organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Second monoclinic polymorph of 4-[(1*H*-benzimidazol-1-yl)methyl]benzoic acid

Hai-Wei Kuai* and Xiao-Chun Cheng

Faculty of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, People's Republic of China Correspondence e-mail: hyitshy@126.com

Received 13 August 2011; accepted 1 November 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; *R* factor = 0.055; *wR* factor = 0.094; data-to-parameter ratio = 14.3.

Recently, we reported the first monoclinic [Kuai & Cheng (2011). Acta Cryst., E67, o2787] and the orthorhombic polymorph [Kuai & Cheng (2011). Acta Cryst., E67, o3014] of the title compound, $C_{15}H_{12}N_2O_2$. Another monoclinic polymorph was obtained accidentally by the hydrothermal reaction of the title compound with manganese chloride in the presence of potassium hydroxide at 413 K. The asymmetric unit consists of four independent molecules. In the crystal, $O-H\cdots N$ hydrogen bonds link the independent molecules into four separate chains parallel to the *b* axis.

Related literature

For the synthesis of 4-((1*H*-benzo[*d*]imidazol-1-yl)methyl)benzoic acid, see: Hua *et al.* (2010). For two other polymorphs of the title compound, see: Kuai & Cheng (2011*a*,*b*). For related structures, see Das & Bharadwaj (2009).

a = 16.704 (3) Å

b = 19.860 (3) Å

c = 15.343 (3) Å

Experimental

03208

Crystal data $C_{15}H_{12}N_2O_2$ $M_r = 252.27$ Monoclinic, $P2_1/c$

$\beta = 102.007 \ (3)^{\circ}$
$V = 4978.5 (14) \text{ Å}^3$
Z = 16
Mo $K\alpha$ radiation

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) *T*_{min} = 0.982, *T*_{max} = 0.984

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.055$ 613 parameters $wR(F^2) = 0.094$ H-atom parameters constrainedS = 0.88 $\Delta \rho_{max} = 0.53 \text{ e } \text{\AA}^{-3}$ 8754 reflections $\Delta \rho_{min} = -0.48 \text{ e } \text{\AA}^{-3}$

 $\mu = 0.09 \text{ mm}^{-1}$ T = 293 K

 $R_{\rm int} = 0.069$

 $0.20 \times 0.20 \times 0.18 \text{ mm}$

25186 measured reflections

8754 independent reflections

3074 reflections with $I > 2\sigma(I)$

Table 1	
Hydrogen-bond geometry	(Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	D-H	$\cdots A$
$O1 - H12 \cdots N12^{i}$ $O3 - H24 \cdots N111^{ii}$ $O5 - H36 \cdots N211^{ii}$	0.82 0.82 0.82	1.92 1.85 1.92	2.693 (4) 2.613 (4) 2.711 (4)	157 154 162	
$O7-H48\cdots N311^{iii}$	0.82	1.84	2.628 (4)	160	
Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + \frac{1}{2}.$	-x + 2, y -	$-\frac{1}{2}, -z + \frac{1}{2};$	(ii) $-x+1, y+\frac{1}{2}$	$, -z + \frac{1}{2};$	(iii)

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2000); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

The authors gratefully acknowledge the Natural Science Foundation of Jiangsu Province of China (BK2008195) for financial support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AA2025).

References

Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, wisconsin, USA.

- Das, M. C. & Bharadwaj, P. K. (2009). J. Am. Chem. Soc. 131, 10942–10943. Hua, Q., Zhao, Y., Xu, G.-C., Chen, M.-S., Su, Z., Cai, K. & Sun, W.-Y. (2010).
- Cryst. Growth Des. 10, 2553–2562.
- Kuai, H.-W. & Cheng, X.-C. (2011a). Acta Cryst. E67, o2787.
- Kuai, H.-W. & Cheng, X.-C. (2011b). Acta Cryst. E67, 03014.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, o3208 [https://doi.org/10.1107/S1600536811045983]

Second monoclinic polymorph of 4-[(1*H*-benzimidazol-1-yl)methyl]benzoic acid

Hai-Wei Kuai and Xiao-Chun Cheng

S1. Comment

The title compound, $C_{15}H_{12}N_2O_2$ (I), is usually regarded as an excellent candidate for building block in molecular selfassembly engineering due to its variable conformation and coordination modes (Das & Bharadwaj, 2009). During assembly of a coordination polymer, we accidentally obtained three polymorphs of (I), which can be proved by different unit-cell parameters and space groups. Here, we are introducing one of them. The single crystals of title compound were accidentally obtained by the hydrothermal reaction of the title compound with manganese chloride and 4,4'-bipyridine as an auxiliary ligand in the presence of potassium hydroxide at 413 K. In the crystal structure, the asymmetric unit consists of four independent molecules (Fig. 1). Hydrogen bonds link every kind of molecules in four separate chains parallel to *b* axis.(Fig 2).

S2. Experimental

Reaction mixture of $MnCl_2$ (21.5 mg, 0.1 mmol), 4-((1*H*-benzo[*d*]imidazol-1-yl)methyl)benzoic acid (25.2 mg, 0.1 mmol), 4,4'-bipyridine (15.6 mg, 0.1 mmol) and KOH (5.61 mg, 0.1 mmol) in 10 ml H₂O was sealed in a 16 ml Teflon-lined stainless steel container and heated to 413 K for 3 days. After cooling to the room temperature, colorless block crystals of the title compound were obtained.

S3. Refinement

All hydrogen atoms were located in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.97, O—H = 0.82 Å and $U_{iso}(H) = 1.2U_{eq}(C, O)$.

Figure 1

The crystal structure of the title compound showing 30% probability displacement ellipsoids.

Figure 2

The packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

4-[(1H-benzimidazol-1-yl)methyl]benzoic acid

Crystal data

$C_{15}H_{12}N_2O_2$	<i>c</i> = 15.343 (3) Å
$M_r = 252.27$	$\beta = 102.007 \ (3)^{\circ}$
Monoclinic, $P2_1/c$	$V = 4978.5 (14) \text{ Å}^3$
Hall symbol: -P 2ybc	Z = 16
a = 16.704 (3) Å	F(000) = 2112
b = 19.860 (3) Å	$D_{\rm x} = 1.346 {\rm ~Mg} {\rm ~m}^{-3}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 1589 reflections $\theta = 2.4-19.7^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$

Data collection

Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.982, T_{\max} = 0.984$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.055$	Hydrogen site location: inferred from
$wR(F^2) = 0.094$	neighbouring sites
<i>S</i> = 0.88	H-atom parameters constrained
8754 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0117P)^2]$
613 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.53 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$

T = 293 K

 $R_{\rm int} = 0.069$

 $h = -19 \rightarrow 19$

 $k = -23 \rightarrow 17$ $l = -18 \rightarrow 18$

Block, colorless

 $0.20 \times 0.20 \times 0.18$ mm

 $\theta_{\rm max} = 25.0^{\circ}, \ \theta_{\rm min} = 1.6^{\circ}$

25186 measured reflections

8754 independent reflections

3074 reflections with $I > 2\sigma(I)$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.9568 (2)	0.46606 (18)	0.3895 (2)	0.0422 (10)	
C2	0.9324 (2)	0.40495 (19)	0.4173 (2)	0.0582 (11)	
H1	0.8848	0.4019	0.4396	0.070*	
C5	1.0746 (2)	0.41250 (18)	0.3554 (2)	0.0550 (11)	
H3	1.1235	0.4158	0.3358	0.066*	
C6	1.0285 (2)	0.46969 (17)	0.3603 (2)	0.0497 (11)	
H4	1.0466	0.5111	0.3436	0.060*	
C341	-0.0552 (3)	0.3116 (2)	0.1259 (3)	0.067	
C11	0.9042 (2)	0.52842 (17)	0.3903 (2)	0.0550 (11)	
H6	0.8563	0.5167	0.4137	0.066*	
Н5	0.9350	0.5620	0.4294	0.066*	
06	0.51053 (18)	0.49299 (14)	0.3762 (2)	0.108	

C12	0.9020 (2)	0.61560 (18)	0.2701 (3)	0.0561 (11)
H7	0.9355	0.6462	0.3064	0.067*
C13	0.8267 (2)	0.56961 (17)	0.1573 (3)	0.0455 (10)
C14	0.8284 (2)	0.52585 (18)	0.2284 (2)	0.0409 (10)
C15	0.7865 (2)	0.46591 (18)	0.2207 (3)	0.0552 (11)
H8	0.7880	0.4375	0.2692	0.066*
C16	0.7424(2)	0.4502 (2)	0.1374(3)	0.0706 (14)
H9	0.7135	0 4099	0 1291	0.085*
C17	0.7397 (2)	0.4925(2)	0.0656 (3)	0.000 (14)
H10	0.7088	0.4800	0.0104	0.085*
C18	0.7000	0.4000	0.0104	0.005
U18 H11	0.7811 (2)	0.5524 (2)	0.0729(3)	0.0380 (12)
C204	0.7790	0.3803	0.0240 0.2599 (2)	0.070
C204	0.4009(2)	0.37371(19)	0.3388(2) 0.0015(2)	0.037
C101	0.3109(2)	0.27039(18)	0.0913(2)	0.0420(10)
C102	0.4449 (2)	0.27237 (17)	0.1208 (2)	0.0468 (10)
HI3	0.4212	0.2323	0.1343	0.056*
C103	0.4066 (2)	0.33315 (18)	0.1309 (2)	0.0441 (10)
H14	0.3576	0.3336	0.1507	0.053*
C104	0.4415 (2)	0.39316 (17)	0.1113 (2)	0.0354 (9)
C105	0.5120 (2)	0.39092 (17)	0.0790 (2)	0.0469 (10)
H15	0.5350	0.4308	0.0641	0.056*
C106	0.5495 (2)	0.33045 (18)	0.0683 (2)	0.0503 (11)
H16	0.5968	0.3299	0.0453	0.060*
C111	0.5616 (2)	0.20400 (16)	0.0874 (2)	0.0528 (11)
H17	0.5246	0.1716	0.0530	0.063*
H18	0.6070	0.2109	0.0579	0.063*
C112	0.5606 (2)	0.12699 (17)	0.2176 (3)	0.0549 (11)
H19	0.5162	0.1014	0.1890	0.066*
C113	0.6593 (2)	0.16490 (17)	0.3164 (3)	0.0456 (10)
C114	0.6573 (2)	0.20312 (17)	0.2401 (2)	0.0416 (10)
C115	0.7133 (2)	0.25315 (18)	0.2350 (3)	0.0612 (12)
H20	0.7117	0.2779	0.1832	0.073*
C116	0.7718 (3)	0.2642 (2)	0.3114 (3)	0.0810(15)
H21	0.8107	0.2976	0.3111	0.097*
C117	0.7745 (3)	0.2275 (2)	0.3880 (3)	0.0771 (15)
H22	0.8152	0.2366	0.4380	0.092*
C241	0.5307 (3)	0.4410(2)	0.3419(3)	0.076
C118	0.5567(3) 0.7184(3)	0.1775(2)	0.3922(3)	0.0604(12)
H23	0.7202	0.1530	0.4443	0.072*
C141	0.7202 0.4015(2)	0.1550	0.1305 (2)	0.072
C201	0.4013(2)	0.45081(18)	0.1303(2) 0.2761(2)	0.0423 (10)
C201	0.4000(2)	0.23933(19)	0.3701(2) 0.3581(2)	0.046
C202	0.4707 (2)	0.25508 (18)	0.3581(2)	0.0510(11)
п23 С4	0.4997	0.2130	0.3528	0.062*
C4	1.0489 (2)	0.35122(19)	0.3791(2)	0.049
C203	0.5214 (2)	0.31367 (18)	0.34/6(2)	0.0510(11)
H26	0.5726	0.3102	0.3331	0.061*
C206	0.3681 (2)	0.32189 (19)	0.3862 (3)	0.0762 (14)
H28	0.3162	0.3259	0.3986	0.091*

C205	0.4133 (2)	0.3784 (2)	0.3777 (3)	0.076
H27	0.3910	0.4203	0.3853	0.092*
C211	0.3496 (2)	0.19836 (16)	0.3877 (2)	0.0479 (10)
H30	0.3733	0.1764	0.4435	0.058*
H29	0.2946	0.2124	0.3904	0.058*
C212	0.3843 (2)	0.09039 (18)	0.3172 (3)	0.0504 (11)
H31	0.4159	0.0726	0.3692	0.060*
C213	0.3235 (2)	0.10285 (19)	0.1824 (3)	0.0453 (10)
C214	0.3053 (2)	0.16015 (17)	0.2266 (2)	0.0376 (9)
C215	0.2551(2)	0.21126 (17)	0.1862(3)	0.0507 (11)
H32	0 2429	0.2486	0.2175	0.061*
C216	0.2244(2)	0.2034(2)	0.0968(3)	0.0645(13)
Н33	0.1906	0.2366	0.0661	0.077*
C41	1.0971(3)	0.2300 0.2881(2)	0.3660 (3)	0.061
C217	0.2424(2)	0.2001(2) 0.1469(2)	0.0504(3)	0.001
U217	0.2424(2) 0.2201	0.1405 (2)	-0.0102	0.081*
C218	0.2201	0.1433	0.0102	0.061
U210	0.2920 (2)	0.09397 (19)	0.0917 (3)	0.0007(12)
ПЭЭ С201	0.3040 0.1005 (2)	0.0380	0.0002	0.075°
C301	0.1003(2)	0.48270(18)	0.1280(2)	0.0437(10)
C302	0.1340 (2)	0.41915 (19)	0.1403 (2)	0.0555 (11)
H3/	0.1905	0.4136	0.1494	0.064*
C303	0.0838 (2)	0.36324 (18)	0.1385 (2)	0.0546 (11)
H38	0.10/0	0.3206	0.1479	0.065*
C3	0.9794 (2)	0.34/48 (18)	0.4120 (2)	0.062
H2	0.9630	0.3063	0.4311	0.074*
C304	0.0000 (2)	0.37022 (18)	0.1230 (2)	0.0437 (10)
C305	-0.0337(2)	0.43360 (19)	0.1095 (2)	0.0506 (11)
H39	-0.0902	0.4389	0.0981	0.061*
C306	0.0163 (2)	0.48918 (18)	0.1128 (2)	0.0512 (11)
H40	-0.0070	0.5318	0.1043	0.061*
C311	0.1540 (2)	0.54473 (17)	0.1337 (2)	0.0542 (11)
H41	0.2098	0.5311	0.1341	0.065*
H42	0.1351	0.5723	0.0812	0.065*
C312	0.0979 (2)	0.6337 (2)	0.2206 (3)	0.0668 (13)
H43	0.0572	0.6477	0.1731	0.080*
C313	0.1745 (3)	0.62597 (19)	0.3504 (3)	0.0530 (11)
C314	0.2031 (2)	0.57861 (18)	0.2963 (3)	0.0457 (10)
C315	0.2709 (2)	0.53916 (17)	0.3279 (3)	0.0575 (11)
H44	0.2899	0.5078	0.2920	0.069*
C316	0.3091 (3)	0.5489 (2)	0.4159 (3)	0.0704 (13)
H45	0.3547	0.5230	0.4401	0.084*
C317	0.2811 (3)	0.5962 (2)	0.4693 (3)	0.0742 (14)
H46	0.3086	0.6014	0.5282	0.089*
C318	0.2142 (3)	0.6352 (2)	0.4375 (3)	0.0693 (13)
H47	0.1960	0.6670	0.4735	0.083*
N11	0.87811 (17)	0.55688 (14)	0.30082 (19)	0.0438 (8)
N112	0.59238 (18)	0.17763 (14)	0.17721 (19)	0.0444 (8)
N211	0.37330 (18)	0.05956 (14)	0.2408 (2)	0.0538 (9)
	······································		······································	· · · · · · · · · · · · · · · · · · ·

N212	0.34581 (17)	0.15062 (14)	0.31470 (19)	0.0407 (8)	
N311	0.1079 (2)	0.65961 (15)	0.3005 (3)	0.0693 (11)	
N312	0.15250 (19)	0.58474 (14)	0.2135 (2)	0.0490 (9)	
01	1.06387 (15)	0.23355 (12)	0.38492 (16)	0.0820 (9)	
H12	1.0923	0.2014	0.3768	0.098*	
O2	1.16183 (16)	0.29344 (12)	0.34088 (17)	0.0769 (9)	
03	0.44324 (13)	0.51106 (11)	0.11685 (14)	0.0546 (7)	
H24	0.4191	0.5448	0.1283	0.066*	
O4	0.33852 (16)	0.45866 (11)	0.15714 (17)	0.0621 (8)	
05	0.58857 (17)	0.43358 (13)	0.30521 (17)	0.093	
H36	0.6093	0.4703	0.2995	0.112*	
N12	0.87382 (18)	0.62591 (14)	0.1846 (2)	0.055	
07	-0.01721 (15)	0.25792 (12)	0.15838 (18)	0.0939 (11)	
H48	-0.0503	0.2274	0.1581	0.113*	
N111	0.5975 (2)	0.11677 (14)	0.3007 (2)	0.056	
08	-0.12811 (17)	0.31467 (12)	0.0998 (2)	0.0977 (11)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
C1	0.040 (3)	0.048 (3)	0.036 (2)	0.009 (2)	0.002 (2)	-0.0038 (19)
C2	0.044 (3)	0.063 (3)	0.071 (3)	0.003 (2)	0.019 (2)	0.009 (2)
C5	0.054 (3)	0.053 (3)	0.060 (3)	0.007 (2)	0.015 (2)	0.003 (2)
C6	0.060 (3)	0.039 (3)	0.051 (3)	0.007 (2)	0.013 (2)	0.011 (2)
C341	0.071	0.058	0.067	-0.004	0.004	0.002
C11	0.055 (3)	0.061 (3)	0.045 (3)	0.010 (2)	0.000(2)	-0.007(2)
O6	0.104	0.062	0.169	-0.009	0.051	-0.001
C12	0.044 (3)	0.037 (3)	0.086 (3)	-0.002(2)	0.009 (2)	-0.008(2)
C13	0.043 (3)	0.039 (3)	0.054 (3)	0.007 (2)	0.008 (2)	0.002 (2)
C14	0.037 (2)	0.036 (2)	0.049 (3)	0.0044 (19)	0.007 (2)	0.000(2)
C15	0.052 (3)	0.041 (3)	0.069 (3)	-0.002(2)	0.006 (2)	0.006 (2)
C16	0.056 (3)	0.059 (3)	0.088 (4)	-0.005 (2)	-0.004 (3)	-0.013 (3)
C17	0.060 (3)	0.079 (4)	0.063 (3)	0.016 (3)	-0.009 (3)	-0.016 (3)
C18	0.060 (3)	0.065 (3)	0.050 (3)	0.020 (2)	0.012 (2)	0.011 (2)
C204	0.067	0.040	0.058	-0.004	0.000	0.005
C101	0.050 (3)	0.040 (3)	0.037 (2)	0.003 (2)	0.007 (2)	-0.0026 (19)
C102	0.052 (3)	0.040 (3)	0.049 (3)	-0.005 (2)	0.012 (2)	0.0025 (19)
C103	0.038 (2)	0.049 (3)	0.047 (2)	0.002 (2)	0.0141 (19)	0.000(2)
C104	0.035 (2)	0.034 (2)	0.036 (2)	-0.0007 (19)	0.0045 (19)	-0.0059 (18)
C105	0.050 (3)	0.035 (2)	0.056 (3)	-0.003 (2)	0.013 (2)	-0.002 (2)
C106	0.045 (3)	0.048 (3)	0.063 (3)	0.001 (2)	0.022 (2)	-0.007(2)
C111	0.061 (3)	0.044 (3)	0.052 (3)	0.004 (2)	0.009 (2)	-0.006(2)
C112	0.048 (3)	0.030(2)	0.090 (3)	-0.004 (2)	0.021 (2)	-0.003 (2)
C113	0.045 (3)	0.039 (3)	0.055 (3)	0.013 (2)	0.015 (2)	0.001 (2)
C114	0.044 (3)	0.028 (2)	0.054 (3)	0.003 (2)	0.013 (2)	-0.004(2)
C115	0.056 (3)	0.045 (3)	0.079 (3)	-0.004 (2)	0.006 (3)	0.007 (2)
C116	0.067 (4)	0.054 (3)	0.111 (4)	-0.012 (3)	-0.007 (3)	-0.005 (3)
C117	0.075 (4)	0.057 (3)	0.086 (4)	0.014 (3)	-0.014 (3)	-0.020 (3)

supporting information

C241	0.076	0.062	0.085	-0.005	0.008	-0.017
C118	0.069 (3)	0.058 (3)	0.052 (3)	0.025 (3)	0.009 (3)	0.001 (2)
C141	0.045 (3)	0.041 (3)	0.038 (2)	-0.002(2)	0.003 (2)	-0.001(2)
C201	0.059	0.048	0.037	0.000	0.011	-0.003
C202	0.059 (3)	0.042 (3)	0.056 (3)	0.004 (2)	0.018 (2)	-0.010(2)
C4	0.040	0.051	0.053	0.000	0.002	-0.012
C203	0.046 (3)	0.067 (3)	0.044 (2)	-0.014(2)	0.018 (2)	-0.011(2)
C206	0.053 (3)	0.054 (3)	0.126 (4)	-0.006(2)	0.029 (3)	-0.016 (3)
C205	0.060	0.050	0.115	0.009	0.011	-0.003
C211	0.053 (3)	0.051 (3)	0.043 (2)	-0.005(2)	0.017 (2)	-0.006(2)
C212	0.045 (3)	0.045 (3)	0.060 (3)	0.000 (2)	0.008 (2)	0.012 (2)
C213	0.041 (3)	0.045 (3)	0.050 (3)	-0.007(2)	0.010 (2)	-0.009(2)
C214	0.033 (2)	0.039 (2)	0.042 (2)	-0.0047 (19)	0.0089 (19)	0.003 (2)
C215	0.051 (3)	0.045 (3)	0.057 (3)	0.005 (2)	0.012 (2)	0.001 (2)
C216	0.057 (3)	0.079 (4)	0.054 (3)	0.013 (3)	0.006 (3)	0.014 (3)
C41	0.036	0.093	0.050	0.010	-0.003	-0.014
C217	0.063 (3)	0.096 (4)	0.043 (3)	-0.014(3)	0.008 (2)	0.001 (3)
C218	0.057(3)	0.067 (3)	0.061 (3)	-0.010(2)	0.018 (2)	-0.020(2)
C301	0.047 (3)	0.042 (3)	0.045(2)	-0.008(2)	0.016 (2)	0.0002 (19)
C302	0.042 (3)	0.050 (3)	0.071 (3)	0.002 (2)	0.020 (2)	0.001 (2)
C303	0.058 (3)	0.037 (3)	0.069 (3)	0.002 (2)	0.014 (2)	0.004 (2)
C3	0.057	0.042	0.082	-0.003	0.002	0.012
C304	0.048 (3)	0.041 (3)	0.041 (2)	-0.003(2)	0.006 (2)	0.0057 (19)
C305	0.041 (3)	0.054 (3)	0.055 (3)	-0.002(2)	0.006 (2)	0.000 (2)
C306	0.053 (3)	0.037 (3)	0.062 (3)	0.001 (2)	0.008 (2)	-0.001(2)
C311	0.055 (3)	0.049 (3)	0.063 (3)	-0.009(2)	0.023 (2)	-0.001(2)
C312	0.051 (3)	0.044 (3)	0.100 (4)	-0.001(2)	0.005 (3)	0.003 (3)
C313	0.052 (3)	0.036 (3)	0.076 (3)	-0.008(2)	0.025 (3)	-0.011 (2)
C314	0.047 (3)	0.033 (3)	0.062 (3)	-0.006(2)	0.024 (2)	-0.001(2)
C315	0.060 (3)	0.045 (3)	0.071 (3)	0.005 (2)	0.023 (3)	0.001 (2)
C316	0.074 (4)	0.066 (3)	0.070 (3)	0.012 (3)	0.012 (3)	0.009 (3)
C317	0.091 (4)	0.071 (4)	0.064 (3)	-0.012 (3)	0.024 (3)	-0.008(3)
C318	0.079 (4)	0.060 (3)	0.080 (4)	-0.014(3)	0.041 (3)	-0.023(3)
N11	0.047 (2)	0.033 (2)	0.048 (2)	0.0055 (16)	0.0018 (17)	-0.0006 (17)
N112	0.055 (2)	0.0287 (19)	0.049 (2)	-0.0004 (17)	0.0100 (18)	-0.0012 (16)
N211	0.052 (2)	0.046 (2)	0.064 (2)	0.0024 (17)	0.0133 (19)	-0.0065 (19)
N212	0.045 (2)	0.035 (2)	0.043 (2)	-0.0034 (16)	0.0112 (17)	-0.0002(16)
N311	0.055 (3)	0.053 (2)	0.102 (3)	0.003 (2)	0.020 (2)	-0.022 (2)
N312	0.050 (2)	0.031 (2)	0.070 (3)	0.0010 (17)	0.021 (2)	-0.0033 (18)
01	0.086 (2)	0.0419 (18)	0.111 (2)	-0.0004 (16)	0.0053 (18)	-0.0037 (16)
02	0.067 (2)	0.065 (2)	0.098 (2)	0.0129 (16)	0.0141 (18)	-0.0146 (16)
03	0.0550 (18)	0.0341 (16)	0.0788 (19)	0.0011 (13)	0.0234 (15)	-0.0074 (13)
04	0.0542 (19)	0.0532 (18)	0.087 (2)	0.0013 (15)	0.0329 (17)	-0.0045 (15)
05	0.094	0.096	0.095	-0.037	0.032	-0.014
N12	0.054	0.044	0.068	0.000	0.014	0.011
07	0.064 (2)	0.0546 (19)	0.157 (3)	-0.0076 (16)	0.0104 (19)	0.0410 (18)
N111	0.058	0.045	0.070	0.009	0.022	0.008
O8	0.065 (2)	0.066 (2)	0.148 (3)	-0.0181 (17)	-0.011 (2)	0.0130 (18)
		× /				

Geometric parameters (Å, °)

C1—C6	1.365 (4)	C141—O3	1.324 (4)
C1—C2	1.376 (4)	C201—C202	1.367 (5)
C1—C11	1.521 (4)	C201—C206	1.369 (4)
C2—C3	1.397 (4)	C201—C211	1.510 (4)
C2—H1	0.9300	C202—C203	1.400 (4)
C5—C4	1.364 (4)	С202—Н25	0.9300
С5—С6	1.383 (4)	C4—C3	1.361 (5)
С5—Н3	0.9300	C4—C41	1.526 (5)
С6—Н4	0.9300	С203—Н26	0.9300
C341—O8	1.202 (4)	C206—C205	1.373 (5)
C341—O7	1.287 (4)	C206—H28	0.9300
C341—C304	1.491 (5)	С205—Н27	0.9300
C11—N11	1.465 (4)	C211—N212	1.458 (3)
С11—Н6	0.9700	С211—Н30	0.9700
C11—H5	0.9700	С211—Н29	0.9700
O6—C241	1.237 (4)	C212—N211	1.302 (4)
C12—N12	1.314 (4)	C212—N212	1.355 (4)
C12—N11	1.349 (4)	С212—Н31	0.9300
С12—Н7	0.9300	C213—N211	1.387 (4)
C13—N12	1.382 (4)	C213—C218	1.388 (4)
C13—C14	1.391 (4)	C213—C214	1.391 (4)
C13—C18	1.400 (4)	C214—C215	1.379 (4)
C14—C15	1.374 (4)	C214—N212	1.393 (4)
C14—N11	1.385 (4)	C215—C216	1.370 (4)
C15—C16	1.372 (4)	С215—Н32	0.9300
С15—Н8	0.9300	C216—C217	1.394 (5)
C16—C17	1.379 (5)	С216—Н33	0.9300
С16—Н9	0.9300	C41—O2	1.226 (4)
C17—C18	1.368 (5)	C41—O1	1.278 (5)
C17—H10	0.9300	C217—C218	1.376 (4)
C18—H11	0.9300	С217—Н34	0.9300
C204—C205	1.355 (5)	С218—Н35	0.9300
C204—C203	1.371 (4)	C301—C302	1.378 (4)
C204—C241	1.520 (5)	C301—C306	1.383 (4)
C101—C102	1.369 (4)	C301—C311	1.514 (4)
C101—C106	1.388 (4)	C302—C303	1.388 (4)
C101—C111	1.523 (4)	С302—Н37	0.9300
C102—C103	1.390 (4)	C303—C304	1.377 (4)
С102—Н13	0.9300	С303—Н38	0.9300
C103—C104	1.387 (4)	С3—Н2	0.9300
C103—H14	0.9300	C304—C305	1.377 (4)
C104—C105	1.370 (4)	C305—C306	1.379 (4)
C104—C141	1.488 (4)	С305—Н39	0.9300
C105—C106	1.380 (4)	C306—H40	0.9300
C105—H15	0.9300	C311—N312	1.465 (4)
C106—H16	0.9300	C311—H41	0.9700

C111—N112	1 463 (4)	C311—H42	0 9700
C111—H17	0.9700	C312—N311	1 307 (4)
C111—H18	0.9700	C_{312} N312	1 353 (4)
C112—N111	1 310 (4)	C312—H43	0.9300
C112 - N112	1.347(4)	C_{313} C_{318}	1.375(5)
C112 H10	0.0300	C313 N311	1.373(3) 1.383(4)
C112 C118	1.383(4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.303(+) 1.402(5)
$C_{113} = C_{114}$	1.303(4)	$C_{214} = N_{212}$	1.702(3) 1.277(4)
C113 N111	1.390 (4)	$C_{314} = C_{315}$	1.377(4) 1 380(4)
C_{114} C_{115}	1.391(4)	$C_{215}^{215} = C_{216}^{216}$	1.300(4)
C114 = C115	1.378(4)	$C_{215} = H_{44}$	0.0200
C_{114} M_{112} C_{115} C_{116}	1.300(4) 1.278(4)	C_{315}	0.9300
C115_U20	1.378 (4)	$C_{210} = C_{317}$	1.390(3)
СПБ—Н20	0.9300	С310—Н45	0.9300
	1.376 (3)	$C_{317} = C_{318}$	1.304 (5)
C116—H21	0.9300	C317—H46	0.9300
	1.3/6(5)	C318—H47	0.9300
С117—Н22	0.9300	OI—HI2	0.8200
C241—O5	1.225 (5)	O3—H24	0.8200
C118—H23	0.9300	O5—H36	0.8200
C141—O4	1.205 (4)	O7—H48	0.8200
C6—C1—C2	119.1 (4)	С204—С203—Н26	120.3
C6—C1—C11	120.5 (4)	С202—С203—Н26	120.3
C2-C1-C11	120.4 (4)	C201—C206—C205	119.6 (4)
C1—C2—C3	119.7 (4)	C201—C206—H28	120.2
C1—C2—H1	120.2	C205—C206—H28	120.2
С3—С2—Н1	120.2	C204—C205—C206	122.9 (4)
C4—C5—C6	120.6 (4)	C204—C205—H27	118.5
C4—C5—H3	119.7	C206—C205—H27	118.5
С6—С5—Н3	119.7	N212-C211-C201	111.7 (3)
C1 - C6 - C5	1207(4)	N212-C211-H30	109 3
C1-C6-H4	119.6	$C_{201} - C_{211} - H_{30}$	109.3
C5-C6-H4	119.6	N212—C211—H29	109.3
08-C341-07	123 7 (4)	$C_{201} - C_{211} - H_{29}$	109.3
08-C341-C304	122.8 (4)	H30-C211-H29	107.9
07-C341-C304	1136(4)	N211—C212—N212	1144(3)
N11-C11-C1	111.5 (3)	N211-C212-H31	122.8
N11—C11—H6	109.3	N212-C212-H31	122.8
C1-C11-H6	109.3	N211-C213-C218	122.0
N11-C11-H5	109.3	N211-C213-C214	129.0(1) 110.8(3)
C1 - C11 - H5	109.3	$C_{218} C_{213} C_{214}$	110.0(3) 119.6(4)
H6-C11-H5	108.0	$C_{215} = C_{214} = C_{213}$	117.0(4) 123.8(4)
N12 C12 N11	114.4(3)	$C_{215} = C_{214} = C_{215}$	123.0(+) 131.6(4)
N12_C12_H7	122.8	$C_{213} - C_{214} - N_{212}$	1045(3)
N11_C12_H7	122.0	$C_{215} - C_{215} - C_{214} - C_{215} - C_{214}$	1156(4)
N12 - C12 - C14	110 5 (3)	$C_{210} C_{213} C_{214}$ $C_{216} C_{215} H_{32}$	122.2
N12 - C13 - C14 N12 - C13 - C18	130.1(4)	$C_{210} = C_{215} = H_{22}$	122.2
C_{14} C_{13} C_{16}	130.1 (4) 110 A (A)	$C_{21} - C_{21} - C$	122.2 121 8 (4)
017-013-010	117.4 (4)	$U_{21} - U_{21} - U_{21} - U_{21}$	121.0 (4)

C15—C14—N11	131.6 (4)	С215—С216—Н33	119.1
C15—C14—C13	123.1 (4)	С217—С216—Н33	119.1
N11—C14—C13	105.2 (3)	O2—C41—O1	126.7 (4)
C16—C15—C14	116.3 (4)	O2—C41—C4	119.6 (4)
С16—С15—Н8	121.9	O1—C41—C4	113.6 (4)
С14—С15—Н8	121.9	C218—C217—C216	122.0 (4)
C15—C16—C17	121.8 (4)	C218—C217—H34	119.0
С15—С16—Н9	119.1	С216—С217—Н34	119.0
С17—С16—Н9	119.1	C217—C218—C213	117.1 (4)
C18—C17—C16	122.2 (4)	C217—C218—H35	121.5
C18—C17—H10	118.9	C213—C218—H35	121.5
C16—C17—H10	118.9	C_{302} — C_{301} — C_{306}	118.6 (3)
C17 - C18 - C13	117.1 (4)	C_{302} C_{301} C_{311}	1213(4)
C17 - C18 - H11	121.4	$C_{306} - C_{301} - C_{311}$	121.3(1) 1201(3)
C13 - C18 - H11	121.1	$C_{301} - C_{302} - C_{303}$	120.1(3) 120.2(4)
$C_{205} - C_{204} - C_{203}$	118 2 (4)	$C_{301} - C_{302} - H_{37}$	119.9
$C_{205} = C_{204} = C_{205}$	110.2(1) 119.0(4)	C_{303} C_{302} H_{37}	119.9
$C_{203} = C_{204} = C_{241}$	117.0(4) 122.6(4)	C_{304} C_{303} C_{302}	120.8 (4)
$C_{203} - C_{204} - C_{241}$	122.0(4) 118.6(4)	$C_{304} - C_{303} - C_{302}$	110.6
$C_{102} = C_{101} = C_{100}$	120.7(3)	$C_{302} = C_{303} = H_{38}$	110.6
C102 - C101 - C111	120.7(3) 120.7(4)	$C_{302} - C_{303} - H_{38}$	119.0 120.7(4)
$C_{100} = C_{101} = C_{101}$	120.7(4) 121.2(4)	C4 C3 H2	110 7
C101 - C102 - C103	110 4	C_{2} C_{3} H_{2}	119.7
$C_{101} = C_{102} = H_{13}$	110.4	$C_{2} = C_{3} = H_{2}$	119.7 110.2(3)
$C_{103} = C_{102} = 103$	119.4	$C_{303} = C_{304} = C_{303}$	119.2(3) 122.0(4)
C104 - C103 - C102	119.9 (4)	$C_{305} = C_{304} = C_{341}$	122.0(4) 118.8(4)
C104 - C103 - H14	120.1	$C_{303} - C_{304} - C_{341}$	110.0(4)
C102 - C103 - H14	120.1 118.9(2)	$C_{304} = C_{305} = C_{300}$	120.0 (4)
C105 - C104 - C103	110.0(3)	$C_{304} - C_{305} - H_{39}$	120.0
C103 - C104 - C141	125.7(5) 117.4(4)	$C_{300} = C_{305} = C_{305} = C_{305}$	120.0
C103 - C104 - C141	117.4 (4)	$C_{305} = C_{306} = C_{301}$	121.2 (4)
C104 - C105 - U15	121.1 (4)	$C_{303} = C_{306} = H_{40}$	119.4
C104—C105—H15	119.4	$C_{301} - C_{300} - H_{40}$	119.4
C106—C105—H15	119.4	N312-C311-C301	111.9 (3)
C105 - C106 - C101	120.3 (4)	N312 - C311 - H41	109.2
C105—C106—H16	119.8	C301—C311—H41	109.2
C101—C106—H16	119.8	N312 - C311 - H42	109.2
N112—C111—C101	110.5 (3)	$C_{301} - C_{311} - H_{42}$	109.2
N112—C111—H17	109.5	H41—C311—H42	107.9
	109.5	N311—C312—N312	113.6 (4)
N112—C111—H18	109.5	N311—C312—H43	123.2
C101—C111—H18	109.5	N312—C312—H43	123.2
HI7—C111—H18	108.1	C318—C313—N311	130.0 (4)
N111—C112—N112	114.4 (3)	C318—C313—C314	120.6 (4)
N111—C112—H19	122.8	N311—C313—C314	109.3 (4)
N112—C112—H19	122.8	N312—C314—C315	132.5 (4)
C118—C113—C114	119.9 (4)	N312—C314—C313	105.5 (4)
C118—C113—N111	130.1 (4)	C315—C314—C313	121.9 (4)
C114—C113—N111	110.0 (3)	C314—C315—C316	116.3 (4)

C115—C114—N112	131.7 (4)	C314—C315—H44	121.9
C115—C114—C113	122.9 (4)	C316—C315—H44	121.9
N112—C114—C113	105.4 (3)	C315—C316—C317	121.8 (4)
C114—C115—C116	115.8 (4)	C315—C316—H45	119.1
C114—C115—H20	122.1	C317—C316—H45	119.1
C116—C115—H20	122.1	C318—C317—C316	121.6 (4)
C117—C116—C115	122.3 (4)	C318—C317—H46	119.2
C117—C116—H21	118.8	C316—C317—H46	119.2
C115—C116—H21	118.8	C317—C318—C313	117.8 (4)
C118—C117—C116	121.3 (4)	C317—C318—H47	121.1
C118—C117—H22	119.3	C313 - C318 - H47	121.1
C116—C117—H22	119.3	C12-N11-C14	106.0(3)
05-C241-06	127 4 (4)	C12 N11 $-C11$	127.5(3)
05-C241-C204	127.1(1) 114 2 (4)	C14 N11 $-C11$	127.3(3) 1263(3)
$06-C^{241}-C^{204}$	117.2(1) 117.7(4)	C112 - N112 - C114	120.3(3) 106.1(3)
C_{117} C_{118} C_{113}	117.7(4) 117.7(4)	C112 - N112 - C111	100.1(3) 127.3(3)
C117 C118 H23	121.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	127.5(3) 1265(3)
$C_{117} = C_{118} = H_{23}$	121.1	$C_{114} = N_{112} = C_{111}$ $C_{212} = N_{211} = C_{213}$	120.3(3)
$C_{113} - C_{116} - H_{23}$	121.1 123.7(4)	$C_{212} = N_{211} = C_{213}$	104.1(3) 106.2(3)
04 - C141 - 03	123.7(4)	C_{212} N212 C_{214}	100.2(3)
04 - C141 - C104	123.0(4)	C_{212} N212 C_{211}	127.4(3) 126.2(2)
$C_{202} = C_{141} = C_{104}$	112.7(4)	$C_{214} = N_{212} = C_{211}$	120.5(3)
$C_{202} = C_{201} = C_{206}$	118.5 (4)	C_{312} N212 C214	105.1(4)
$C_{202} = C_{201} = C_{211}$	123.2 (4)	C_{312} N312 $-C_{314}$	106.5 (3)
$C_{206} - C_{201} - C_{211}$	118.3 (4)	C_{312} N312 $-C_{311}$	125.9 (4)
$C_{201} = C_{202} = C_{203}$	121.4 (4)	C314—N312—C311	127.6 (3)
C201—C202—H25	119.3	C41—O1—H12	109.5
С203—С202—Н25	119.3	C141—O3—H24	109.5
C3—C4—C5	119.2 (4)	С241—О5—Н36	109.5
C3—C4—C41	121.2 (4)	C12—N12—C13	103.9 (3)
C5—C4—C41	119.6 (4)	C341—O7—H48	109.5
C204—C203—C202	119.4 (4)	C112—N111—C113	104.1 (3)
C6—C1—C2—C3	-2.5 (5)	N211—C213—C218—C217	178.7 (4)
C11—C1—C2—C3	176.8 (3)	C214—C213—C218—C217	-1.2(5)
C2—C1—C6—C5	2.5 (5)	C306—C301—C302—C303	-1.6(5)
C11—C1—C6—C5	-176.8 (3)	C311—C301—C302—C303	177.6 (3)
C4—C5—C6—C1	0.5 (5)	C301—C302—C303—C304	1.5 (6)
C6-C1-C11-N11	59.7 (4)	C5—C4—C3—C2	3.3 (6)
C2-C1-C11-N11	-119.5 (4)	C41—C4—C3—C2	-175.1 (3)
N12—C13—C14—C15	179.6 (3)	C1—C2—C3—C4	-0.4 (6)
C18—C13—C14—C15	-0.7 (6)	C302—C303—C304—C305	-0.2(6)
N12—C13—C14—N11	0.1 (4)	C302—C303—C304—C341	-176.4(3)
C18—C13—C14—N11	179.8 (3)	O8—C341—C304—C303	-168.5(4)
N11—C14—C15—C16	-179.9 (4)	O7—C341—C304—C303	11.1 (6)
C13—C14—C15—C16	0.7 (6)	O8—C341—C304—C305	15.3 (6)
C14—C15—C16—C17	-0.5 (6)	O7—C341—C304—C305	-165.2 (3)
C15—C16—C17—C18	0.3 (7)	C303—C304—C305—C306	-0.9(5)
C16—C17—C18—C13	-0.3 (6)	C341—C304—C305—C306	175.4 (3)
	(1)		· (-)

N12—C13—C18—C17	-179.9 (4)	C304—C305—C306—C301	0.8 (6)
C14—C13—C18—C17	0.5 (5)	C302—C301—C306—C305	0.5 (6)
C106—C101—C102—C103	-2.6(5)	C311—C301—C306—C305	-178.8 (3)
C111—C101—C102—C103	175.3 (3)	C302—C301—C311—N312	-110.0 (4)
C101—C102—C103—C104	-0.2 (5)	C306—C301—C311—N312	69.2 (4)
C102—C103—C104—C105	2.5 (5)	C318—C313—C314—N312	-177.1 (3)
C102—C103—C104—C141	-175.0 (3)	N311—C313—C314—N312	0.0 (4)
C103—C104—C105—C106	-1.8 (5)	C318—C313—C314—C315	0.7 (6)
C141—C104—C105—C106	175.4 (3)	N311—C313—C314—C315	177.8 (3)
C104—C105—C106—C101	-1.0 (5)	N312—C314—C315—C316	177.2 (4)
C102—C101—C106—C105	3.3 (5)	C313—C314—C315—C316	0.1 (6)
C111—C101—C106—C105	-174.7 (3)	C314—C315—C316—C317	-0.6 (6)
C102—C101—C111—N112	-66.8 (4)	C315—C316—C317—C318	0.4 (7)
C106—C101—C111—N112	111.1 (4)	C316—C317—C318—C313	0.4 (7)
C118—C113—C114—C115	1.5 (6)	N311—C313—C318—C317	-177.4 (4)
N111—C113—C114—C115	-177.6 (3)	C314—C313—C318—C317	-0.9 (6)
C118—C113—C114—N112	179.5 (3)	N12—C12—N11—C14	-0.8(4)
N111—C113—C114—N112	0.4 (4)	N12—C12—N11—C11	174.6 (3)
N112—C114—C115—C116	-178.4 (4)	C15—C14—N11—C12	-179.0 (4)
C113—C114—C115—C116	-0.9 (6)	C13—C14—N11—C12	0.4 (4)
C114—C115—C116—C117	0.3 (6)	C15—C14—N11—C11	5.5 (6)
C115—C116—C117—C118	-0.1 (7)	C13—C14—N11—C11	-175.1 (3)
C205—C204—C241—O5	-163.5 (4)	C1—C11—N11—C12	-111.0 (4)
C203—C204—C241—O5	10.2 (6)	C1-C11-N11-C14	63.5 (4)
C205—C204—C241—O6	25.9 (6)	N111—C112—N112—C114	0.4 (4)
C203—C204—C241—O6	-160.4 (4)	N111—C112—N112—C111	-175.6 (3)
C116—C117—C118—C113	0.5 (7)	C115—C114—N112—C112	177.3 (4)
C114—C113—C118—C117	-1.2 (6)	C113—C114—N112—C112	-0.4 (4)
N111—C113—C118—C117	177.7 (4)	C115—C114—N112—C111	-6.7 (6)
C105—C104—C141—O4	178.3 (4)	C113—C114—N112—C111	175.6 (3)
C103—C104—C141—O4	-4.3 (5)	C101—C111—N112—C112	103.3 (4)
C105—C104—C141—O3	-2.8 (5)	C101—C111—N112—C114	-71.9 (4)
C103—C104—C141—O3	174.5 (3)	N212—C212—N211—C213	0.1 (4)
C206—C201—C202—C203	-1.8 (5)	C218—C213—N211—C212	-180.0 (4)
C211—C201—C202—C203	179.8 (3)	C214—C213—N211—C212	-0.1 (4)
C6—C5—C4—C3	-3.3 (5)	N211—C212—N212—C214	-0.1 (4)
C6—C5—C4—C41	175.1 (3)	N211—C212—N212—C211	-176.6 (3)
C205—C204—C203—C202	-1.6 (5)	C215—C214—N212—C212	178.0 (4)
C241—C204—C203—C202	-175.4 (3)	C213—C214—N212—C212	0.1 (4)
C201—C202—C203—C204	2.5 (5)	C215—C214—N212—C211	-5.5 (6)
C202—C201—C206—C205	0.2 (6)	C213—C214—N212—C211	176.6 (3)
C211—C201—C206—C205	178.7 (3)	C201—C211—N212—C212	107.1 (4)
C203—C204—C205—C206	0.1 (6)	C201—C211—N212—C214	-68.8 (4)
C241—C204—C205—C206	174.1 (4)	N312—C312—N311—C313	0.6 (5)
C201—C206—C205—C204	0.6 (6)	C318—C313—N311—C312	176.4 (4)
C202—C201—C211—N212	-49.9 (5)	C314—C313—N311—C312	-0.4 (5)
C206—C201—C211—N212	131.6 (3)	N311—C312—N312—C314	-0.6 (5)
N211—C213—C214—C215	-178.1 (3)	N311—C312—N312—C311	177.1 (3)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1.8 \ (6) \\ 0.0 \ (4) \\ 179.9 \ (3) \\ -1.5 \ (5) \\ -179.0 \ (3) \\ 0.6 \ (6) \\ -176.0 \ (4) \\ 5.6 \ (6) \\ 2.9 \ (5) \\ -175.5 \ (3) \\ -0.2 \ (7) \\ 0.5 \ (6) \end{array}$	C315—C314—N312—C312 C313—C314—N312—C312 C315—C314—N312—C311 C313—C314—N312—C311 C301—C311—N312—C312 C301—C311—N312—C314 N11—C12—N12—C13 C14—C13—N12—C12 C18—C13—N12—C12 N112—C112—N111—C113 C118—C113—N111—C112	-177.2 (4) 0.3 (4) 5.2 (6) -177.3 (3) -87.8 (4) 89.3 (4) 0.9 (4) -0.6 (4) 179.8 (4) -0.2 (4) -179.1 (4)
C216—C217—C218—C213	0.5 (6)	C114—C113—N111—C112	-0.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	D—H···A
O1—H12…N12 ⁱ	0.82	1.92	2.693 (4)	157
O3—H24…N111 ⁱⁱ	0.82	1.85	2.613 (4)	154
O5—H36…N211 ⁱⁱ	0.82	1.92	2.711 (4)	162
O7—H48…N311 ⁱⁱⁱ	0.82	1.84	2.628 (4)	160

Symmetry codes: (i) -x+2, y-1/2, -z+1/2; (ii) -x+1, y+1/2, -z+1/2; (iii) -x, y-1/2, -z+1/2.