Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3,3'-Diphenyl-1,1'-(butane-1,4-diyl)dithiourea

Pramod Pansuriya, Holger B. Friedrich and Glenn E. M. Maguire*

School of Chemistry, University of KwaZulu-Natal, Durban 4000, South Africa Correspondence e-mail: maguireg@ukzn.ac.za

Received 4 August 2011; accepted 15 August 2011
Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.034 ; w R$ factor $=0.093$; data-to-parameter ratio $=18.7$.

The asymmetric unit of the title compound, $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{~S}_{2}$, contains one half-molecule, the complete molecule being generated by crystallographic inversion symmetry. The crystal structure features two intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogenbonding interactions, the first generating an infinite chain along the b axis and the second an infinite chain along the a axis, together forming an interlocking structure.

Related literature

Thiourea derivatives are conspicuous for their biological activity as they form strong hydrogen-bonding interactions and coordinate to metal ions, see: Wittkopp \& Schreiner (2003); Li et al. (2008). For appliactions of thiourea, see Abdallah et al. (2006); Karamé et al. (2003); Nan et al. (2000); Breuzard et al. (2000); Tommasino et al., (2000); Reinoso García et al. (2004); Leung et al. (2008). For synthesis of the title compound, see: Lee et al. (1985).

Experimental

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{~S}_{2}$
$M_{r}=358.52$
Monoclinic, $P 2_{1} / c$
$a=9.6795(3) \AA$
$b=7.8677(3) \AA$
$c=12.3213(4) \AA$
$\beta=105.816(2)^{\circ}$
$V=902.81(5) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.30 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
$0.46 \times 0.45 \times 0.13 \mathrm{~mm}$

Data collection
Bruker APEXII CCD
diffractometer
9210 measured reflections
2192 independent reflections 1710 reflections with $I>2 \sigma(I)$ $R_{\mathrm{int}}=0.042$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.093$
H atoms treated by a mixture of
$S=1.06$
2192 reflections
117 parameters
independent and constrained refinement
$\Delta \rho_{\max }=0.45 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.23 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{~S}^{1{ }^{\mathrm{i}}}$	$0.855(18)$	$2.508(18)$	$3.3465(13)$	$167.1(15)$
$\mathrm{N} 2-\mathrm{H} 2 N \cdots \mathrm{~S}^{\text {ii }}$	$0.806(15)$	$2.713(16)$	$3.3755(14)$	$140.7(13)$

Symmetry codes: (i) $-x+1,-y,-z$; (ii) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$.
Data collection: APEX2 (Bruker, 2006); cell refinement: SAINTPlus (Bruker, 2006); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

The authors wish to thank Dr Manuel Fernandes from the Chemistry Department of the University of the Witwatersrand for his assistance with the data collection and c^{*} change for financial support.

Supplementary data and figures for this paper are available from the
IUCr electronic archives (Reference: OM2458). IUCr electronic archives (Reference: OM2458).

References

Abdallah, R., Breuzard, J. A. J., Bonnet, M. C. \& Lemaire, M. (2006). J. Mol. Catal. A Chem. 249, 218-222.
Breuzard, J. A. J., Tommasino, M. L. \& Toucard, F. (2000). J. Mol. Catal. A Chem. 156, 223-232.
Bruker (2006). APEX2, SAINT and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Karamé, I., Tommasino, M. L. \& Lemaire, M. (2003). J. Mol. Catal. A Chem. 196, 137-143.
Lee, K. N., Fesus, L., Yancey, S. T., Girardg, J. E. \& Chung, S. I. (1985). J. Biol. Chem. 260, 14689-14694.
Leung, A. N., Degenhardt, D. A. \& Bühlmann, P. (2008). Tetrahedron, 64, 2530-2536.
Li, X., Deng, H., Luo, S. \& Cheng, J. (2008). Eur. J. Org. Chem. pp. 4350-4356.
Nan, Y., Miao, H. \& Yang, Z. (2000). Org. Lett. 2, 297-299.
Reinoso García, M. M., Verboom, W., Reinhoudt, D. N., Malinowska, E., Pietrzak, M. \& Wojciechowska, D. (2004). Tetrahedron, 60, 11299-11306.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Tommasino, M. L., Thomazeau, C., Touchard, F. \& Lemaire, M. (2000). Tetrahedron Asymmetry, 11, 4835-4841.
Wittkopp, A. \& Schreiner, P. R. (2003). Chem. Eur. J. 9, 407-414.

supporting information

Acta Cryst. (2011). E67, o2380 [doi:10.1107/S1600536811033071]

3,3'-Diphenyl-1,1'-(butane-1,4-diyl)dithiourea

Pramod Pansuriya, Holger B. Friedrich and Glenn E. M. Maguire

S1. Comment

Thiourea derivatives are conspicuous for their biological activity as they form strong hydrogen bonding interactions and coordinate metal ions (Wittkopp \& Schreiner, 2003; Li et al., 2008). In recent years the use of thiourea groups as potential catalytic ligands has been extensively studied in reactions such as hydroformylation (Abdallah et al., 2006), hydrosilylation (Karamé et al., 2003), asymmetric reduction (Nan et al., 2000), cyclization (Breuzard et al., 2000) and hydrogenation (Tommasino et al., 2000). Other applications include their use as synthetic cation-anion ionophores (Reinoso García et al., 2004; Leung et al., 2008).

Here we report the crystal structure of the title compound (Lee et al., 1985) (Fig. 1). The structure shows two distinct intermolecular hydrogen bonding interactions. The first occurs between between N1-H1 and S1 2.508 (18) \AA, that creates an infinite chain of molecules along the b axis. The second occurs between N2-H2 and S12.713 (16) \AA, that generates an infinite chain along the a axis. Due to these interactions an interlocking molecular structure is formed (Fig. 2).

S2. Experimental

A solution of phenyl isothiocyanate $(6.75 \mathrm{~g}, 50 \mathrm{mmol})$ in diethyl ether $(15 \mathrm{ml})$ was added dropwise at $15^{\circ} \mathrm{C}$ to a vigorously stirred solution of anhydrous butane-1,4-diamine ($8.81 \mathrm{~g}, 100 \mathrm{mmol}$) in isopropyl alcohol (100 ml) over a period of 30 min . The reaction mixture was stirred for 2 hrs at room temperature and quenched with water (200 ml). The reaction mixture was maintained overnight at room temperature. Then the reaction mixture was acidified with conc. HCl up to pH 2.6. The solvents were evaporated under vacuum, the residue was suspended in hot water for 30 min and the resulting precipitate was filtered off. The product was washed with ice cold water and dried. The yield was $2.36 \mathrm{~g}(35 \%)$.

Crystals suitable for single-crystal X-ray diffraction were grown in methanol: methylene chloride (1:2) at room temperature. $M . \mathrm{p} .=458 \mathrm{~K}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) d (p.p.m.): 7.64 (br.s., 2H, NH—CS), 7.40-7.46 (m, 4H, H-arom), 7.29-7.33 (t, 2H, Harom), $7.19-7.21$ (d, 4H, H-arom), 6.18 (br.s., $2 \mathrm{H},-\mathrm{NH}-\mathrm{CH}_{2}$), $3.65\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 1.61\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 26.12,44.75,125.45,127.55,130.34,180.92$
IR. $\left(v, \mathrm{~cm}^{-1}\right) 3155,3005,2933,1591,1518,1492,1294,1254,1178,1071$.

S3. Refinement

With the exception of those involved in hydrogen bonding, all hydrogen atoms were first located in the difference map then positioned geometrically and allowed to ride on their respective parent atoms with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for aromatic and $\mathrm{C}-\mathrm{H}=0.99 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ for CH_{2}. Hydrogen atoms involved in hydrogen bonding were located in the difference map and refined freely.

Figure 1

The molecular structure of the title compound with atomic numbering scheme. The H atoms have been omitted for clarity. Displacement ellipsoids are drawn at 40% probability. The $1,1^{\prime}$-(butane-1,4-diyl)bis(3-phenylthiourea) has inversion symmetry [symmetry code: (i): $1-x,-y, 1-z]$.

Figure 2
The hydrogen bonding interactions of the title compound as viewed down the a axis. All H atoms except those involved in hydrogen bonding interactions have been omitted for clarity.

3-phenyl-1-\{4-[(phenylcarbamothioyl)amino]butyl\}thiourea

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{~S}_{2}$
$M_{r}=358.52$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2 ybc
$a=9.6795$ (3) A
$b=7.8677$ (3) \AA
$c=12.3213(4) \AA$
$\beta=105.816(2)^{\circ}$

$$
\begin{aligned}
& V=902.81(5) \AA^{3} \\
& Z=2 \\
& F(000)=380 \\
& D_{\mathrm{x}}=1.319 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 3394 \text { reflections } \\
& \theta=3.1-28.2^{\circ} \\
& \mu=0.30 \mathrm{~mm}^{-1}
\end{aligned}
$$

$T=173 \mathrm{~K}$
Plate, colourless

Data collection

Bruker APEXII CCD

 diffractometerRadiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
9210 measured reflections
2192 independent reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.093$
$S=1.06$
2192 reflections
117 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$0.46 \times 0.45 \times 0.13 \mathrm{~mm}$

1710 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.042$
$\theta_{\text {max }}=28.0^{\circ}, \theta_{\text {min }}=2.2^{\circ}$
$h=-12 \rightarrow 12$
$k=-10 \rightarrow 10$
$l=-16 \rightarrow 16$

$$
\begin{aligned}
& \text { Secondary atom site location: difference Fourier } \\
& \text { map } \\
& \text { Hydrogen site location: inferred from } \\
& \quad \text { neighbouring sites } \\
& \text { H atoms treated by a mixture of independent } \\
& \quad \text { and constrained refinement } \\
& w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0513 P)^{2}+0.0075 P\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.005 \\
& \Delta \rho_{\max }=0.45 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=-0.23 \text { e } \AA^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
C1	$0.23226(14)$	$-0.10682(19)$	$0.10971(12)$	$0.0250(3)$
C2	$0.17043(15)$	$-0.0394(2)$	$0.19000(13)$	$0.0314(4)$
H2	0.2223	0.0392	0.2445	0.038^{*}
C3	$0.03242(16)$	$-0.0880(2)$	$0.18976(14)$	$0.0383(4)$
H3	-0.0092	-0.0449	0.2457	0.046^{*}
C4	$-0.04488(16)$	$-0.1990(2)$	$0.10837(15)$	$0.0393(4)$
H4	-0.1387	-0.2333	0.1092	0.047^{*}
C5	$0.01453(16)$	$-0.2598(2)$	$0.02594(14)$	$0.0366(4)$
H5	-0.0397	-0.3326	-0.0315	0.044^{*}
C6	$0.15346(15)$	$-0.2145(2)$	$0.02723(12)$	$0.0296(3)$
H6	0.1947	-0.2578	-0.0289	0.036^{*}
C7	$0.49385(14)$	$-0.05136(17)$	$0.19228(11)$	$0.0223(3)$
C8	$0.60322(15)$	$-0.0926(2)$	$0.39648(12)$	$0.0286(3)$
H8A	0.6645	0.0072	0.3938	0.034^{*}

H8B	0.6631	-0.1961	0.4027	0.034^{*}
C9	$0.54395(17)$	$-0.0793(2)$	$0.49881(12)$	$0.0316(3)$
H9A	0.4833	-0.1801	0.5004	0.038^{*}
H9B	0.6253	-0.0821	0.5680	0.038^{*}
N1	$0.37258(12)$	$-0.05795(17)$	$0.10580(10)$	$0.0265(3)$
N2	$0.48550(13)$	$-0.10013(17)$	$0.29351(10)$	$0.0261(3)$
S1	$0.65024(4)$	$0.01605(5)$	$0.16882(3)$	$0.02773(13)$
H1N	$0.3820(18)$	$-0.045(2)$	$0.0393(15)$	$0.036(5)^{*}$
H2N	$0.4173(16)$	$-0.158(2)$	$0.2950(13)$	$0.028(4)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0203(7)$	$0.0312(8)$	$0.0236(7)$	$0.0032(6)$	$0.0058(5)$	$0.0059(6)$
C2	$0.0244(7)$	$0.0448(9)$	$0.0253(8)$	$0.0052(6)$	$0.0073(6)$	$0.0008(6)$
C3	$0.0274(8)$	$0.0553(11)$	$0.0354(9)$	$0.0102(7)$	$0.0140(7)$	$0.0074(8)$
C4	$0.0216(7)$	$0.0464(10)$	$0.0506(10)$	$0.0014(7)$	$0.0110(7)$	$0.0127(8)$
C5	$0.0254(8)$	$0.0352(9)$	$0.0450(10)$	$-0.0020(6)$	$0.0024(7)$	$0.0003(7)$
C6	$0.0260(7)$	$0.0321(8)$	$0.0301(8)$	$0.0030(6)$	$0.0062(6)$	$0.0008(6)$
C7	$0.0219(7)$	$0.0238(7)$	$0.0225(7)$	$0.0013(5)$	$0.0083(5)$	$-0.0036(5)$
C8	$0.0223(7)$	$0.0392(8)$	$0.0230(7)$	$0.0017(6)$	$0.0041(6)$	$-0.0015(6)$
C9	$0.0311(8)$	$0.0392(9)$	$0.0234(7)$	$0.0028(7)$	$0.0057(6)$	$0.0023(6)$
N1	$0.0221(6)$	$0.0406(7)$	$0.0181(6)$	$-0.0017(5)$	$0.0076(5)$	$0.0001(5)$
N2	$0.0204(6)$	$0.0368(7)$	$0.0215(6)$	$-0.0068(5)$	$0.0064(5)$	$0.0008(5)$
S1	$0.0215(2)$	$0.0385(2)$	$0.0256(2)$	$-0.00221(15)$	$0.01058(15)$	$-0.00035(15)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

C1-C6	1.382 (2)	C7-N2	1.3283 (17)
C1-C2	1.393 (2)	C7-N1	1.3543 (18)
C1-N1	1.4250 (17)	C7-S1	1.7014 (14)
C2-C3	1.389 (2)	C8-N2	1.4572 (18)
C2-H2	0.9500	C8-C9	1.5246 (19)
C3-C4	1.385 (2)	C8-H8A	0.9900
C3-H3	0.9500	C8-H8B	0.9900
C4-C5	1.382 (2)	C9-C9 ${ }^{\text {i }}$	1.516 (3)
C4-H4	0.9500	C9-H9A	0.9900
C5-C6	1.387 (2)	C9-H9B	0.9900
C5-H5	0.9500	N1-H1N	0.855 (18)
C6-H6	0.9500	N2-H2N	0.806 (15)
C6- $\mathrm{C} 1-\mathrm{C} 2$	119.85 (13)	N1-C7-S1	119.92 (10)
C6- $\mathrm{C} 1-\mathrm{N} 1$	118.73 (12)	N2-C8-C9	109.98 (11)
C2-C1-N1	121.28 (13)	N2-C8-H8A	109.7
C3-C2-C1	119.53 (15)	C9-C8-H8A	109.7
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.2	N2-C8-H8B	109.7
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.2	C9-C8-H8B	109.7
C4-C3-C2	120.30 (15)	H8A-C8-H8B	108.2

C4-C3-H3	119.9	C9 - C9-C8	114.35 (16)
C2-C3-H3	119.9	C9--C9-H9A	108.7
C5-C4-C3	119.97 (14)	C8-C9-H9A	108.7
C5-C4-H4	120.0	C9i-C9-H9B	108.7
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	120.0	C8-C9-H9B	108.7
C4-C5-C6	119.93 (15)	H9A-C9-H9B	107.6
C4-C5-H5	120.0	C7-N1-C1	127.84 (12)
C6-C5-H5	120.0	C7-N1-H1N	117.0 (12)
C1-C6-C5	120.33 (14)	C1-N1-H1N	114.6 (12)
C1-C6-H6	119.8	C7-N2-C8	124.94 (12)
C5-C6-H6	119.8	C7-N2-H2N	116.4 (11)
N2-C7-N1	117.79 (12)	C8-N2-H2N	117.0 (11)
N2-C7-S1	122.29 (11)		
C6- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	3.2 (2)	N2-C8-C9-C9 ${ }^{\text {i }}$	-62.1 (2)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	178.86 (14)	N2-C7-N1-C1	2.1 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-1.8 (2)	$\mathrm{S} 1-\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1$	-178.44 (12)
C2-C3-C4-C5	-1.0 (3)	C6- $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7$	-135.44 (15)
C3-C4-C5-C6	2.3 (3)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7$	48.9 (2)
C2-C1-C6-C5	-1.9 (2)	N1-C7-N2-C8	-176.58 (13)
N1-C1-C6-C5	-177.63 (14)	$\mathrm{S} 1-\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 8$	4.0 (2)
C4-C5-C6-C1	-0.9 (2)	C9-C8-N2-C7	154.26 (15)

Symmetry code: (i) $-x+1,-y,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 N \cdots \mathrm{~S} 1^{\mathrm{ii}}$	$0.855(18)$	$2.508(18)$	$3.3465(13)$	$167.1(15)$
$\mathrm{N} 2 — \mathrm{H} 2 N \cdots \mathrm{~S} 1^{\mathrm{iii}}$	$0.806(15)$	$2.713(16)$	$3.3755(14)$	$140.7(13)$

Symmetry codes: (ii) $-x+1,-y,-z$; (iii) $-x+1, y-1 / 2,-z+1 / 2$.

