Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3-(4-Nitrophenyl)-1H-1,2,4-triazole-5(4H)-thione

Hoong-Kun Fun, ${ }^{a} * \neq$ Ching Kheng Quah, ${ }^{a} \S$ Nithinchandra ${ }^{\text {b }}$ and Balakrishna Kalluraya ${ }^{\text {b }}$

${ }^{\text {a }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\mathbf{b}}$ Department of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
Correspondence e-mail: hkfun@usm.my
Received 18 August 2011; accepted 19 August 2011
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.042 ; w R$ factor $=0.109$; data-to-parameter ratio $=13.8$.

In the title compound, $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$, the 1,2,4-triazole ring and the nitro group form dihedral angles of 6.26 (13) and 9.5 (3) ${ }^{\circ}$, respectively, with the phenyl ring. In the crystal, the molecules are linked via pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds, generating [010] chains which contain R_{2}^{2} (8) ring motifs. The crystal structure is further stabilized by $\pi-\pi$ stacking [centroidcentroid distance $=3.5491(14) \AA$] interactions.

Related literature

For general background to and the biological activity of 1,2,4triazole derivatives, see: Shujuan et al. (2004); Clemons et al. (2004); Johnston (2002); Wei et al. (2007). For standard bondlength data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier \& Glazer (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Fun et al. (2010, 2011).

Experimental

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$
Monoclinic, $P 2_{b} / c$
$M_{r}=222.23$ $a=7.8221$ (1) A

$$
\begin{aligned}
& b=8.2109(1) \AA \\
& c=14.6757(3) \AA \\
& \beta=101.302(1)^{\circ} \AA^{\circ} \\
& V=924.29(2) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
\begin{aligned}
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.33 \mathrm{~mm}^{-1} \\
& T=100 \mathrm{~K} \\
& 0.35 \times 0.27 \times 0.17 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2009)
$T_{\text {min }}=0.892, T_{\text {max }}=0.947$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.109$
$S=1.17$
1988 reflections
144 parameters

8521 measured reflections 1988 independent reflections 1789 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.021$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N 1 \cdots \mathrm{~S}^{\mathrm{i}}$	$0.84(3)$	$2.48(3)$	$3.295(3)$	$164(3)$
$\mathrm{N} 2-\mathrm{H} 1 N 2 \cdots \mathrm{~S}^{1 i}$	$0.80(3)$	$2.50(3)$	$3.285(3)$	$168(3)$

Symmetry codes: (i) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6376).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Clemons, M., Coleman, R. E. \& Verma, S. (2004). Cancer Treat. Rev. 30, 325332.

Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
Fun, H.-K., Quah, C. K., Nithinchandra \& Kalluraya B. (2011). Acta Cryst. E67, hb6375.
Fun, H.-K., Quah, C. K., Vijesh, A. M., Malladi, S. \& Isloor, A. M. (2010). Acta Cryst. E66, o29-o30.
Johnston, G. A. R. (2002). Curr. Top. Med. Chem. 2, 903-913.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shujuan, S., Hongxiang, L., Gao, Y., Fan, P., Ma, B., Ge, W. \& Wang, X. (2004). J. Pharm. Biomed. Anal. 34, 1117-1124.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Wei, T.-B., Tang, J., Liu, H. \& Zhang, Y.-M. (2007). Phosphorus Sulfur Silicon, 182, 1581-1587.

supporting information

Acta Cryst. (2011). E67, o2413 [doi:10.1107/S1600536811033952]

3-(4-Nitrophenyl)-1H-1,2,4-triazole-5(4H)-thione

Hoong-Kun Fun, Ching Kheng Quah, Nithinchandra and Balakrishna Kalluraya

S1. Comment

The 1,2,4-triazole nucleus has been incorporated into a wide variety of therapeutically interesting compounds. Several compounds containing 1,2,4-triazole rings are well known as drugs. For example, fluconazole is used as an antimicrobial drug (Shujuan et al., 2004), whereas vorozole, letrozole and anastrozole are non-steroidal drugs used for the treatment of cancer (Clemons et al., 2004) and loreclezole is used as an anticonvulsant (Johnston, 2002). Similarly substituted derivatives of triazole possess comprehensive bioactivities such as antimicrobial, anti-inflammatory, analgesic, antihypertensive, anticonvulsant and antiviral activities (Wei et al., 2007). Due to the progress that occurs in dealing with the chemistry of 1,2,4-triazoles as well as their biological activity, we synthesized and reported the crystal structure of the title compound.
In the title molecule, Fig. 1, the 1,2,4-triazole ring (N1-N3/C1/C2, maximum deviation of 0.002 (2) \AA at atoms N3 and C 2) and the nitro group ($\mathrm{O} 1 / \mathrm{O} 2 / \mathrm{N} 4$) form dihedral angles of $6.26(13)$ and $9.5(3)^{\circ}$, respectively, with the phenyl ring (C3-C8). Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun et al., 2010, 2011).
In the crystal structure, the molecules are linked via intermolecular N1-H1N1 $\cdots \mathrm{S} 1$ and $\mathrm{N} 2-\mathrm{H} 1 \mathrm{~N} 2 \cdots \mathrm{~S} 1$ hydrogen bonds (Table 1), generating $\mathrm{R}_{2}^{2}(8)$ ring motifs (Bernstein et al., 1995) and are further linked into one-dimensional chains along [010] via adjacent ring motifs. $\pi-\pi$ stacking interactions between the centroids of $\mathrm{C} 3-\mathrm{C} 8$ phenyl ring (Cg 1) and N1$\mathrm{N} 3 / \mathrm{C} 1 / \mathrm{C} 2$ triazole ring (Cg2), with $\mathrm{Cg} 1 \cdots \mathrm{Cg} 2{ }^{\text {iii }}$ distance of 3.5491 (14) \AA [symmetry code: (iii) $1-\mathrm{X}, 1-\mathrm{Y}, 1-\mathrm{Z}$] are observed.

S2. Experimental

A mixture of 2-[(4-nitrophenyl)carbonyl]hydrazinecarbothioamide $(0.01 \mathrm{~mol})$ and $10 \% \mathrm{KOH}(10 \mathrm{ml})$ was refluxed for 3 h. After the mixture was cooled to room temperature, it was then neutralized by the gradual addition of glacial acetic acid. The solid product obtained was collected by filtration, washed with ethanol and dried. It was then recrystallized using ethanol. Yellow blocks of (I) were obtained from ethanol solution by slow evaporation.

S3. Refinement

Atoms H1N1 and H1N2 were located from the difference Fourier map and refined freely [$\mathrm{N}-\mathrm{H}=0.80$ (3) or 0.84 (3) \AA]. The remaining H atoms were positioned geometrically and refined using a riding model with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Figure 1
The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.

Figure 2
The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.

3-(4-Nitrophenyl)-1H-1,2,4-triazole-5(4H)-thione

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$
$M_{r}=222.23$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=7.8221$ (1) \AA
$b=8.2109$ (1) \AA
$c=14.6757(3) \AA$
$\beta=101.302(1)^{\circ}$

$$
\begin{aligned}
& V=924.29(2) \AA^{3} \\
& Z=4 \\
& F(000)=456 \\
& D_{\mathrm{x}}=1.597 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 6061 \text { reflections } \\
& \theta=2.7-32.7^{\circ} \\
& \mu=0.33 \mathrm{~mm}^{-1}
\end{aligned}
$$

$T=100 \mathrm{~K}$
Block, yellow

Data collection

Bruker SMART APEXII CCD

 diffractometerRadiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\min }=0.892, T_{\max }=0.947$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.109$
$S=1.17$
1988 reflections
144 parameters
0 restraints
Primary atom site location: structure-invariant
direct methods
$0.35 \times 0.27 \times 0.17 \mathrm{~mm}$

$$
\begin{aligned}
& 8521 \text { measured reflections } \\
& 1988 \text { independent reflections } \\
& 1789 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.021 \\
& \theta_{\max }=27.0^{\circ}, \theta_{\min }=2.7^{\circ} \\
& h=-9 \rightarrow 8 \\
& k=-10 \rightarrow 10 \\
& l=-15 \rightarrow 18
\end{aligned}
$$

```
Secondary atom site location: difference Fourier
    map
Hydrogen site location: inferred from
    neighbouring sites
H atoms treated by a mixture of independent
    and constrained refinement
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.023 P)^{2}+1.7764 P\right]\)
    where \(P=\left(F_{0}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}=0.001\)
\(\Delta \rho_{\text {max }}=0.42 \mathrm{e} \AA^{-3}\)
\(\Delta \rho_{\text {min }}=-0.29 \mathrm{e}^{-3}\)
```


Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier \& Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
S1	$0.48563(8)$	$0.37379(7)$	$0.18859(4)$	$0.02226(18)$
O1	$0.0046(3)$	$0.9832(3)$	$0.65011(15)$	$0.0430(6)$
O2	$0.0293(3)$	$0.7834(3)$	$0.74650(13)$	$0.0364(5)$
N1	$0.3673(3)$	$0.5040(3)$	$0.33704(14)$	$0.0184(4)$
N2	$0.3841(3)$	$0.2469(3)$	$0.34126(15)$	$0.0227(5)$
N3	$0.3212(3)$	$0.2888(3)$	$0.41922(14)$	$0.0227(5)$
N4	$0.0471(3)$	$0.8436(3)$	$0.67295(14)$	$0.0265(5)$
C1	$0.4131(3)$	$0.3742(3)$	$0.29010(16)$	$0.0192(5)$
C2	$0.3128(3)$	$0.4479(3)$	$0.41483(16)$	$0.0187(5)$
C3	$0.2506(3)$	$0.5522(3)$	$0.48290(16)$	$0.0186(5)$
C4	$0.2100(3)$	$0.4814(3)$	$0.56284(16)$	$0.0206(5)$

H4A	0.2269	0.3680	0.5738	0.025^{*}
C5	$0.1450(3)$	$0.5774(3)$	$0.62606(16)$	$0.0218(5)$
H5A	0.1165	0.5310	0.6805	0.026^{*}
C6	$0.1226(3)$	$0.7419(3)$	$0.60807(16)$	$0.0223(5)$
C7	$0.1638(3)$	$0.8162(3)$	$0.53043(17)$	$0.0235(5)$
H7A	0.1490	0.9301	0.5208	0.028^{*}
C8	$0.2272(3)$	$0.7193(3)$	$0.46708(16)$	$0.0210(5)$
H8A	0.2548	0.7668	0.4127	0.025^{*}
H1N1	$0.384(4)$	$0.601(4)$	$0.323(2)$	$0.026(8)^{*}$
H1N2	$0.400(4)$	$0.154(4)$	$0.329(2)$	$0.033(9)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0335(3)$	$0.0136(3)$	$0.0225(3)$	$-0.0009(2)$	$0.0124(2)$	$-0.0021(2)$
O1	$0.0675(15)$	$0.0288(12)$	$0.0374(11)$	$0.0141(11)$	$0.0220(10)$	$-0.0025(9)$
O2	$0.0480(12)$	$0.0404(13)$	$0.0235(9)$	$0.0060(10)$	$0.0140(8)$	$-0.0005(9)$
N1	$0.0223(10)$	$0.0137(11)$	$0.0204(10)$	$0.0009(8)$	$0.0070(8)$	$-0.0006(8)$
N2	$0.0280(11)$	$0.0160(11)$	$0.0271(11)$	$0.0011(9)$	$0.0128(9)$	$-0.0006(9)$
N3	$0.0262(10)$	$0.0192(11)$	$0.0255(10)$	$0.0011(8)$	$0.0118(8)$	$-0.0001(9)$
N4	$0.0292(11)$	$0.0280(13)$	$0.0229(10)$	$0.0014(9)$	$0.0063(8)$	$-0.0047(9)$
C1	$0.0185(10)$	$0.0170(12)$	$0.0222(11)$	$-0.0003(9)$	$0.0045(9)$	$-0.0029(10)$
C2	$0.0149(10)$	$0.0207(13)$	$0.0207(11)$	$0.0002(9)$	$0.0040(8)$	$0.0016(10)$
C3	$0.0146(10)$	$0.0217(13)$	$0.0198(11)$	$0.0000(9)$	$0.0040(8)$	$-0.0044(10)$
C4	$0.0188(10)$	$0.0205(13)$	$0.0220(11)$	$-0.0007(9)$	$0.0026(9)$	$0.0014(10)$
C5	$0.0193(11)$	$0.0287(14)$	$0.0170(11)$	$-0.0006(10)$	$0.0030(9)$	$0.0014(10)$
C6	$0.0197(11)$	$0.0272(14)$	$0.0202(11)$	$0.0015(10)$	$0.0046(9)$	$-0.0060(10)$
C7	$0.0264(12)$	$0.0187(12)$	$0.0258(12)$	$0.0037(10)$	$0.0065(10)$	$-0.0002(10)$
C8	$0.0241(11)$	$0.0199(13)$	$0.0205(11)$	$-0.0005(9)$	$0.0079(9)$	$-0.0003(10)$

Geometric parameters ($A,{ }^{\circ}$)

S1-C1	1.695 (2)	C2-C3	1.469 (3)
O1-N4	1.222 (3)	C3-C8	1.398 (3)
$\mathrm{O} 2-\mathrm{N} 4$	1.220 (3)	C3-C4	1.400 (3)
N1-C1	1.355 (3)	C4-C5	1.387 (3)
N1-C2	1.375 (3)	C4-H4A	0.9500
N1-H1N1	0.84 (3)	C5-C6	1.380 (4)
N2-C1	1.332 (3)	C5-H5A	0.9500
N2-N3	1.375 (3)	C6-C7	1.385 (3)
N2-H1N2	0.80 (3)	C7-C8	1.387 (3)
N3-C2	1.309 (3)	C7-H7A	0.9500
N4-C6	1.474 (3)	C8-H8A	0.9500
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	108.3 (2)	C8-C3-C2	120.6 (2)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} 1$	124 (2)	C4-C3-C2	119.2 (2)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} 1$	127 (2)	C5-C4-C3	119.8 (2)
C1-N2-N3	113.7 (2)	C5-C4-H4A	120.1

$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 1 \mathrm{~N} 2$	$125(2)$
$\mathrm{N} 3-\mathrm{N} 2-\mathrm{H} 1 \mathrm{~N} 2$	$122(2)$
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{N} 2$	$103.4(2)$
$\mathrm{O} 2-\mathrm{N} 4-\mathrm{O} 1$	$123.4(2)$
$\mathrm{O} 2-\mathrm{N} 4-\mathrm{C} 6$	$118.1(2)$
$\mathrm{O} 1-\mathrm{N} 4-\mathrm{C} 6$	$118.4(2)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	$103.9(2)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{S} 1$	$128.14(19)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	$127.98(19)$
$\mathrm{N} 3-\mathrm{C} 2-\mathrm{N} 1$	$110.8(2)$
$\mathrm{N} 3-\mathrm{C} 2-\mathrm{C} 3$	$124.6(2)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$124.6(2)$
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 4$	$120.2(2)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 2$	$-0.3(3)$
$\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	$0.1(3)$
$\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 1-\mathrm{S} 1$	$-178.54(17)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	$0.1(2)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	$178.73(18)$
$\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 2-\mathrm{N} 1$	$0.3(3)$
$\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 2-\mathrm{C} 3$	$179.3(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 3$	$-0.2(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$-179.2(2)$
$\mathrm{N} 3-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8$	$-172.6(2)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8$	$6.3(3)$
$\mathrm{N} 3-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$5.6(4)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-175.6(2)$
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.5(3)$

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	120.1
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$118.5(2)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	120.8
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	120.8
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$123.2(2)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 4$	$118.8(2)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{N} 4$	$118.0(2)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$118.1(2)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	121.0
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	121.0
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 3$	$120.3(2)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	119.9
$\mathrm{C} 3-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	119.9
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-177.6(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.2(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-0.7(4)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 4$	$177.6(2)$
$\mathrm{O} 2-\mathrm{N} 4-\mathrm{C} 6-\mathrm{C} 5$	$9.9(3)$
$\mathrm{O} 1-\mathrm{N} 4-\mathrm{C} 6-\mathrm{C} 5$	$-169.7(2)$
$\mathrm{O} 2-\mathrm{N} 4-\mathrm{C} 6-\mathrm{C} 7$	$-171.7(2)$
$\mathrm{O} 1-\mathrm{N} 4-\mathrm{C} 6-\mathrm{C} 7$	$8.7(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$1.3(4)$
$\mathrm{N} 4-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-177.0(2)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 3$	$-0.9(4)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 7$	$0.0(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 7$	$178.2(2)$

Hydrogen-bond geometry (A, o)

$D — \mathrm{H} \cdots A$	$D — \mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 N 1 \cdots \mathrm{~S} 1^{\mathrm{i}}$	$0.84(3)$	$2.48(3)$	$3.295(3)$	$164(3)$
$\mathrm{N} 2 — \mathrm{H} 1 N 2 \cdots \mathrm{~S}^{\mathrm{ii}}$	$0.80(3)$	$2.50(3)$	$3.285(3)$	$168(3)$

Symmetry codes: (i) $-x+1, y+1 / 2,-z+1 / 2$; (ii) $-x+1, y-1 / 2,-z+1 / 2$.

