H···N hydrogen bond closes a *S*(6) ring, {···HNNCCN}, and provides stabilization to the approximately co-planar arrangement between the phenylhydrazin-1-ylidene and benzohydrazide residues. This co-planarity does not extend to the hydrazine-benzene ring [the N1—N2—C8—C9 torsion angle is -170.74 (11) Å] nor to the benzoyl-benzene [N4—C16—C17—C18 = -21.72 (18) °] ring as significant twists are evident. Nevertheless, to a first approximation the phenylhydrazin-1-ylidene and benzohydrazide residues are co-planar and the sulfonyl-benzene occupies a position almost perpendicular to this plane as seen in the value of the C1—S1—C7—N1 torsion angle of -92.28 (10) °.

In the crystal packing, N—H···O hydrogen bonding between hydrazide-H and a sulfonyl-O leads to the formation of centrosymmetric aggregates *via* a 14-membered {···HNNC₂SO}₂ synthon, Table 1. These are connected into a linear supramolecular chain *via* C—H···O interactions, Table 1 and Fig. 2. The chains are connected into layers in the *ac* plane *via* C—H··· π interactions, Table 1. Layers are connected along the *b* direction *via* π – π interactions occurring between centrosymmetrically related hydrazine-bound benzene rings [3.7425 (9) Å for symmetry operation: *-x*, *-y*, *-z*].

S2. Experimental

The title compound was prepared by the literature procedure (Abdel-Aziz *et al.*, 2010) and yellow prisms were isolated from its solution in EtOH/DMF (v/v = 5/1) by slow evaporation at room temperature.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, U_{iso} (H) 1.2 to 1.5 U_{eq} (C)] and were included in the refinement in the riding model approximation. The amino-H atoms were located in a difference Fourier map, and subsequently refined freely.

Figure 1

The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.

Figure 2

Supramolecular chain in (I) mediated by N—H…O hydrogen bonds (blue dashed lines), leading to centrosymmetric aggregates, and C—H…O interactions, shown as orange lines.

Figure 3

A view in projection down the *a* axis of the unit-cell contents of (I). The N—H···O, C—H···O, C—H··· π and π – π interactions are shown as blue, orange, purple and pink dashed lines, respectively.

N'-[(1E,2E)-1-(2-phenylhydrazin-1-ylidene)- 1-(phenylsulfonyl)propan-2-ylidene]benzohydrazide

Crystal data	
$C_{22}H_{20}N_4O_3S$ $M_r = 420.48$ Triclinic, P1 Hall symbol: -P 1 a = 8.1609 (3) Å b = 9.6632 (5) Å c = 14.1261 (7) Å $a = 92.027 (4)^{\circ}$ $\beta = 102.822 (4)^{\circ}$ $\gamma = 111.984 (4)^{\circ}$ $V = 998.55 (8) \text{ Å}^3$	Z = 2 F(000) = 440 $D_x = 1.398 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.5418 \text{ Å}$ Cell parameters from 4430 reflections $\theta = 3.2-74.2^{\circ}$ $\mu = 1.72 \text{ mm}^{-1}$ T = 100 K Prism, yellow $0.30 \times 0.25 \times 0.05 \text{ mm}$
Data collection	
Agilent SuperNova Dual diffractometer with an Atlas detector Radiation source: SuperNova (Cu) X-ray Source Mirror monochromator Detector resolution: 10.4041 pixels mm ⁻¹ ω scans	Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2010) $T_{min} = 0.825$, $T_{max} = 1.000$ 6674 measured reflections 3942 independent reflections 3658 reflections with $I > 2\sigma(I)$ $R_{int} = 0.017$

$\theta_{\rm max} = 74.4^{\circ}, \ \theta_{\rm min} = 3.2^{\circ}$	$k = -12 \rightarrow 11$
$h = -10 \rightarrow 8$	$l = -17 \rightarrow 15$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.031$	Hydrogen site location: inferred from
$wR(F^2) = 0.085$	neighbouring sites
S = 1.04	H atoms treated by a mixture of independent
3942 reflections	and constrained refinement
280 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0484P)^2 + 0.3295P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$
	$\Delta ho_{ m min} = -0.42$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
<u>S1</u>	0.50233 (4)	0.56979 (3)	0.25827 (2)	0.01376 (10)
01	0.58750 (13)	0.66428 (10)	0.35165 (7)	0.0188 (2)
02	0.38284 (12)	0.61117 (10)	0.18465 (7)	0.0184 (2)
03	0.10801 (14)	-0.07033 (11)	0.38899 (7)	0.0272 (2)
N1	0.24156 (14)	0.31176 (12)	0.20702 (8)	0.0156 (2)
N2	0.12879 (15)	0.17365 (12)	0.20937 (8)	0.0162 (2)
H2	0.146 (2)	0.134 (2)	0.2655 (14)	0.031 (5)*
N3	0.31255 (14)	0.20873 (12)	0.38694 (8)	0.0157 (2)
N4	0.34253 (15)	0.14291 (12)	0.46998 (8)	0.0155 (2)
H4	0.393 (2)	0.196 (2)	0.5262 (13)	0.024 (4)*
C1	0.67600 (17)	0.55617 (14)	0.20755 (9)	0.0142 (2)
C2	0.85772 (17)	0.62654 (14)	0.25910 (9)	0.0172 (3)
H2A	0.8906	0.6826	0.3218	0.021*
C3	0.99099 (18)	0.61328 (15)	0.21697 (10)	0.0202 (3)
H3	1.1162	0.6608	0.2512	0.024*
C4	0.94206 (18)	0.53115 (16)	0.12537 (10)	0.0204 (3)
H4A	1.0337	0.5217	0.0975	0.025*
C5	0.75863 (18)	0.46236 (15)	0.07400 (9)	0.0190 (3)
Н5	0.7258	0.4071	0.0110	0.023*
C6	0.62441 (17)	0.47453 (14)	0.11483 (9)	0.0162 (3)
H6	0.4993	0.4281	0.0803	0.019*
C7	0.38026 (17)	0.38545 (14)	0.28212 (9)	0.0147 (2)

C8	-0.02363 (17)	0.09899 (14)	0.12996 (9)	0.0157 (3)
C9	-0.15086 (18)	-0.03770 (14)	0.14394 (9)	0.0183 (3)
Н9	-0.1313	-0.0773	0.2041	0.022*
C10	-0.30598 (19)	-0.11519 (15)	0.06928 (10)	0.0210 (3)
H10	-0.3932	-0.2084	0.0783	0.025*
C11	-0.33482 (19)	-0.05745 (16)	-0.01863 (10)	0.0224 (3)
H11	-0.4418	-0.1105	-0.0695	0.027*
C12	-0.2058 (2)	0.07881 (16)	-0.03178 (10)	0.0228 (3)
H12	-0.2252	0.1180	-0.0921	0.027*
C13	-0.04996 (18)	0.15771 (15)	0.04185 (10)	0.0188 (3)
H13	0.0377	0.2504	0.0325	0.023*
C14	0.43798 (17)	0.33214 (14)	0.37516 (9)	0.0147 (2)
C15	0.62412 (17)	0.40633 (14)	0.44494 (9)	0.0173 (3)
H15A	0.6634	0.3290	0.4728	0.026*
H15B	0.6187	0.4718	0.4978	0.026*
H15C	0.7114	0.4665	0.4098	0.026*
C16	0.21874 (18)	-0.00233 (14)	0.46522 (9)	0.0171 (3)
C17	0.23417 (18)	-0.07141 (14)	0.55775 (9)	0.0166 (3)
C18	0.39363 (19)	-0.02070 (15)	0.63346 (10)	0.0190 (3)
H18	0.4977	0.0635	0.6283	0.023*
C19	0.4000 (2)	-0.09350 (16)	0.71628 (10)	0.0236 (3)
H19	0.5090	-0.0598	0.7676	0.028*
C20	0.2473 (2)	-0.21564 (16)	0.72444 (10)	0.0247 (3)
H20	0.2516	-0.2643	0.7816	0.030*
C21	0.0886 (2)	-0.26655 (16)	0.64928 (11)	0.0231 (3)
H21	-0.0154	-0.3503	0.6549	0.028*
C22	0.08182 (18)	-0.19513 (15)	0.56582 (10)	0.0195 (3)
H22	-0.0267	-0.2305	0.5141	0.023*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.01522 (16)	0.01194 (15)	0.01440 (16)	0.00461 (12)	0.00554 (11)	0.00199 (11)
01	0.0231 (5)	0.0151 (4)	0.0175 (4)	0.0056 (4)	0.0075 (4)	-0.0008 (3)
02	0.0183 (4)	0.0180 (4)	0.0211 (5)	0.0086 (4)	0.0063 (4)	0.0066 (4)
03	0.0318 (6)	0.0185 (5)	0.0178 (5)	-0.0002 (4)	-0.0017 (4)	0.0018 (4)
N1	0.0164 (5)	0.0142 (5)	0.0161 (5)	0.0047 (4)	0.0061 (4)	0.0012 (4)
N2	0.0176 (5)	0.0140 (5)	0.0140 (5)	0.0028 (4)	0.0039 (4)	0.0020 (4)
N3	0.0182 (5)	0.0158 (5)	0.0136 (5)	0.0067 (4)	0.0049 (4)	0.0036 (4)
N4	0.0185 (5)	0.0142 (5)	0.0114 (5)	0.0044 (4)	0.0027 (4)	0.0020 (4)
C1	0.0167 (6)	0.0124 (6)	0.0147 (6)	0.0053 (5)	0.0063 (5)	0.0048 (5)
C2	0.0182 (6)	0.0151 (6)	0.0153 (6)	0.0035 (5)	0.0039 (5)	0.0014 (5)
C3	0.0145 (6)	0.0206 (6)	0.0229 (7)	0.0037 (5)	0.0046 (5)	0.0046 (5)
C4	0.0203 (6)	0.0234 (7)	0.0215 (7)	0.0097 (5)	0.0103 (5)	0.0069 (5)
C5	0.0228 (7)	0.0206 (7)	0.0141 (6)	0.0082 (5)	0.0060 (5)	0.0026 (5)
C6	0.0162 (6)	0.0163 (6)	0.0150 (6)	0.0054 (5)	0.0031 (5)	0.0036 (5)
C7	0.0154 (6)	0.0131 (6)	0.0155 (6)	0.0044 (5)	0.0060 (5)	0.0018 (5)
C8	0.0168 (6)	0.0146 (6)	0.0147 (6)	0.0057 (5)	0.0036 (5)	-0.0002 (5)

supporting information

C9	0.0212 (6)	0.0170 (6)	0.0153 (6)	0.0059 (5)	0.0042 (5)	0.0035 (5)	
C10	0.0198 (6)	0.0173 (6)	0.0208 (7)	0.0021 (5)	0.0045 (5)	0.0016 (5)	
C11	0.0214 (7)	0.0211 (7)	0.0179 (6)	0.0042 (5)	-0.0005 (5)	0.0003 (5)	
C12	0.0270 (7)	0.0222 (7)	0.0169 (6)	0.0084 (6)	0.0029 (5)	0.0047 (5)	
C13	0.0215 (6)	0.0157 (6)	0.0176 (6)	0.0050 (5)	0.0060 (5)	0.0031 (5)	
C14	0.0162 (6)	0.0144 (6)	0.0147 (6)	0.0065 (5)	0.0054 (5)	0.0007 (5)	
C15	0.0170 (6)	0.0169 (6)	0.0175 (6)	0.0060 (5)	0.0046 (5)	0.0014 (5)	
C16	0.0187 (6)	0.0147 (6)	0.0168 (6)	0.0054 (5)	0.0046 (5)	0.0016 (5)	
C17	0.0212 (6)	0.0147 (6)	0.0169 (6)	0.0091 (5)	0.0068 (5)	0.0029 (5)	
C18	0.0227 (7)	0.0171 (6)	0.0180 (6)	0.0085 (5)	0.0058 (5)	0.0024 (5)	
C19	0.0311 (7)	0.0259 (7)	0.0167 (6)	0.0155 (6)	0.0038 (5)	0.0034 (5)	
C20	0.0389 (8)	0.0258 (7)	0.0202 (7)	0.0203 (6)	0.0143 (6)	0.0102 (6)	
C21	0.0283 (7)	0.0202 (7)	0.0297 (7)	0.0128 (6)	0.0175 (6)	0.0102 (6)	
C22	0.0206 (6)	0.0179 (6)	0.0230 (7)	0.0090 (5)	0.0087 (5)	0.0046 (5)	

Geometric parameters (Å, °)

S1—O2	1.4365 (9)	С8—С9	1.3945 (18)	
S101	1.4456 (9)	C9—C10	1.3847 (18)	
S1—C1	1.7672 (13)	С9—Н9	0.9500	
S1—C7	1.7725 (13)	C10—C11	1.3880 (19)	
O3—C16	1.2172 (16)	C10—H10	0.9500	
N1C7	1.3130 (16)	C11—C12	1.394 (2)	
N1—N2	1.3139 (15)	C11—H11	0.9500	
N2—C8	1.4062 (16)	C12—C13	1.3826 (19)	
N2—H2	0.901 (19)	C12—H12	0.9500	
N3—C14	1.2936 (17)	C13—H13	0.9500	
N3—N4	1.3720 (15)	C14—C15	1.5044 (17)	
N4—C16	1.3771 (16)	C15—H15A	0.9800	
N4—H4	0.856 (18)	C15—H15B	0.9800	
C1—C2	1.3866 (18)	C15—H15C	0.9800	
C1—C6	1.3960 (18)	C16—C17	1.4905 (17)	
С2—С3	1.3927 (19)	C17—C18	1.3947 (18)	
C2—H2A	0.9500	C17—C22	1.3956 (18)	
C3—C4	1.3872 (19)	C18—C19	1.3875 (19)	
С3—Н3	0.9500	C18—H18	0.9500	
C4—C5	1.3957 (19)	C19—C20	1.390 (2)	
C4—H4A	0.9500	C19—H19	0.9500	
C5—C6	1.3849 (18)	C20—C21	1.386 (2)	
С5—Н5	0.9500	C20—H20	0.9500	
С6—Н6	0.9500	C21—C22	1.3881 (19)	
C7—C14	1.4729 (17)	C21—H21	0.9500	
C8—C13	1.3928 (18)	C22—H22	0.9500	
O2—S1—O1	118.61 (6)	C9—C10—H10	119.8	
O2—S1—C1	107.72 (6)	C11—C10—H10	119.8	
01—S1—C1	108.38 (6)	C10—C11—C12	119.60 (12)	
O2—S1—C7	108.78 (6)	C10—C11—H11	120.2	

O1—S1—C7	107.22 (6)	C12—C11—H11	120.2
C1—S1—C7	105.38 (6)	C13—C12—C11	120.86 (12)
C7—N1—N2	121.00 (11)	C13—C12—H12	119.6
N1—N2—C8	120.16 (11)	C11—C12—H12	119.6
N1—N2—H2	117.7 (11)	C12—C13—C8	118.89 (12)
C8—N2—H2	121.8 (11)	C12—C13—H13	120.6
C14—N3—N4	119.70 (11)	С8—С13—Н13	120.6
N3—N4—C16	114.32 (10)	N3—C14—C7	111.66 (11)
N3—N4—H4	120.7 (12)	N3—C14—C15	123.98 (11)
C16—N4—H4	118.2 (12)	C7—C14—C15	124.24 (11)
C2-C1-C6	121.75 (12)	C14—C15—H15A	109.5
C2-C1-S1	120.14 (10)	C14—C15—H15B	109.5
C6-C1-S1	118.11 (9)	H15A—C15—H15B	109.5
C1-C2-C3	118.60 (12)	C14—C15—H15C	109.5
C1 - C2 - H2A	120.7	H15A - C15 - H15C	109.5
$C_3 - C_2 - H_2 A$	120.7	H15B-C15-H15C	109.5
C4-C3-C2	120.7 120.42(12)	Ω_{3} C_{16} N_{4}	109.5 121 44 (12)
$C_{4} = C_{3} = H_{3}$	119.8	03 - C16 - C17	121.44(12) 122.71(12)
C2_C3_H3	119.8	N4-C16-C17	122.71(12) 115.81(11)
$C_2 = C_3 = C_4 = C_5$	120.25(12)	C18 - C17 - C22	119.01 (11)
$C_3 - C_4 - H_4 A$	119.9	C18 - C17 - C22	112.70(12) 122.99(12)
C_{5} C_{4} H_{4A}	119.9	C_{22} C_{17} C_{16}	122.99(12) 117.22(12)
C6-C5-C4	120.05 (12)	$C_{22} = C_{17} = C_{10}$	117.22(12) 119.85(13)
C6 C5 H5	120.03 (12)	$C_{10} = C_{18} = C_{17}$	119.85 (15)
C_{0} C_{5} H_{5}	120.0	C17 C18 H18	120.1
$C_{4} = C_{5} = C_{5}$	120.0 118.02(12)	$C_{1}^{18} = C_{10}^{10} = C_{20}^{20}$	120.1 120.18(13)
C_{5}	120.5	$C_{18} = C_{19} = C_{20}$	120.18 (13)
C_{3}	120.5	C10 C10 H10	119.9
C1 = C0 = H0	120.3 128.20(11)	$C_{20} = C_{19} = H_{19}$	119.9 120.14 (12)
N1 = C7 = S1	128.30(11) 110.27(0)	$C_{21} = C_{20} = C_{19}$	120.14 (15)
NI = C = SI	110.37(9) 121.22(0)	$C_{21} = C_{20} = H_{20}$	119.9
$C_{14} = C_{14} = C_{14}$	121.33(9) 120.00(12)	C19 - C20 - H20	119.9
C13 - C8 - C9	120.90(12)	$C_{20} = C_{21} = C_{22}$	120.00 (13)
C_{13} C_{8} N_{2}	122.50(11)	C20—C21—H21	120.0
$C_9 = C_8 = N_2$	116.54 (11)	C22—C21—H21	120.0
C10 - C9 - C8	119.36 (12)	$C_{21} = C_{22} = C_{17}$	120.06 (13)
C10—C9—H9	120.3	C21—C22—H22	120.0
C8—C9—H9	120.3	C17—C22—H22	120.0
C9—C10—C11	120.39 (12)		
C7—N1—N2—C8	177.15 (11)	N2—C8—C9—C10	178.61 (12)
C14—N3—N4—C16	-166.62 (11)	C8—C9—C10—C11	-0.1 (2)
O2—S1—C1—C2	131.46 (10)	C9-C10-C11-C12	0.5 (2)
O1—S1—C1—C2	1.97 (12)	C10-C11-C12-C13	-0.4 (2)
C7—S1—C1—C2	-112.54 (11)	C11—C12—C13—C8	-0.1 (2)
O2—S1—C1—C6	-47.94 (11)	C9—C8—C13—C12	0.6 (2)
O1—S1—C1—C6	-177.43 (9)	N2-C8-C13-C12	-178.46 (12)
C7—S1—C1—C6	68.06 (11)	N4—N3—C14—C7	-179.77 (10)
C6—C1—C2—C3	-0.71 (19)	N4—N3—C14—C15	3.87 (18)

S1—C1—C2—C3	179.92 (10)	N1-C7-C14-N3	-13.99 (19)
C1—C2—C3—C4	0.0 (2)	S1-C7-C14-N3	166.60 (9)
C2—C3—C4—C5	0.7 (2)	N1—C7—C14—C15	162.36 (12)
C3—C4—C5—C6	-0.7 (2)	S1—C7—C14—C15	-17.05 (17)
C4—C5—C6—C1	-0.05 (19)	N3—N4—C16—O3	8.74 (18)
C2-C1-C6-C5	0.75 (19)	N3—N4—C16—C17	-173.41 (10)
S1—C1—C6—C5	-179.86 (10)	O3—C16—C17—C18	156.10 (13)
N2—N1—C7—C14	2.3 (2)	N4—C16—C17—C18	-21.72 (18)
N2—N1—C7—S1	-178.25 (9)	O3—C16—C17—C22	-21.95 (19)
O2—S1—C7—N1	22.99 (11)	N4—C16—C17—C22	160.23 (12)
O1—S1—C7—N1	152.40 (9)	C22-C17-C18-C19	0.04 (19)
C1—S1—C7—N1	-92.28 (10)	C16—C17—C18—C19	-177.96 (12)
O2—S1—C7—C14	-157.51 (10)	C17—C18—C19—C20	-0.7 (2)
O1—S1—C7—C14	-28.10 (11)	C18—C19—C20—C21	0.9 (2)
C1—S1—C7—C14	87.22 (11)	C19—C20—C21—C22	-0.3 (2)
N1—N2—C8—C13	8.35 (19)	C20—C21—C22—C17	-0.4 (2)
N1—N2—C8—C9	-170.74 (11)	C18—C17—C22—C21	0.54 (19)
C13—C8—C9—C10	-0.5 (2)	C16—C17—C22—C21	178.65 (12)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1-C6 and C17-C22 rings, respectively.

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H···A
N2—H2…N3	0.901 (19)	1.860 (18)	2.5584 (15)	132.8 (16)
N4—H4···O1 ⁱ	0.856 (18)	2.089 (19)	2.8946 (14)	156.4 (16)
C2—H2a···O3 ⁱⁱ	0.95	2.38	3.0977 (16)	132
C20—H20··· <i>Cg</i> 1 ⁱⁱⁱ	0.95	2.72	3.4980 (15)	140
C15—H15a····Cg2 ⁱⁱⁱ	0.98	2.79	3.4052 (15)	121

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y+1, z; (iii) -x+1, -y, -z+1.