

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,3-Dibromo-3-(4-chlorophenyl)-1-(2hydroxyphenyl)propan-1-one

Hoong-Kun Fun,^a*‡Wan-Sin Loh,^a§B. K. Sarojini,^b V. Musthafa Khaleel^b and B. Narayana^c

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bDepartment of Chemistry, P. A. College of Engineering, Mangalore 574 153, India, and ^cDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, India

Correspondence e-mail: hkfun@usm.my

Received 2 September 2011; accepted 10 September 2011

Key indicators: single-crystal X-ray study; T = 297 K; mean σ (C–C) = 0.004 Å; R factor = 0.037; wR factor = 0.122; data-to-parameter ratio = 29.7.

In the title molecule, $C_{15}H_{11}Br_2CIO_2$, an S(6) ring motif is formed *via* an intramolecular $O-H\cdots O$ hydrogen bond. The dihedral angle formed between the chloro- and hydroxysubstituted benzene rings is 34.10 (15)°. In the crystal, weak intermolecular $C-H\cdots O$ hydrogen bonds link the molecules into chains along the *c* axis.

Related literature

For applications of chalcone compounds, see: Liu *et al.* (2003); Nielson *et al.* (1998); Rajas *et al.* (2002); Dinkova-Kostova *et al.* (1998); Goto *et al.* (1991); Uchida *et al.* (1998); Tam *et al.* (1989); Indira *et al.* (2002); Sarojini *et al.* (2006). For related structures, see: Butcher, Yathirajan, Anilkumar *et al.* (2006); Butcher, Yathirajan, Sarojini *et al.* (2006); Harrison *et al.* (2005); Yathirajan, Mayekar *et al.* (2007); Yathirajan, Vijesh *et al.* (2007). For hydrogen-bond motifs, see: Bernstein *et al.* (1995).

Experimental

Crystal data

= 29.075(3)
= 9.2358 (10
= 11.4374 (1

[‡] Thomson Reuters ResearcherID: A-3561-2009. § Thomson Reuters ResearcherID: C-7581-2009.

 $\beta = 103.290 \ (2)^{\circ}$ $V = 2989.0 \ (6) \ \text{\AA}^{3}$ Z = 8Mo $K\alpha$ radiation

Data collection

Bruker SMART APEXII DUO	16663 measured reflections
CCD area-detector	5375 independent reflections
diffractometer	3337 reflections with $I > 2\sigma(I)$
Absorption correction: multi-scan	$R_{\rm int} = 0.034$
(SADABS; Bruker, 2009)	
$T_{\min} = 0.218, T_{\max} = 0.379$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	181 parameters
$wR(F^2) = 0.122$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.61 \ {\rm e} \ {\rm \AA}^{-3}$
5375 reflections	$\Delta \rho_{\rm min} = -0.47 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1 - H1O1 \cdots O2$ $C11 - H11A \cdots O2^{i}$	0.80	1.87 2.53	2.591 (3) 3 416 (4)	150 160
Summatuu aadau (i) u	12 - 1	2.00	5.110 (1)	100

Symmetry code: (i) $x, -y + 2, z - \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a research fellowship. VMK thanks P. A. College of Engineering for research facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5331).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Butcher, R. J., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o2525–o2527.
- Butcher, R. J., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Mithun, A. (2006). Acta Cryst. E62, 01629–01630.
- Dinkova-Kostova, A. T., Abey-gunawardana, C. & Talalay, P. (1998). J. Med. Chem. 41, 5287–5296.
- Goto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth, 108, 688–698.
- Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Anilkumar, H. G. (2005). Acta Cryst. C61, o728-o730.
- Indira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, **242**, 209–214. Liu, M., Wilairat, P., Cropft, S. L., Tan, A. L. C. & Go, M. I. (2003). Bioorg.
- Med. Chem. 11, 2729–2738. Nielson, S. F., Christensen, S. B., Cruciani, G., Kharazmi, A. & Liljefors, T.
- (1998). J. Med. Chem. **41**, 4819–4832.
- Rajas, J., Paya, M., Domingues, J. N. & Ferrandiz, M. L. (2002). Bioorg. Med. Chem. Lett. 12, 1951–1954.

 $\mu = 5.60 \text{ mm}^{-1}$

 $0.39 \times 0.36 \times 0.22 \text{ mm}$

. Т – 297 К

- Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54-59.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155.
 Tam, W., Guerin, B., Calabrese, J. C. & Stevenson, S. H. (1989). Chem. Phys. Lett. 154, 93-96.
- Uchida, T., Kozowa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1988). *Mol. Cryst. Liq. Cryst.* **315**, 135–140.
- Yathirajan, H. S., Mayekar, A. N., Narayana, B., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, 0827-0828.
- Yathirajan, H. S., Vijesh, A. M., Narayana, B., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o2198-o2199.

supporting information

Acta Cryst. (2011). E67, o2651–o2652 [https://doi.org/10.1107/S1600536811036798] 2,3-Dibromo-3-(4-chlorophenyl)-1-(2-hydroxyphenyl)propan-1-one Hoong-Kun Fun, Wan-Sin Loh, B. K. Sarojini, V. Musthafa Khaleel and B. Narayana

S1. Comment

For a structurally simple group of compounds, chalcones display an impressive array of biological activities, among which antimalarial (Liu *et al.*, 2003), antiprotozoal (Nielson *et al.*, 1998), nitric oxide inhibition (Rajas *et al.*, 2002) and anticancer activities (Dinkova-Kostova *et al.*, 1998) have been reported in the literature. Among several organic compounds reported for non-linear optical (NLO) properties, chalcone derivatives are notable materials for their excellent blue light transmittance and good crystallizability. They provide a necessary configuration to show NLO properties, with two planar rings connected through a conjugated double bond (Goto *et al.*, 1991; Uchida *et al.*, 1998; Tam *et al.*, 1989; Indira *et al.*, 2002; Sarojini *et al.*, 2006). The substitution of a bromo group on either of the phenyl rings can influence the non-centrosymmetric crystal packing. The bromo group can obviously improve the molecular first-order hyperpolarizabilities and can effectively reduce dipole-dipole interactions between the molecules. Chalcone derivatives usually have a lower melting temperature, which can be a drawback when we use these crystals in optical instruments. Chalcone dibromides usually have higher melting points and are thermally stable. Only a few structures of these compounds have been reported (Butcher, Yathirajan, Anilkumar *et al.*, 2006; Butcher, Yathirajan, Sarojini *et al.*, 2006; Harrison *et al.*, 2005; Yathirajan, Mayekar *et al.*, 2007; Yathirajan, Vijesh *et al.*, 2007). In continuation to our studies on crystal structures of chalcones, we report the synthesis and crystal structure of the title compound.

In the title compound (Fig. 1), an S(6) ring motif (Bernstein *et al.*, 1995) is formed *via* the intramolecular O1—H1O1···O2 hydrogen bond (Table 1). The dihedral angle formed between the chloro-substituted benzene ring (C1–C6) and hydroxy-substituted benzene ring (C10–C15) is 34.10 (15)°.

In the crystal packing (Fig. 2), intermolecular C11—H11A···O2ⁱ hydrogen bonds (Table 1) link the molecules into chains along the c axis.

S2. Experimental

(2E)-1-(2-Hydroxyphenyl)-3-(4-chlorophenyl)prop-2-en-1-one (0.01 mol) was treated with bromine in acetic acid (30%) until the orange colour of the solution persisted. After stirring for half an hour, the contents were poured onto crushed ice. The resulting solid mass was collected by filtration. The compound was dried and recrystallized from ethanol. Crystals suitable for structure determination were obtained from acetone by slow evaporation (*m. p.* = 395–397 K). Composition: Found (Calculated) for C₁₅H₁₁Br₂ClO₂, C: 43.19 (43.05); H: 2.68 (2.65).

S3. Refinement

H1O1 was located in a difference Fourier map and was fixed in its found position with $U_{iso}(H) = 1.5 U_{eq}(O)$ [O–H = 0.7971 Å]. The remaining H atoms were positioned geometrically and refined using the riding model with $U_{iso}(H) = 1.2$ or 1.5 $U_{eq}(C)$ [C–H = 0.93 to 0.98 Å]. Seven outliners were omitted for the final refinement, -22 0 2, -21 1 2, -9 1 1, -20 0 2, 1 1 0, 2 0 0 and -5 1 8.

Figure 1

The molecular structure of the title compound, showing 30% probability displacement ellipsoids. The dashed line shows an intramolecular hydrogen bond.

Figure 2

The crystal packing of the title compound, viewed along the b axis. Weak C—H···O hydrogen bonds are shown as dashed lines.

2,3-Dibromo-3-(4-chlorophenyl)-1-(2-hydroxyphenyl)propan-1-one

F(000) = 1632
$D_{\rm x} = 1.860 {\rm Mg} {\rm m}^{-3}$
Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Cell parameters from 4431 reflections
$\theta = 2.9 - 29.1^{\circ}$
$\mu = 5.60 \text{ mm}^{-1}$
T = 297 K
Block, yellow
$0.39 \times 0.36 \times 0.22 \text{ mm}$

Data collection

Bruker SMART APEXII DUO CCD area- detector diffractometer	16663 measured reflections 5375 independent reflections 3337 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.034$
Graphite monochromator	$\theta_{\text{max}} = 32.6^{\circ}, \theta_{\text{min}} = 2.9^{\circ}$
φ and ω scans	$h = -43 \rightarrow 39$
Absorption correction: multi-scan	$k = -13 \rightarrow 13$
(SADABS; Bruker, 2009)	$l = -13 \rightarrow 17$
$T_{\min} = 0.218, \ T_{\max} = 0.379$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.037$	Hydrogen site location: inferred from
$wR(F^2) = 0.122$	neighbouring sites
S = 1.04	H-atom parameters constrained
5375 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0657P)^2]$

181 parameterswhere $P = (F_o^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{max} = 0.001$ Primary atom site location: structure-invariant
direct methods $\Delta\rho_{max} = 0.61 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.04064 (3)	0.29705 (9)	0.14615 (9)	0.0677 (2)	
0.191164 (10)	0.81997 (3)	0.36623 (3)	0.05335 (11)	
0.046011 (11)	0.98145 (4)	0.41259 (3)	0.06342 (12)	
0.19186 (10)	1.3218 (2)	0.57890 (18)	0.0611 (6)	
0.1812	1.2476	0.5965	0.092*	
0.15388 (9)	1.0666 (2)	0.55101 (17)	0.0574 (5)	
0.06311 (12)	0.7159 (3)	0.2247 (3)	0.0545 (7)	
0.0577	0.8040	0.1845	0.065*	
0.04955 (11)	0.5874 (3)	0.1622 (3)	0.0553 (7)	
0.0355	0.5891	0.0805	0.066*	
0.05732 (10)	0.4580 (3)	0.2236 (3)	0.0480 (6)	
0.07828 (10)	0.4529 (3)	0.3435 (3)	0.0480 (6)	
0.0835	0.3645	0.3832	0.058*	
0.09170 (10)	0.5816 (3)	0.4055 (3)	0.0469 (6)	
0.1056	0.5791	0.4873	0.056*	
	x 0.04064 (3) 0.191164 (10) 0.046011 (11) 0.19186 (10) 0.1812 0.15388 (9) 0.06311 (12) 0.0577 0.04955 (11) 0.0355 0.05732 (10) 0.07828 (10) 0.0835 0.09170 (10) 0.1056	xy 0.04064 (3) 0.29705 (9) 0.191164 (10) 0.81997 (3) 0.046011 (11) 0.98145 (4) 0.19186 (10) 1.3218 (2) 0.1812 1.2476 0.15388 (9) 1.0666 (2) 0.06311 (12) 0.7159 (3) 0.0577 0.8040 0.04955 (11) 0.5874 (3) 0.05732 (10) 0.4580 (3) 0.07828 (10) 0.4529 (3) 0.0835 0.3645 0.09170 (10) 0.5816 (3) 0.1056 0.5791	xyz 0.04064 (3) 0.29705 (9) 0.14615 (9) 0.191164 (10) 0.81997 (3) 0.36623 (3) 0.046011 (11) 0.98145 (4) 0.41259 (3) 0.19186 (10) 1.3218 (2) 0.57890 (18) 0.1812 1.2476 0.5965 0.15388 (9) 1.0666 (2) 0.55101 (17) 0.06311 (12) 0.7159 (3) 0.2247 (3) 0.0577 0.8040 0.1845 0.04955 (11) 0.5874 (3) 0.1622 (3) 0.0355 0.5891 0.0805 0.05732 (10) 0.4580 (3) 0.2236 (3) 0.07828 (10) 0.4529 (3) 0.3435 (3) 0.0835 0.3645 0.3832 0.09170 (10) 0.5816 (3) 0.4055 (3) 0.1056 0.5791 0.4873	xyz $U_{iso}*/U_{eq}$ 0.04064 (3)0.29705 (9)0.14615 (9)0.0677 (2)0.191164 (10)0.81997 (3)0.36623 (3)0.05335 (11)0.046011 (11)0.98145 (4)0.41259 (3)0.06342 (12)0.19186 (10)1.3218 (2)0.57890 (18)0.0611 (6)0.18121.24760.59650.092*0.15388 (9)1.0666 (2)0.55101 (17)0.0574 (5)0.06311 (12)0.7159 (3)0.2247 (3)0.0545 (7)0.05770.80400.18450.065*0.04955 (11)0.5874 (3)0.1622 (3)0.0553 (7)0.03550.58910.08050.066*0.05732 (10)0.4580 (3)0.2236 (3)0.0480 (6)0.07828 (10)0.4529 (3)0.3435 (3)0.0480 (6)0.08350.36450.38320.058*0.09170 (10)0.5816 (3)0.4055 (3)0.0469 (6)0.10560.57910.48730.056*

supporting information

C6	0.08443 (9)	0.7138 (3)	0.3460 (2)	0.0422 (5)	
C7	0.10038 (10)	0.8494 (3)	0.4158 (3)	0.0444 (6)	
H7A	0.1148	0.8237	0.4993	0.053*	
C8	0.13502 (9)	0.9403 (3)	0.3658 (2)	0.0417 (5)	
H8A	0.1204	0.9719	0.2839	0.050*	
C9	0.15471 (10)	1.0703 (3)	0.4438 (2)	0.0421 (5)	
C10	0.17415 (9)	1.1927 (2)	0.3898 (2)	0.0376 (5)	
C11	0.17591 (11)	1.1946 (3)	0.2682 (2)	0.0481 (6)	
H11A	0.1641	1.1165	0.2191	0.058*	
C12	0.19496 (12)	1.3112 (3)	0.2210 (3)	0.0550 (7)	
H12A	0.1959	1.3116	0.1403	0.066*	
C13	0.21269 (11)	1.4279 (3)	0.2937 (3)	0.0545 (7)	
H13A	0.2253	1.5066	0.2611	0.065*	
C14	0.21187 (10)	1.4284 (3)	0.4115 (3)	0.0516 (7)	
H14A	0.2242	1.5071	0.4593	0.062*	
C15	0.19263 (10)	1.3118 (3)	0.4619 (2)	0.0428 (5)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0831 (6)	0.0495 (4)	0.0769 (5)	-0.0197 (4)	0.0312 (4)	-0.0233 (4)
Br1	0.05194 (17)	0.04197 (15)	0.0691 (2)	0.00312 (11)	0.02003 (14)	-0.00637 (12)
Br2	0.05503 (19)	0.05123 (18)	0.0874 (3)	0.00816 (13)	0.02336 (16)	-0.00960 (15)
O1	0.0985 (17)	0.0433 (10)	0.0428 (11)	-0.0141 (10)	0.0186 (11)	-0.0098 (8)
O2	0.0898 (16)	0.0454 (10)	0.0388 (10)	-0.0148 (10)	0.0190 (10)	-0.0032 (8)
C1	0.0681 (18)	0.0395 (13)	0.0523 (17)	-0.0053 (13)	0.0062 (14)	0.0032 (12)
C2	0.0684 (18)	0.0489 (15)	0.0468 (16)	-0.0067 (13)	0.0092 (13)	-0.0065 (12)
C3	0.0495 (14)	0.0417 (13)	0.0570 (17)	-0.0074 (11)	0.0206 (12)	-0.0129 (12)
C4	0.0531 (15)	0.0315 (11)	0.0615 (18)	-0.0039 (10)	0.0174 (13)	0.0012 (11)
C5	0.0507 (14)	0.0390 (12)	0.0507 (15)	-0.0021 (11)	0.0111 (11)	0.0028 (11)
C6	0.0475 (13)	0.0345 (11)	0.0454 (14)	-0.0047 (10)	0.0121 (11)	-0.0022 (10)
C7	0.0536 (14)	0.0328 (11)	0.0476 (14)	-0.0016 (10)	0.0132 (11)	0.0000 (10)
C8	0.0507 (13)	0.0330 (11)	0.0418 (13)	-0.0013 (10)	0.0118 (11)	-0.0011 (9)
C9	0.0561 (14)	0.0320 (10)	0.0365 (13)	-0.0020 (10)	0.0076 (11)	-0.0007 (9)
C10	0.0464 (12)	0.0305 (10)	0.0354 (12)	-0.0008(9)	0.0083 (10)	-0.0001 (9)
C11	0.0611 (16)	0.0437 (13)	0.0388 (14)	-0.0058 (12)	0.0100 (12)	-0.0031 (10)
C12	0.0691 (18)	0.0549 (16)	0.0433 (15)	-0.0072 (14)	0.0178 (13)	0.0084 (12)
C13	0.0631 (17)	0.0412 (13)	0.0581 (18)	-0.0073 (12)	0.0119 (14)	0.0105 (12)
C14	0.0586 (16)	0.0306 (11)	0.0623 (18)	-0.0067 (11)	0.0077 (13)	-0.0024 (11)
C15	0.0513 (14)	0.0319 (11)	0.0432 (14)	0.0005 (10)	0.0065 (11)	-0.0002 (9)

Geometric parameters (Å, °)

Cl1—C3	1.741 (3)	C6—C7	1.501 (3)	
Br1—C8	1.974 (3)	C7—C8	1.520 (4)	
Br2—C7	1.990 (3)	C7—H7A	0.9800	
O1—C15	1.347 (3)	C8—C9	1.527 (3)	
01—H101	0.7971	C8—H8A	0.9800	

supporting information

O2—C9	1.232 (3)	C9—C10	1.463 (3)
C1—C6	1.383 (4)	C10—C11	1.403 (4)
C1—C2	1.395 (4)	C10—C15	1.406 (3)
C1—H1A	0.9300	C11—C12	1.376 (4)
$C^2 - C^3$	1 378 (4)	C11—H11A	0.9300
$C_2 + C_3$	0.9300	C_{12} C_{13}	1.386(4)
$C_2 = C_1 C_1 C_2$	1.367(4)	C12 H12A	0.0300
C_{3}	1.307(4)	C_{12} C_{14}	1.353(4)
C4 = C3	1.395 (4)	$C_{12} = U_{12}$	1.555 (4)
	0.9300		0.9300
C5-C6	1.390 (4)	C14—C15	1.398 (4)
С5—Н5А	0.9300	C14—H14A	0.9300
C15—O1—H1O1	106.8	C7—C8—Br1	107.91 (17)
C6—C1—C2	120.7 (3)	C9—C8—Br1	104.04 (17)
C6—C1—H1A	119.6	C7—C8—H8A	110.2
C2—C1—H1A	119.6	C9—C8—H8A	110.2
C3—C2—C1	118.9 (3)	Br1—C8—H8A	110.2
C3-C2-H2A	120.6	$\Omega^2 - C_9 - C_{10}$	122.7(2)
C1 - C2 - H2A	120.6	$0^{2}-0^{9}-0^{8}$	122.7(2) 118.0(2)
C4-C3-C2	121.6 (2)	C_{10} C_{9} C_{8}	110.0(2) 119.3(2)
$C_{4} = C_{3} = C_{11}$	121.0(2) 119.2(2)	C_{11} C_{10} C_{15}	119.3(2) 118.4(2)
$C_2 = C_3 = C_{11}$	119.2(2) 110.2(2)	C_{11} C_{10} C_{9}	110.4(2) 122.3(2)
$C_2 = C_3 = C_1$	119.2(2) 110.2(2)	$C_{11} = C_{10} = C_{2}$	122.3(2)
$C_3 = C_4 = U_4$	119.5 (5)	C12 - C11 - C10	119.3(2)
C_{5} C_{4} H_{4A}	120.3	C12 $C11$ $U11$ A	120.0 (3)
C5—C4—H4A	120.3	CI2—CII—HIIA	119.7
C6-C5-C4	120.4 (3)	CIO—CII—HIIA	119.7
С6—С5—Н5А	119.8	C11—C12—C13	120.0 (3)
C4—C5—H5A	119.8	C11—C12—H12A	120.0
C1—C6—C5	119.1 (2)	C13—C12—H12A	120.0
C1—C6—C7	122.3 (2)	C14—C13—C12	120.7 (3)
C5—C6—C7	118.6 (2)	C14—C13—H13A	119.6
C6—C7—C8	114.2 (2)	C12—C13—H13A	119.6
C6—C7—Br2	110.76 (19)	C13—C14—C15	120.5 (3)
C8—C7—Br2	104.30 (16)	C13—C14—H14A	119.7
С6—С7—Н7А	109.1	C15—C14—H14A	119.7
С8—С7—Н7А	109.1	O1—C15—C14	117.2 (2)
Br2—C7—H7A	109.1	O1—C15—C10	123.0 (2)
С7—С8—С9	113.9 (2)	C14—C15—C10	119.7 (3)
$C6_{1}^{2}$	0.7 (5)	$Br1_{2}$	-949(3)
$C_{1} = C_{2} = C_{3}$	-0.6(5)	C7 C8 C0 C10	-1584(3)
$C_1 = C_2 = C_3 = C_4$	-170.9(2)	$C_{1} = C_{0} = C_{1} = C_{1}$	130.4(2)
$C_1 = C_2 = C_3 = C_1$	-1/9.8(3)	D11 - C0 - C19 - C10	04.4 (2)
12 - 13 - 14 - 15	0.7 (4)	02 - 09 - 010 - 011	1/8.6 (3)
CII - C3 - C4 - C5	1/9.9 (2)		-0./(4)
C3—C4—C5—C6	-0.8 (4)	02—C9—C10—C15	-0.2 (4)
C2—C1—C6—C5	-0.8 (5)	C8—C9—C10—C15	-179.5 (2)
C2—C1—C6—C7	178.8 (3)	C15—C10—C11—C12	-0.5 (4)
C4—C5—C6—C1	0.9 (4)	C9-C10-C11-C12	-179.3 (3)

C4—C5—C6—C7	-178.7 (3)	C10-C11-C12-C13	0.1 (5)
C1—C6—C7—C8	-56.8 (4)	C11—C12—C13—C14	0.5 (5)
C5—C6—C7—C8	122.8 (3)	C12—C13—C14—C15	-0.7 (5)
C1—C6—C7—Br2	60.6 (3)	C13—C14—C15—O1	-178.2 (3)
C5-C6-C7-Br2	-119.8 (2)	C13-C14-C15-C10	0.3 (4)
C6—C7—C8—C9	-174.5 (2)	C11-C10-C15-O1	178.7 (3)
Br2—C7—C8—C9	64.5 (2)	C9—C10—C15—O1	-2.5 (4)
C6-C7-C8-Br1	-59.5 (3)	C11-C10-C15-C14	0.3 (4)
Br2-C7-C8-Br1	179.45 (11)	C9—C10—C15—C14	179.2 (3)
C7—C8—C9—O2	22.3 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H…A
01—H1 <i>0</i> 1…O2	0.80	1.87	2.591 (3)	150
C11—H11A···O2 ⁱ	0.93	2.53	3.416 (4)	160

Symmetry code: (i) x, -y+2, z-1/2.