

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(chloroacetato- κ^2 O,O')bis(2-fluorobenzyl- κC^1)tin(IV)

Aixia Deng,* Mouyong Teng, Qian Xie and Nana Yan

College of Materials Science and Engineering, Liaocheng University, Shandong 252059, People's Republic of China Correspondence e-mail: dengaixia@lcu.edu.cn

Received 4 November 2011; accepted 28 November 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; R factor = 0.033; wR factor = 0.071; data-to-parameter ratio = 14.3.

In the title complex, $[Sn(C_2H_2ClO_2)_2(C_7H_6F)_2]$, the Sn^{IV} atom is located on a twofold rotation axis and forms a strongly distorted trans-octahedral geometry. The equatorial plane is defined by two chelating chloroacetate ligands with asymmetrical Sn-O bond lengths, while the axial positions are occupied by the C atoms of two 2-fluorobenzyl groups. In the crystal, infinite chains in the [010] direction are formed through intermolecular Sn...O interactions [Sn...O separation = 3.682 (3) Å].

Related literature

For details of the synthesis, see: Zhang et al. (2007).

4738 measured reflections 1754 independent reflections

 $R_{\rm int} = 0.032$

1551 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

$[S_{n}(C \cup C \cup C))$ (C $\cup E)$	$V = 1007.2 (4) Å^3$
$[Sil(C_2H_2CIO_2)_2(C_7H_6F)_2]$	V = 1997.2 (4) A
$M_r = 525.90$	Z = 4
Monoclinic, $C2/c_{\rm o}$	Mo $K\alpha$ radiation
a = 17.3841 (18) A	$\mu = 1.59 \text{ mm}^{-1}$
b = 5.0480 (8) Å	T = 298 K
c = 22.808 (2) Å	$0.29 \times 0.15 \times 0.12 \text{ mm}$
$\beta = 93.760 \ (1)^{\circ}$	

Data collection

Bruker SMART 1000 CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\min} = 0.656, \ T_{\max} = 0.833$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	123 parameters
$wR(F^2) = 0.071$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.71 \text{ e } \text{\AA}^{-3}$
1754 reflections	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Table 1 Selected bond lengths (Å).

Sn1-O1	2.109 (2)	Sn1-O2	2.537 (3)
Sn1-C3	2.121 (4)		

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the State Key Laboratory of Crystal Materials (SRT11055HX2), Liaocheng University, China, and the Liaocheng University Foundation (xo9013) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2395).

References

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zhang, J.-H., Ma, C.-L. & Zhang, R.-F. (2007). Acta Cryst. E63, m2161.

supporting information

Acta Cryst. (2011). E67, m1905 [https://doi.org/10.1107/S1600536811051002] Bis(chloroacetato- $\kappa^2 O, O'$)bis(2-fluorobenzyl- κC^1)tin(IV)

Aixia Deng, Mouyong Teng, Qian Xie and Nana Yan

S1. Comment

The title complex was obtained using a route similar to that used for the synthesis of a trinuclear tin complex (Zhang *et al.*, 2007). The title complex has 2-fold symmetry, with the Sn atom placed on the crystallographic symmetry axis (Fig. 1). Selected bond lengths and angles are given in table 1. The coordination geometry of tin can be described as a distorted *trans*-octahedron geometry, with two C atoms of 2-fluorobenzyl groups occupying the axial positions. The C3—Sn1— $C3^i$ bond angle of 133.6 (2)° (symmetry code *i*: 1 - x, *y*, 1/2 - z) reflects the distortion from octahedral geometry. The equatorial plane is defined by four O atoms of two symmetry-related chloroacetate ligands. The bond lengths in the equatorial plane are Sn1—O1 = 2.109 (2) and Sn1—O2 = 2.537 (3) Å, reflecting the asymmetrical coordination of acetate groups.

The complex forms infinite chains containing Sn_2O_2 rings, through intermolecular $Sn\cdots O$ contacts, characterized by separations $Sn\cdots O = 3.682$ (3) Å (Fig. 2).

S2. Experimental

Chloroacetic acid (2 mmol) was added to a sodium ethoxide solution (2 mmol, 20 ml of ethanol), and the mixture was stirred for 30 min. Then, 1 mmol of bis(2-fluorobenzyl)tin(IV)dichloride (Zhang *et al.*, 2007) was added to the mixture, continuing the reaction for 12 h at 318 K. After cooling down to room temperature, the reaction was filtered off. The solvent of the filtrate was gradually removed by evaporation under vacuum, until a solid product was obtained. The solid was recrystallized from ether-dichloromethane and colourless crystals suitable for X-ray diffraction were obtained (m.p. 464 K). Analysis calculated for $C_{18}H_{16}Cl_2F_2O_4Sn: C 41.26$, H 3.08%; found: C 41.29, H 3.06%.

S3. Refinement

All H atoms were placed geometrically and treated as riding on their parent atoms with C—H bond lengths fixed to 0.93 Å for aromatic CH and 0.97 Å for methylene CH₂. Isotropic displacement parameters for H atoms were calculated as $U_{iso}(H) = 1.2U_{eq}(\text{carrier C})$.

Figure 1

The molecular structure of the title compound, showing 30% probability displacement ellipsoids.

Figure 2 The unit cell of the title compound.

Bis(chloroacetato- $\kappa^2 O, O'$)bis(2-fluorobenzyl- κC^1)tin(IV)

Crystal data

 $[Sn(C_2H_2ClO_2)_2(C_7H_6F)_2]$ $M_r = 523.90$ Monoclinic, C2/cHall symbol: -C 2yc a = 17.3841 (18) Å b = 5.0480 (8) Å c = 22.808 (2) Å $\beta = 93.760$ (1)° V = 1997.2 (4) Å³ Z = 4

Data collection

Bruker SMART 1000 CCD area-detector	
diffractometer	
Radiation source: fine-focus sealed tube	
Graphite monochromator	
φ and ω scans	
Absorption correction: multi-scan	
(SADABS; Bruker, 2001)	
$T_{\min} = 0.656, \ T_{\max} = 0.833$	

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.033$ Hydrogen site location: inferred from $wR(F^2) = 0.071$ neighbouring sites S = 1.00H-atom parameters constrained 1754 reflections $w = 1/[\sigma^2(F_0^2) + (0.0342P)^2]$ 123 parameters where $P = (F_0^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ 0 constraints $\Delta \rho_{\rm max} = 0.71 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: structure-invariant $\Delta \rho_{\rm min} = -0.26 \text{ e} \text{ Å}^{-3}$ direct methods

F(000) = 1032

 $\theta = 2.9 - 25.0^{\circ}$

 $\mu = 1.59 \text{ mm}^{-1}$

Block, colourless

 $0.29 \times 0.15 \times 0.12 \text{ mm}$

4738 measured reflections 1754 independent reflections 1551 reflections with $I > 2\sigma(I)$

 $\theta_{\rm max} = 25.0^\circ, \, \theta_{\rm min} = 1.8^\circ$

T = 298 K

 $R_{\rm int} = 0.032$

 $h = -20 \rightarrow 17$ $k = -5 \rightarrow 6$ $l = -27 \rightarrow 22$

 $D_{\rm x} = 1.742 \text{ Mg m}^{-3}$

Melting point: 464 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1705 reflections

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	y	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	
Sn1	0.5000	0.07163 (7)	0.2500	0.04380 (15)	
Cl1	0.58874 (11)	0.2741 (3)	0.03745 (5)	0.1169 (6)	
F1	0.29621 (15)	0.3089 (6)	0.24062 (11)	0.0831 (8)	
01	0.52467 (15)	0.3929 (5)	0.19515 (10)	0.0517 (7)	
O2	0.55526 (17)	0.0310 (5)	0.15017 (12)	0.0602 (7)	
C1	0.5493 (2)	0.2692 (9)	0.15046 (17)	0.0542 (10)	
C2	0.5669 (4)	0.4449 (10)	0.0999 (2)	0.098 (2)	
H2A	0.6101	0.5583	0.1120	0.117*	
H2B	0.5227	0.5579	0.0903	0.117*	
C3	0.3963 (2)	-0.0939 (7)	0.21189 (17)	0.0522 (10)	
H3A	0.4080	-0.2616	0.1937	0.063*	
H3B	0.3620	-0.1296	0.2428	0.063*	

C4	0.3557 (2)	0.0799 (8)	0.16691 (16)	0.0465 (9)	
C5	0.3052 (2)	0.2743 (9)	0.18211 (18)	0.0537 (10)	
C6	0.2662 (3)	0.4379 (9)	0.1434 (2)	0.0703 (13)	
H6	0.2318	0.5635	0.1561	0.084*	
C7	0.2789 (3)	0.4122 (11)	0.0846 (2)	0.0820 (15)	
H7	0.2537	0.5231	0.0570	0.098*	
C8	0.3286 (3)	0.2242 (12)	0.0670 (2)	0.0863 (16)	
H8	0.3370	0.2078	0.0273	0.104*	
С9	0.3667 (3)	0.0579 (10)	0.10703 (19)	0.0683 (12)	
Н9	0.4000	-0.0703	0.0940	0.082*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
Sn1	0.0453 (2)	0.0360 (2)	0.0496 (2)	0.000	-0.00011 (16)	0.000
Cl1	0.1927 (17)	0.1008 (12)	0.0620 (8)	0.0479 (12)	0.0451 (10)	0.0020 (8)
F1	0.0875 (19)	0.084 (2)	0.0804 (18)	0.0152 (16)	0.0270 (15)	0.0010 (15)
01	0.0685 (18)	0.0384 (16)	0.0496 (15)	0.0031 (13)	0.0147 (13)	0.0003 (12)
O2	0.078 (2)	0.0402 (17)	0.0635 (17)	0.0078 (14)	0.0121 (15)	0.0013 (13)
C1	0.065 (3)	0.046 (3)	0.052 (2)	0.003 (2)	0.010 (2)	0.001 (2)
C2	0.171 (6)	0.058 (3)	0.071 (3)	0.017 (4)	0.057 (4)	0.005 (3)
C3	0.049 (2)	0.039 (2)	0.068 (3)	-0.0047 (19)	-0.0033 (19)	-0.004 (2)
C4	0.043 (2)	0.043 (2)	0.053 (2)	-0.0078 (19)	-0.0053 (17)	-0.0040 (19)
C5	0.047 (2)	0.057 (3)	0.057 (3)	-0.003 (2)	0.003 (2)	-0.003 (2)
C6	0.058 (3)	0.062 (3)	0.089 (4)	0.014 (2)	-0.008 (2)	-0.002 (3)
C7	0.085 (4)	0.072 (4)	0.084 (4)	0.003 (3)	-0.032 (3)	0.012 (3)
C8	0.105 (4)	0.098 (4)	0.052 (3)	0.002 (4)	-0.022 (3)	-0.003 (3)
C9	0.071 (3)	0.072 (3)	0.060 (3)	0.008 (3)	-0.008 (2)	-0.016 (2)

Geometric parameters (Å, °)

Sn1—O1 ⁱ	2.109 (2)	C3—C4	1.492 (5)	
Sn1—O1	2.109 (2)	С3—НЗА	0.9700	
Sn1—C3	2.121 (4)	С3—Н3В	0.9700	
Sn1—C3 ⁱ	2.121 (4)	C4—C5	1.375 (5)	
Sn1—O2 ⁱ	2.537 (3)	C4—C9	1.396 (6)	
Sn1—O2	2.537 (3)	C5—C6	1.359 (6)	
Cl1—C2	1.728 (5)	C6—C7	1.380 (7)	
F1—C5	1.365 (4)	С6—Н6	0.9300	
O1—C1	1.292 (4)	С7—С8	1.361 (7)	
O2—C1	1.207 (4)	С7—Н7	0.9300	
C1—C2	1.503 (6)	C8—C9	1.377 (7)	
C2—H2A	0.9700	C8—H8	0.9300	
C2—H2B	0.9700	С9—Н9	0.9300	
O1 ⁱ —Sn1—O1	79.50 (13)	H2A—C2—H2B	107.7	
O1 ⁱ —Sn1—C3	110.21 (13)	C4—C3—Sn1	113.7 (3)	
O1—Sn1—C3	105.08 (12)	С4—С3—Н3А	108.8	

O1 ⁱ —Sn1—C3 ⁱ	105.08 (12)	Sn1—C3—H3A	108.8
O1—Sn1—C3 ⁱ	110.21 (13)	C4—C3—H3B	108.8
C3—Sn1—C3 ⁱ	133.6 (2)	Sn1—C3—H3B	108.8
$O1^{i}$ — $Sn1$ — $O2^{i}$	54.99 (9)	НЗА—СЗ—НЗВ	107.7
O1—Sn1—O2 ⁱ	134.28 (9)	C5—C4—C9	115.7 (4)
$C3$ — $Sn1$ — $O2^i$	88.52 (13)	C5—C4—C3	121.8 (3)
$C3^{i}$ — $Sn1$ — $O2^{i}$	87.82 (13)	C9—C4—C3	122.5 (4)
Ol ⁱ —Snl—O2	134.28 (9)	C6—C5—F1	118.2 (4)
O1—Sn1—O2	54.99 (9)	C6—C5—C4	124.7 (4)
C3—Sn1—O2	87.82 (13)	F1C5C4	117.0 (4)
C3 ⁱ —Sn1—O2	88.52 (13)	C5—C6—C7	118.0 (4)
O2 ⁱ —Sn1—O2	170.72 (12)	С5—С6—Н6	121.0
C1-O1-Sn1	100.8 (2)	С7—С6—Н6	121.0
C1-O2-Sn1	82.9 (2)	C8—C7—C6	119.8 (5)
O2—C1—O1	121.3 (4)	С8—С7—Н7	120.1
O2—C1—C2	124.2 (4)	С6—С7—Н7	120.1
O1—C1—C2	114.5 (4)	C7—C8—C9	121.1 (5)
C1—C2—Cl1	113.9 (3)	С7—С8—Н8	119.5
C1—C2—H2A	108.8	С9—С8—Н8	119.5
Cl1—C2—H2A	108.8	C8—C9—C4	120.6 (4)
C1—C2—H2B	108.8	С8—С9—Н9	119.7
Cl1—C2—H2B	108.8	С4—С9—Н9	119.7

Symmetry code: (i) -x+1, y, -z+1/2.