

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

*N*¹,*N*³-Bis(pyridin-3-ylmethyl)isophthalamide dihydrate

Ying-ying Dong and Xi-chuan Cao*

School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou, Jiangsu Province 221008, People's Republic of China Correspondence e-mail: dongxiaoyingzi@163.com

Received 25 July 2011; accepted 7 August 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.039; wR factor = 0.113; data-to-parameter ratio = 12.3.

The complete organic molecule in the title dihydrate, $C_{20}H_{22}N_4O_4$, is generated by crystallographic twofold symmetry, with two C atoms lying on the rotation axis. The symmetry unique pyridine ring forms a dihedral angle of 83.16 (8)° with the central benzene ring. In the crystal, intermolecular N-H···O, O-H···N and O-H···O hydrogen bonds connect the components into a two-dimensional network lying parallel to (101).

Related literature

For information on amide derivatives used in the construction of metal-organic frameworks, see: Luo *et al.* (2007, 2009).

Experimental

Crystal data $C_{20}H_{18}N_4O_2 \cdot 2H_2O$ $M_r = 382.42$

Monoclinic, C2/ca = 23.0097 (8) Å b = 7.0040 (2) Å c = 12.4483 (4) Å $\beta = 107.493 (2)^{\circ}$ $V = 1913.39 (11) \text{ Å}^{3}$ Z = 4

Data collection

Bruker SMART CCD	7105 measured reflections
diffractometer	1687 independent reflections
Absorption correction: multi-scan	1350 reflections with $I > 2\sigma(I)$
(SADADS; Sheldrick, 1996)	$R_{\rm int} = 0.026$
$T_{\rm min} = 0.981, \ T_{\rm max} = 0.986$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.113$ S = 1.021687 reflections 137 parameters H atoms treated by a mixture of independent and constrained refinement

 $\begin{array}{l} \Delta \rho_{\rm max} = 0.17 ~{\rm e}~{\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.14 ~{\rm e}~{\rm \AA}^{-3} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1A\cdots O2^{i}$	0.86	2.05	2.859 (2)	156
$O2-H2W \cdot \cdot \cdot O1^{ii}$	0.95 (3)	1.94 (3)	2.875 (2)	169 (3)
$O2-H1W \cdot \cdot \cdot N2$	0.95 (3)	1.90 (3)	2.849 (2)	178 (3)
-	1 2			

Symmetry codes: (i) $-x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (ii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5294).

References

Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Bruker (1998). *SMART* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA

Luo, F., Che, Y. X. & Zheng, J. M. (2009). Micropor. Mesopor. Mater. A117, 486–489.

Luo, F., Zheng, J. M. & Batten, S. R. (2007). *Chem. Commun.* **36**, 3744–3746. Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (2008). *Acta Cryst.* **A64**, 112–122.

Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$

 $0.20 \times 0.20 \times 0.15 \text{ mm}$

T = 296 K

supporting information

Acta Cryst. (2011). E67, o2339 [doi:10.1107/S1600536811031965]

N^1 , N^3 -Bis(pyridin-3-ylmethyl) isophthalamide dihydrate

Ying-ying Dong and Xi-chuan Cao

S1. Comment

Amides are useful to construct long ligands for building porous metal-organic frameworks (Luo *et al.*, 2007;2009). We synthesized the title compound in the hope of using it as a ligand for constructing metal-organic frameworks. The crystal structure of the title compound is presented herein.

The molecular structure of the title compound is shown in Fig. 1. The molecule lies on a twofold rotation axis. The symmetry unique pyridine ring forms a dihedral angle of $83.16 (8)^\circ$ with the central benzene ring. In the crystal, intermolecular N—H…O, O—H…N and O—H…O hydrogen bonds connect the components of the structure into a two-dimensional network parallel to (101) (Fig. 2).

S2. Experimental

Thionyl chloride (10 mL, 99.0%) and isophthalic acid (10 mmol) in a round bottomflask was refluxed for 2 h. After the reaction was complete, dichloromethane (30 mL), triethylamine (4.2 mL) and pyridin-3-ylmethanamine (20 mmol) were added to the solution, and stired for 2 h in an ice bath. The mixture was refluxed for 3 hr. The solvent was evaporated *in vacuo* and the residue was washed with water. The title compound was dissolved in *N*,*N*-dimethylformamide and single crystals were obtained by slow evaporation.

S3. Refinement

H atoms bonded to C and N atoms were placed in calculated positions with C—H = 0.93 - 0.95Å, N—H = 0.86Å and included using a riding-model approximation with $U_{iso}(H) = 1.2U_{eq}(C,N)$. H atoms bonded to O atoms were refined independently with isotropic displacement parameters.

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level (symmetry code; (A) -x+1, y, -z+1/2). Only the symmetry unique water molecule is shown.

Figure 2

Part of the crystal structure with hydrogen bonds shown as dashed lines. Only H atoms involved in hydrogen bonds are shown.

N¹,N³-Bis(pyridin-3-ylmethyl)isophthalamide dihydrate

Crystal data

 $C_{20}H_{18}N_4O_2:2H_2O$ $M_r = 382.42$ Monoclinic, C2/c Hall symbol: -C 2yc a = 23.0097 (8) Å b = 7.0040 (2) Å c = 12.4483 (4) Å $\beta = 107.493$ (2)° V = 1913.39 (11) Å³ Z = 4

Data collection

Bruker SMART CCD diffractometer Radiation source: fine-focus sealed tube F(000) = 808 $D_x = 1.328 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2484 reflections $\theta = 3.1-27.3^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 296 KBlock, colorless $0.20 \times 0.20 \times 0.15 \text{ mm}$

Graphite monochromator φ and ω scans

Absorption correction: multi-scan	$R_{\rm int} = 0.026$
(SADADS; Sheldrick, 1996)	$\theta_{\rm max} = 25.0^{\circ}, \ \theta_{\rm min} = 1.9^{\circ}$
$T_{\min} = 0.981, \ T_{\max} = 0.986$	$h = -27 \rightarrow 27$
7105 measured reflections	$k = -8 \longrightarrow 8$
1687 independent reflections	$l = -14 \rightarrow 14$
1350 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from
$wR(F^2) = 0.113$	neighbouring sites
S = 1.02	H atoms treated by a mixture of independent
1687 reflections	and constrained refinement
137 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0574P)^2 + 0.8895P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{ m max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.17 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.14 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.26370 (7)	0.5013 (2)	0.48897 (15)	0.0532 (5)
H1	0.2776	0.5491	0.5619	0.064*
C2	0.30590 (7)	0.4263 (2)	0.44286 (13)	0.0440 (4)
C3	0.28433 (8)	0.3535 (3)	0.33491 (15)	0.0614 (5)
Н3	0.3112	0.3006	0.3004	0.074*
C4	0.22323 (9)	0.3594 (3)	0.27895 (16)	0.0706 (6)
H4	0.2081	0.3095	0.2067	0.085*
C5	0.18480 (8)	0.4404 (3)	0.33149 (19)	0.0681 (6)
Н5	0.1435	0.4469	0.2924	0.082*
C6	0.37282 (7)	0.4242 (3)	0.50748 (13)	0.0500 (4)
H6A	0.3792	0.4938	0.5774	0.060*
H6B	0.3858	0.2933	0.5262	0.060*
C7	0.43779 (6)	0.4081 (2)	0.38248 (13)	0.0442 (4)
C8	0.47085 (6)	0.5210 (2)	0.31622 (12)	0.0402 (4)
C9	0.5000	0.4233 (3)	0.2500	0.0402 (5)
Н9	0.5000	0.2905	0.2500	0.048*
C10	0.47222 (7)	0.7191 (3)	0.31698 (14)	0.0544 (5)
H10	0.4542	0.7863	0.3631	0.065*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

C11	0.5000	0.8164 (4)	0.2500	0.0655 (8)	
H11	0.5000	0.9492	0.2500	0.079*	
H1W	0.1383 (14)	0.563 (4)	0.494 (2)	0.126 (10)*	
H2W	0.0893 (14)	0.482 (5)	0.548 (3)	0.141 (11)*	
N1	0.40984 (5)	0.5090 (2)	0.44382 (11)	0.0470 (4)	
H1A	0.4140	0.6311	0.4457	0.056*	
N2	0.20366 (7)	0.5099 (2)	0.43535 (15)	0.0662 (5)	
01	0.43603 (5)	0.23240 (18)	0.37774 (11)	0.0644 (4)	
O2	0.10649 (7)	0.5921 (2)	0.52588 (15)	0.0810 (5)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0526 (10)	0.0520 (10)	0.0644 (11)	-0.0028 (8)	0.0316 (8)	-0.0020 (8)
C2	0.0488 (8)	0.0400 (9)	0.0508 (9)	-0.0032 (7)	0.0263 (7)	0.0027 (7)
C3	0.0595 (10)	0.0687 (13)	0.0624 (11)	-0.0019 (9)	0.0282 (9)	-0.0078 (9)
C4	0.0648 (12)	0.0808 (15)	0.0648 (12)	-0.0124 (10)	0.0173 (10)	-0.0058 (11)
C5	0.0477 (10)	0.0721 (13)	0.0825 (14)	-0.0080 (9)	0.0167 (9)	0.0105 (11)
C6	0.0495 (9)	0.0574 (11)	0.0509 (9)	0.0000 (8)	0.0271 (7)	0.0031 (8)
C7	0.0406 (8)	0.0453 (10)	0.0512 (9)	0.0011 (7)	0.0205 (7)	0.0030 (7)
C8	0.0335 (7)	0.0442 (9)	0.0459 (8)	0.0006 (6)	0.0163 (6)	0.0010 (7)
C9	0.0361 (10)	0.0374 (11)	0.0496 (12)	0.000	0.0167 (9)	0.000
C10	0.0614 (10)	0.0458 (10)	0.0700 (11)	0.0029 (8)	0.0410 (9)	-0.0033 (8)
C11	0.0823 (18)	0.0390 (13)	0.097 (2)	0.000	0.0606 (16)	0.000
N1	0.0461 (7)	0.0473 (8)	0.0568 (8)	-0.0013 (6)	0.0295 (6)	0.0014 (6)
N2	0.0513 (9)	0.0639 (10)	0.0945 (13)	0.0020 (7)	0.0388 (8)	0.0039 (9)
01	0.0800 (9)	0.0451 (8)	0.0886 (9)	0.0000 (6)	0.0566 (7)	0.0049 (6)
02	0.0929 (10)	0.0548 (9)	0.1232 (13)	0.0019 (7)	0.0745 (10)	-0.0074 (8)

Geometric parameters (Å, °)

C1—N2	1.343 (2)	C7—O1	1.232 (2)
C1—C2	1.372 (2)	C7—N1	1.3383 (19)
C1—H1	0.9300	C7—C8	1.504 (2)
C2—C3	1.383 (2)	C8—C10	1.388 (2)
С2—С6	1.508 (2)	C8—C9	1.3892 (17)
C3—C4	1.369 (3)	C9—C8 ⁱ	1.3892 (17)
С3—Н3	0.9300	С9—Н9	0.9300
C4—C5	1.371 (3)	C10—C11	1.374 (2)
C4—H4	0.9300	C10—H10	0.9300
C5—N2	1.326 (3)	C11-C10 ⁱ	1.374 (2)
С5—Н5	0.9300	C11—H11	0.9300
C6—N1	1.4534 (18)	N1—H1A	0.8600
С6—Н6А	0.9700	O2—H1W	0.95 (3)
С6—Н6В	0.9700	O2—H2W	0.95 (3)
N2-C1-C2	124.12 (17)	O1—C7—N1	122.70 (14)
N2—C1—H1	117.9	O1—C7—C8	120.90 (14)

117.9	N1—C7—C8	116.38 (14)
117.08 (15)	C10—C8—C9	118.85 (14)
121.21 (14)	C10—C8—C7	122.41 (13)
121.70 (14)	C9—C8—C7	118.72 (14)
119.80 (17)	C8 ⁱ —C9—C8	121.0 (2)
120.1	C8 ⁱ —C9—H9	119.5
120.1	С8—С9—Н9	119.5
118.73 (18)	C11—C10—C8	120.36 (15)
120.6	C11—C10—H10	119.8
120.6	C8—C10—H10	119.8
123.23 (17)	C10 ⁱ —C11—C10	120.5 (2)
118.4	C10 ⁱ —C11—H11	119.7
118.4	C10-C11-H11	119.7
112.14 (12)	C7—N1—C6	123.79 (14)
109.2	C7—N1—H1A	118.1
109.2	C6—N1—H1A	118.1
109.2	C5—N2—C1	117.01 (15)
109.2	H1W—O2—H2W	113 (2)
107.9		
-0.9 (3)	N1—C7—C8—C9	-179.21 (11)
179.05 (15)	C10-C8-C9-C8 ⁱ	-1.20 (11)
0.4 (3)	C7-C8-C9-C8 ⁱ	177.47 (14)
-179.58 (17)	C9—C8—C10—C11	2.4 (2)
0.8 (3)	C7—C8—C10—C11	-176.19 (12)
-1.6 (3)	C8-C10-C11-C10 ⁱ	-1.24 (11)
-127.37 (16)	O1—C7—N1—C6	-2.4 (2)
52.6 (2)	C8—C7—N1—C6	176.18 (13)
178.05 (16)	C2-C6-N1-C7	-95.97 (18)
-0.6 (2)	C4—C5—N2—C1	1.1 (3)
-0.6 (2)	C2-C1-N2-C5	0.2 (3)
	117.9 117.08 (15) 121.21 (14) 121.70 (14) 119.80 (17) 120.1 120.1 120.1 120.6 120.6 123.23 (17) 118.4 112.14 (12) 109.2 109.2 109.2 109.2 109.2 109.2 109.2 109.2 109.2 109.2 109.2 109.2 109.2 109.5 (15) 0.4 (3) -1.6 (3) -1.27.37 (16) 52.6 (2) -0.6 (2) -0.6 (2)	117.9 $N1-C7-C8$ $117.08 (15)$ $C10-C8-C9$ $121.21 (14)$ $C10-C8-C7$ $121.70 (14)$ $C9-C8-C7$ $119.80 (17)$ $C8^i-C9-C8$ 120.1 $C8^i-C9-H9$ 120.1 $C8-C9-H9$ 120.1 $C8-C9-H9$ $118.73 (18)$ $C11-C10-C8$ 120.6 $C8-C10-H10$ $123.23 (17)$ $C10^i-C11-C10$ 118.4 $C10^i-C11-H11$ 118.4 $C10-C11-H11$ $112.14 (12)$ $C7-N1-C6$ 109.2 $C6-N1-H1A$ 109.2 $C5-N2-C1$ 109.2 $C5-N2-C1$ 109.2 $C10-C8-C9-C8^i$ $0.4 (3)$ $C7-C8-C9-C8^i$ $-179.58 (17)$ $C9-C8-C10-C11$ $0.8 (3)$ $C7-C8-C10-C11$ $-1.6 (3)$ $C8-C10-C11-C10^i$ $-127.37 (16)$ $O1-C7-N1-C6$ $178.05 (16)$ $C2-C6-N1-C7$ $-0.6 (2)$ $C4-C5-N2-C1$ $-0.6 (2)$ $C2-C1-N2-C5$

Symmetry code: (i) -x+1, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N1—H1A····O2 ⁱⁱ	0.86	2.05	2.859 (2)	156
O2—H2 <i>W</i> ···O1 ⁱⁱⁱ	0.95 (3)	1.94 (3)	2.875 (2)	169 (3)
O2—H1 <i>W</i> ···N2	0.95 (3)	1.90 (3)	2.849 (2)	178 (3)

Symmetry codes: (ii) -x+1/2, -y+3/2, -z+1; (iii) -x+1/2, -y+1/2, -z+1.