

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-Amino-1-(4-methoxyphenyl)-9,10dihydrophenanthrene-2,4-dicarbonitrile

Abdullah M. Asiri,^{a,b}‡ Abdulrahman O. Al-Youbi,^a Hassan M. Faidallah,^a Seik Weng Ng^c and Edward R. T. Tiekink^c*

^aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, ^bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 17 August 2011; accepted 18 August 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.048; wR factor = 0.116; data-to-parameter ratio = 15.4.

In the title compound, C₂₃H₁₇N₃O, significant deviations from planarity are evidenced. This is quantified in the dihedral angles formed between the central amino-benzene ring and the benzene rings of the methoxybenzene $[67.93 (8)^{\circ}]$ and 1,2dihydronaphthalene $[28.27 (8)^{\circ}]$ residues. In the crystal the amino-H atoms form hydrogen bonds to the methoxy-O atom and to one of the cyano-N atoms to generate a twodimensional array with a zigzag topology that stacks along the $(\overline{1}\ \overline{1}\ 1)$ plane.

Related literature

For background to the biological activity of related compounds, see: Aly et al. (1991); Al-Saadi et al. (2005); Rostom et al. (2011). For ring conformational analysis, see: Cremer & Pople (1975). For a related structure, see: Asiri et al. (2011).

Experimental

Crystal data C23H17N3O

 $M_r = 351.40$

‡ Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

 $\mu = 0.08 \text{ mm}^-$

 $0.25 \times 0.25 \times 0.05 \text{ mm}$

8688 measured reflections

3890 independent reflections 2953 reflections with $I > 2\sigma(I)$

T = 100 K

 $R_{\rm int} = 0.030$

Z = 4Mo $K\alpha$ radiation

Monoclinic, $P2_1/c$ a = 9.0212 (4) Å b = 22.1475 (8) Å c = 9.3114 (4) Å $\beta = 110.410 \ (5)^{\circ}$ $V = 1743.60 (12) \text{ Å}^3$

Data collection

Agilent Technologies SuperNova
Dual diffractometer with Atlas
detector
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
$T_{\min} = 0.714, \ T_{\max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	H atoms treated by a mixture of
$wR(F^2) = 0.116$	independent and constrained
S = 1.04	refinement
3890 reflections	$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
252 parameters	$\Delta \rho_{\rm min} = -0.23 \ {\rm e} \ {\rm \AA}^{-3}$
2 restraints	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} \hline N2 - H1 \cdots O1^{i} \\ N2 - H2 \cdots N1^{ii} \end{array}$	0.89 (1) 0.88 (1)	2.21 (1) 2.33 (1)	3.0307 (19) 3.115 (2)	154 (2) 149 (2)
	4 1	1 (") 1		

Symmetry codes: (i) $x - 1, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) -x - 1, -y, -z.

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

The authors thank King Abdulaziz University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5084).

References

- Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.
- Al-Saadi, S. M., Rostom, S. A. F. & Faid Allah, H. M. (2005). Alexandria J. Pharm. Sci., 19, 15-21.
- Aly, A. S., El-Ezabawy, S. R. & Abdel-Fattah, A. M. (1991). Egypt. J. Pharm. Sci. 32, 827-834.

Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2438.

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Rostom, S. A. F., Faidallah, S. M. & Al Saadi, M. S. (2011). Med. Chem. Res. DOI: 10.1007/s00044-010-9469-0.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2011). E67, o2449 [doi:10.1107/S1600536811033617]

3-Amino-1-(4-methoxyphenyl)-9,10-dihydrophenanthrene-2,4-dicarbonitrile

Abdullah M. Asiri, Abdulrahman O. Al-Youbi, Hassan M. Faidallah, Seik Weng Ng and Edward R. T. Tiekink

S1. Comment

The study of the title compound (I) was motivated by recent reports of the biological activity of related compounds (Aly *et al.*, 1991; Al-Saadi *et al.*, 2005; Rostom *et al.*, 2011) and allied crystal structure investigations (Asiri *et al.*, 2011).

The structure of (I), Fig. 1, is isostructural with the derivative in which the methoxybenzene group in (I) is substituted for a 2*H*-1,3-benzodioxol-5-yl group (Asiri *et al.*, 2011). With respect to the amino-benzene ring, the benzene rings of the methoxybenzene and 1,2-dihydronaphthalene residues form dihedral angles of 67.93 (8) and 28.27 (8) °, respectively, indicating non-planarity in the molecule. In the 1,2-dihydronaphthalene residue, the cyclohexa-1,3-diene ring has a distorted half-chair conformation as defined by the following parameters (Cremer & Pople, 1975): $q_2 = 0.5166$ (18) Å, φ_2 = 84.4 (2) °, $q_3 = 0.1891$ (19) Å, and puckering amplitude Q = 0.5501 (19) Å.

In the crystal structure, supramolecular arrays with zigzag topology and running parallel to the $(\overline{1} \ \overline{1} \ 1)$ plane are formed through $N - H \cdots O(\text{methoxy})$ and $N - H \cdots N(\text{cyano})$ hydrogen bonding, Table 1 and Fig. 2.

S2. Experimental

A mixture of the 4-anisaldehyde (1.36 g,10 mmol), 1-tetralone (1.46 g, 10 mmol), ethyl cyanoacetate (1.1 g, 10 mmol) and ammonium acetate (6.2 g, 80 mmol) in absolute ethanol (50 ml) was refluxed for 6 h. The reaction mixture was allowed to cool and the precipitate that formed was filtered, washed with water, dried and recrystallized from DMF; *M*.pt.: 487–488 K.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.99 Å, U_{iso} (H) 1.2 to 1.5 U_{eq} (C)] and were included in the refinement in the riding model approximation. The amino-H atoms were located in a difference Fourier map, and subsequently refined with N—H = 0.88±0.01 Å.

Figure 1

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Figure 2

Supramolecular array in (I) viewed towards the $(\overline{1} \ \overline{1} \ 1)$ plane. The N—H…O and N—H…N hydrogen bonds are shown as orange and blue dashed lines, respectively.

3-Amino-1-(4-methoxy phenyl)-9, 10-dihydrophenanthrene-2, 4-dicarbonitrile

Crystal data	
C ₂₃ H ₁₇ N ₃ O	$V = 1743.60 (12) \text{ Å}^3$
$M_r = 351.40$	Z = 4
Monoclinic, $P2_1/c$	F(000) = 736
Hall symbol: -P 2ybc	$D_{\rm x} = 1.339 {\rm ~Mg} {\rm ~m}^{-3}$
a = 9.0212 (4) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 22.1475 (8) Å	Cell parameters from 3338 reflections
c = 9.3114 (4) Å	$\theta = 2.3 - 29.3^{\circ}$
$\beta = 110.410 \ (5)^{\circ}$	$\mu=0.08~\mathrm{mm^{-1}}$

T = 100 KPlate, orange

Data collection

Agilent Technologies SuperNova Dual diffractometer with Atlas detector Radiation source: SuperNova (Mo) X-ray Source Mirror monochromator Detector resolution: 10.4041 pixels mm ⁻¹ ω scan Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2010)	$T_{\min} = 0.714, T_{\max} = 1.000$ 8688 measured reflections 3890 independent reflections 2953 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.030$ $\theta_{\text{max}} = 27.5^{\circ}, \theta_{\text{min}} = 2.4^{\circ}$ $h = -9 \rightarrow 11$ $k = -26 \rightarrow 28$ $l = -12 \rightarrow 11$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.116$ S = 1.04 3890 reflections 252 parameters 2 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0431P)^2 + 0.7237P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.33$ e Å ⁻³ $\Delta\rho_{min} = -0.23$ e Å ⁻³

 $0.25 \times 0.25 \times 0.05 \text{ mm}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.50780 (13)	0.32058 (5)	0.20429 (14)	0.0233 (3)	
N1	-0.35267 (17)	-0.04178 (6)	0.09331 (17)	0.0253 (3)	
N2	-0.31052 (17)	0.09057 (7)	-0.04975 (18)	0.0273 (4)	
H1	-0.341 (2)	0.1248 (6)	-0.101 (2)	0.029 (5)*	
H2	-0.383 (2)	0.0640 (8)	-0.048 (2)	0.040 (6)*	
N3	-0.12484 (19)	0.22536 (7)	-0.09041 (19)	0.0348 (4)	
C1	-0.11308 (18)	0.02880 (7)	0.13513 (19)	0.0181 (3)	
C2	-0.15970 (18)	0.08249 (7)	0.04721 (19)	0.0191 (4)	
C3	-0.04407 (19)	0.12715 (7)	0.06686 (19)	0.0194 (4)	
C4	0.11146 (19)	0.11967 (8)	0.1705 (2)	0.0221 (4)	
C5	0.15320 (19)	0.06722 (8)	0.2563 (2)	0.0222 (4)	
C6	0.31513 (19)	0.05910 (8)	0.3770 (2)	0.0245 (4)	
H6A	0.3719	0.0982	0.3975	0.029*	

H6B	0.3777	0.0302	0.3403	0.029*
C7	0.2964 (2)	0.03549 (7)	0.5226 (2)	0.0221 (4)
H7A	0.4017	0.0295	0.6024	0.027*
H7B	0.2372	0.0651	0.5613	0.027*
C8	0.20844 (19)	-0.02353 (7)	0.4888 (2)	0.0201 (4)
C9	0.2469 (2)	-0.07051 (8)	0.5946 (2)	0.0219 (4)
H9	0.3289	-0.0650	0.6908	0.026*
C10	0.1678 (2)	-0.12526 (8)	0.5624 (2)	0.0235 (4)
H10	0.1918	-0.1563	0.6375	0.028*
C11	0.0535 (2)	-0.13428 (8)	0.4195 (2)	0.0242 (4)
H11	0.0014	-0.1722	0.3953	0.029*
C12	0.01471 (19)	-0.08839 (7)	0.3118 (2)	0.0213 (4)
H12	-0.0623	-0.0955	0.2134	0.026*
C13	0.08722 (18)	-0.03175 (7)	0.34554 (19)	0.0182 (3)
C14	0.04050 (18)	0.02098 (7)	0.24062 (19)	0.0183 (3)
C15	-0.24040 (19)	-0.01280 (7)	0.11644 (19)	0.0206 (4)
C16	-0.0873 (2)	0.18193 (8)	-0.0198 (2)	0.0235 (4)
C17	0.22517 (18)	0.17059 (7)	0.18816 (19)	0.0198 (4)
C18	0.20113 (19)	0.22527 (8)	0.25000 (19)	0.0219 (4)
H18	0.1168	0.2292	0.2884	0.026*
C19	0.29915 (19)	0.27411 (8)	0.25614 (19)	0.0200 (4)
H19	0.2823	0.3112	0.2993	0.024*
C20	0.42161 (18)	0.26902 (7)	0.19956 (18)	0.0186 (3)
C21	0.45114 (19)	0.21406 (8)	0.14320 (19)	0.0215 (4)
H21	0.5378	0.2098	0.1084	0.026*
C22	0.35293 (19)	0.16540 (8)	0.13821 (19)	0.0217 (4)
H22	0.3733	0.1277	0.0999	0.026*
C23	0.5989 (2)	0.32247 (8)	0.1054 (2)	0.0254 (4)
H23A	0.6552	0.3611	0.1186	0.038*
H23B	0.5283	0.3184	-0.0013	0.038*
H23C	0.6755	0.2893	0.1314	0.038*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0230 (6)	0.0200 (6)	0.0264 (7)	-0.0091 (5)	0.0079 (5)	-0.0019 (5)
N1	0.0189 (7)	0.0213 (8)	0.0318 (8)	-0.0017 (6)	0.0039 (6)	0.0000 (6)
N2	0.0174 (7)	0.0234 (8)	0.0343 (9)	-0.0044 (6)	0.0004 (7)	0.0086 (7)
N3	0.0357 (9)	0.0216 (8)	0.0331 (9)	-0.0061 (7)	-0.0056 (7)	0.0032 (7)
C1	0.0162 (8)	0.0153 (8)	0.0234 (8)	-0.0010 (6)	0.0078 (7)	-0.0013 (6)
C2	0.0171 (8)	0.0200 (8)	0.0202 (8)	-0.0002 (7)	0.0063 (7)	-0.0007 (7)
C3	0.0189 (8)	0.0161 (8)	0.0216 (8)	-0.0005 (6)	0.0052 (7)	0.0010 (6)
C4	0.0192 (8)	0.0194 (9)	0.0263 (9)	-0.0033 (7)	0.0061 (7)	0.0005 (7)
C5	0.0162 (8)	0.0229 (9)	0.0257 (9)	-0.0003 (7)	0.0050 (7)	0.0033 (7)
C6	0.0146 (8)	0.0218 (9)	0.0339 (10)	-0.0008(7)	0.0043 (7)	0.0060 (8)
C7	0.0179 (8)	0.0183 (8)	0.0268 (9)	0.0009 (7)	0.0036 (7)	0.0005 (7)
C8	0.0170 (8)	0.0184 (8)	0.0268 (9)	0.0033 (7)	0.0101 (7)	0.0003 (7)
C9	0.0205 (8)	0.0222 (9)	0.0235 (9)	0.0052 (7)	0.0083 (7)	0.0009 (7)

supporting information

C10	0.0245 (9)	0.0181 (9)	0.0306 (10)	0.0049 (7)	0.0130 (8)	0.0060 (7)
C11	0.0198 (8)	0.0162 (8)	0.0377 (10)	0.0015 (7)	0.0114 (8)	0.0026 (7)
C12	0.0156 (8)	0.0200 (9)	0.0278 (9)	0.0017 (7)	0.0071 (7)	0.0006 (7)
C13	0.0140 (7)	0.0153 (8)	0.0266 (9)	0.0034 (6)	0.0090 (7)	0.0023 (7)
C14	0.0173 (8)	0.0164 (8)	0.0224 (8)	0.0014 (6)	0.0083 (7)	0.0004 (7)
C15	0.0194 (8)	0.0186 (8)	0.0220 (9)	0.0039(7)	0.0049 (7)	0.0016 (7)
C16	0.0193 (8)	0.0200 (9)	0.0251 (9)	-0.0059 (7)	0.0001 (7)	-0.0024 (7)
C17	0.0160 (8)	0.0184 (8)	0.0202 (8)	-0.0019 (7)	0.0002 (7)	0.0034 (7)
C18	0.0174 (8)	0.0254 (9)	0.0214 (9)	-0.0015 (7)	0.0050 (7)	0.0027 (7)
C19	0.0193 (8)	0.0191 (8)	0.0191 (8)	-0.0005 (7)	0.0037 (7)	-0.0025 (7)
C20	0.0166 (8)	0.0189 (8)	0.0165 (8)	-0.0049 (7)	0.0013 (6)	0.0013 (6)
C21	0.0194 (8)	0.0248 (9)	0.0200 (8)	-0.0015 (7)	0.0065 (7)	0.0002 (7)
C22	0.0229 (8)	0.0171 (8)	0.0228 (9)	0.0002 (7)	0.0049 (7)	-0.0011 (7)
C23	0.0219 (9)	0.0271 (10)	0.0261 (9)	-0.0061 (7)	0.0072 (7)	0.0052 (7)

Geometric parameters (Å, °)

O1—C20	1.3735 (19)	C8—C13	1.411 (2)
O1—C23	1.433 (2)	C9—C10	1.386 (2)
N1-C15	1.154 (2)	С9—Н9	0.9500
N2—C2	1.357 (2)	C10-C11	1.384 (2)
N2—H1	0.889 (9)	C10—H10	0.9500
N2—H2	0.883 (9)	C11—C12	1.385 (2)
N3—C16	1.147 (2)	C11—H11	0.9500
C1-C14	1.402 (2)	C12—C13	1.399 (2)
C1—C2	1.421 (2)	C12—H12	0.9500
C1—C15	1.435 (2)	C13—C14	1.486 (2)
С2—С3	1.402 (2)	C17—C22	1.390 (2)
C3—C4	1.408 (2)	C17—C18	1.390 (2)
C3—C16	1.434 (2)	C18—C19	1.385 (2)
C4—C5	1.385 (2)	C18—H18	0.9500
C4—C17	1.494 (2)	C19—C20	1.384 (2)
C5—C14	1.414 (2)	C19—H19	0.9500
С5—С6	1.512 (2)	C20—C21	1.388 (2)
С6—С7	1.517 (2)	C21—C22	1.386 (2)
С6—Н6А	0.9900	C21—H21	0.9500
C6—H6B	0.9900	C22—H22	0.9500
С7—С8	1.504 (2)	C23—H23A	0.9800
C7—H7A	0.9900	C23—H23B	0.9800
С7—Н7В	0.9900	C23—H23C	0.9800
C8—C9	1.391 (2)		
C20—O1—C23	116.67 (13)	C9—C10—H10	120.3
C2—N2—H1	121.6 (13)	C10-C11-C12	120.38 (16)
C2—N2—H2	118.4 (14)	C10—C11—H11	119.8
H1—N2—H2	119.1 (19)	C12—C11—H11	119.8
C14—C1—C2	121.91 (14)	C11—C12—C13	121.00 (16)
C14—C1—C15	124.01 (15)	C11—C12—H12	119.5

C2—C1—C15	113.81 (14)	C13—C12—H12	119.5
N2—C2—C3	121.41 (15)	C12—C13—C8	118.40 (15)
N2-C2-C1	121.35 (15)	C12—C13—C14	123.62 (15)
C3—C2—C1	117.23 (14)	C8—C13—C14	117.96 (14)
C2—C3—C4	121.63 (15)	C1—C14—C5	118.82 (15)
C2—C3—C16	118.66 (15)	C1—C14—C13	122.83 (14)
C4—C3—C16	119.70 (15)	C5-C14-C13	118.19 (14)
C5—C4—C3	119.95 (15)	N1-C15-C1	173.19(17)
$C_{5}-C_{4}-C_{17}$	122 08 (15)	N3-C16-C3	178 65 (19)
C_{3} C_{4} C_{17}	117.93 (15)	C^{22} C^{17} C^{18}	118 55 (15)
C4-C5-C14	120 44 (15)	$C_{22} = C_{17} = C_{4}$	121 21 (15)
$C_{4} = C_{5} = C_{6}$	120.44 (15)	$C_{12} = C_{17} = C_{4}$	121.21(15) 120.19(15)
C_{14} C_{5} C_{6}	121.70(15) 117.65(15)	$C_{10} = C_{17} = C_{4}$	120.17(15)
$C_{14} = C_{5} = C_{6}$	117.03(13) 100.01(14)	$C_{19} = C_{18} = C_{17}$	120.31 (13)
$C_{5} = C_{6} = U_{6}$	109.01 (14)	$C_{17} = C_{18} = H_{18}$	119.7
C_{3}	109.9	C1/-C10-H18	119.7
	109.9	$C_{20} = C_{19} = C_{18}$	120.22 (15)
С5—С6—Н6В	109.9	C20—C19—H19	119.9
С/—С6—Н6В	109.9	С18—С19—Н19	119.9
Н6А—С6—Н6В	108.3	01-C20-C19	115.98 (14)
C8—C7—C6	109.13 (14)	O1—C20—C21	124.07 (15)
С8—С7—Н7А	109.9	C19—C20—C21	119.94 (15)
С6—С7—Н7А	109.9	C22—C21—C20	119.35 (15)
С8—С7—Н7В	109.9	C22—C21—H21	120.3
С6—С7—Н7В	109.9	C20—C21—H21	120.3
H7A—C7—H7B	108.3	C21—C22—C17	121.31 (15)
C9—C8—C13	119.53 (15)	C21—C22—H22	119.3
C9—C8—C7	121.24 (15)	C17—C22—H22	119.3
C13—C8—C7	119.21 (15)	O1—C23—H23A	109.5
C10—C9—C8	121.23 (16)	O1—C23—H23B	109.5
С10—С9—Н9	119.4	H23A—C23—H23B	109.5
С8—С9—Н9	119.4	O1—C23—H23C	109.5
C11—C10—C9	119.31 (16)	H23A—C23—H23C	109.5
C11—C10—H10	120.3	H23B—C23—H23C	109.5
C14-C1-C2-N2	-17716(16)	C9-C8-C13-C14	175 09 (14)
$C_{15} - C_{1} - C_{2} - N_{2}$	-30(2)	C7-C8-C13-C14	-64(2)
$C_{14} - C_{1} - C_{2} - C_{3}$	18(2)	C_{2} C_{1} C_{14} C_{5}	-1.9(2)
$C_{14} = C_{1} = C_{2} = C_{3}$	1.0(2) 175 94 (15)	$C_{12} = C_{11} = C_{14} = C_{25}$	-17551(15)
$N_2 C_2 C_3 C_4$	173.94(13) 178.21(17)	C_{13} C_{14} C_{14} C_{13}	173.01(10)
112 - 22 - 23 - 24	-0.7(2)	$C_{12} = C_{12} = C_{14} = C_{13}$	-0.3(3)
C1 = C2 = C3 = C4	-0.7(2)	$C_{13} - C_{14} - C_{13}$	-0.3(3)
$N_2 = C_2 = C_3 = C_{16}$	-0.9(3)	C4 - C5 - C14 - C1	1.0(2)
C1 - C2 - C3 - C16	-1/9.86 (15)	$C_{0} - C_{0} - C_{14} - C_{14}$	1/6.69 (15)
$U_2 - U_3 - U_4 - U_5$	-0.1 (3)	C4-C5-C14-C13	-1/4.42 (16)
C16-C3-C4-C5	179.01 (16)	C6—C5—C14—C13	1.3 (2)
C2—C3—C4—C17	-177.76 (15)	C12—C13—C14—C1	28.1 (2)
C16—C3—C4—C17	1.4 (2)	C8—C13—C14—C1	-150.04 (16)
C3—C4—C5—C14	0.0 (3)	C12—C13—C14—C5	-156.66 (16)
C17—C4—C5—C14	177.51 (16)	C8—C13—C14—C5	25.2 (2)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-175.50 (16) 2.0 (3) 132.25 (17) -43.4 (2) 58.90 (18) 142.75 (15) -35.7 (2) -0.3 (2) -178.80 (15) 3.0 (2) -2.2 (2) -1.4 (2) 4.0 (2) -174.11 (15) -3.2 (2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70.5 (2) -111.93 (18) -112.04 (19) 65.5 (2) 2.4 (2) -175.12 (15) 0.5 (2) -160.73 (14) 19.5 (2) 177.14 (14) -3.1 (2) -177.48 (15) 2.8 (2) 0.2 (2) -2.7 (2)
C11—C12—C13—C14	-174.11 (15)	C20—C21—C22—C17	0.2 (2)
C9—C8—C13—C12	-3.2 (2)	C18—C17—C22—C21	-2.7 (2)
C7—C8—C13—C12	175.35 (15)	C4—C17—C22—C21	174.76 (15)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N2—H1···O1 ⁱ	0.89(1)	2.21 (1)	3.0307 (19)	154 (2)
N2—H2···N1 ⁱⁱ	0.88 (1)	2.33 (1)	3.115 (2)	149 (2)

Symmetry codes: (i) *x*-1, -*y*+1/2, *z*-1/2; (ii) -*x*-1, -*y*, -*z*.