Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4,6-Di-*tert*-butyl-2,8-dimethoxydibenzo-[*b*,*d*]furan

Dayeon Chung,^a Enkhzul Otgonbaatar,^b Seok Hwan Son,^c Minchul Chung^c and Chee-Hun Kwak^b*

^aGwangju Science High School, Gwangju 500-480, Republic of Korea, ^bDepartment of Chemistry, Sunchon National University, Sunchon 540-742, Republic of Korea, and ^cDepartment of Chemical Engineering, Sunchon National University, Sunchon 540-742, Republic of Korea

Correspondence e-mail: chkwak@sunchon.ac.kr

Received 3 November 2011; accepted 15 November 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.076; wR factor = 0.229; data-to-parameter ratio = 20.1.

In the title compound, $C_{22}H_{28}O_3$, the dihedral angle between the benzene rings is 3.47 (13)° and the five-membered furan ring is essentially planar with a largest deviation of 0.0052 (14) Å. The Csp^2-Csp^2 bond length between the two benzene rings [1.443 (3) Å] is considerably shorter than those between the benzene and tertiary C atoms [1.538 (3) and 1.530 (3) Å], which are sp^2-sp^3 hybridized. C-H··· π interactions involving the furan and benzene rings are found in the crystal structure.

Related literature

For the synthesis of the title compound, see: Hewgill & Hewitt (1967); Butsgan *et al.* (1989); Malkowsky *et al.* (2006). For a related structure, see: Du & Wang (2009).

Experimental

Crystal data C₂₂H₂₈O₃

 $M_r = 340.44$

Monoclinic, $P2_1/n$	
a = 15.631 (3) Å	
b = 8.2487 (14) Å	
c = 16.000 (3) Å	
$\beta = 105.438 \ (5)^{\circ}$	
V = 1988.5 (6) Å ³	

Data collection

Rigaku R-AXIS RAPID II-S	18260 measured reflections
diffractometer	4563 independent reflections
Absorption correction: multi-scan	2123 reflections with $I > 2\sigma(I)$
(RAPID-AUTO; Rigaku, 2008)	$R_{\rm int} = 0.107$
$T_{\min} = 0.965, \ T_{\max} = 0.985$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.076$ 227 parameters $wR(F^2) = 0.229$ H-atom parameters not refinedS = 0.99 $\Delta \rho_{max} = 0.24$ e Å⁻³4563 reflections $\Delta \rho_{min} = -0.21$ e Å⁻³

Z = 4

Mo $K\alpha$ radiation

 $\mu = 0.07 \text{ mm}^{-1}$

T = 100 K $0.5 \times 0.4 \times 0.2 \text{ mm}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C5–C8/C11/C12 and O1/C9–C12 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C15-H15A\cdots Cg1^{i}$ $C15-H15B\cdots Cg2^{i}$ $C22-H15A\cdots Cg2^{ii}$	0.96	2.98	3.580 (3)	121
	0.96	2.65	3.200 (3)	117
	0.96	2.99	3.872 (4)	152

Symmetry codes: (i) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 2, -y + 2, -z.

Data collection: *RAPID-AUTO* (Rigaku, 2008); cell refinement: *RAPID-AUTO*; data reduction: *RAPID-AUTO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This work was supported financially by the RIC, 2011, and the Non-Directional Fund of Sunchon National University, 2005.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2314).

References

Butsgan, Y., Muto, M., Kawai, M., Araki, S., Murase, Y. & Saito, K. (1989). J. Org. Chem. 54, 4215–4217.

Du, Z.-X. & Wang, L.-Z. (2009). Acta Cryst. E65, 01664.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Hewgill, F. R. & Hewitt, D. G. (1967). J. Chem. Soc C, pp. 726-730.

Malkowsky, I. M., Rommel, C. E., Froehlich, R., Driesbach, U., Fuetter, H. & Waldvogel, S. R. (2006). *Chem. Eur. J.* **12**, 7482–7488.

Rigaku (2008). *RAPIDO-AUTO*. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.

supporting information

Acta Cryst. (2011). E67, o3356 [https://doi.org/10.1107/S1600536811048379]

4,6-Di-*tert*-butyl-2,8-dimethoxydibenzo[*b*,*d*]furan

Dayeon Chung, Enkhzul Otgonbaatar, Seok Hwan Son, Minchul Chung and Chee-Hun Kwak

S1. Comment

Oxidative coupling of phenyl is a useful synthetic route for the synthesis of natural products (Malkowsky *et al.*, 2006). 2*tert*-Butyl-4-methoxyphenol (BHA) is well kwon as an antioxidant and oxidative coupling of it produces di-BHA and benzofuran derivative by the various method of preparation (Hewgill & Hewitt, 1967; Butsgan *et al.*, 1989). The singlecrystal structure of di-BHA was reported but that of benzofuran derived from BHA has not been investigated. Here we describe the structure of title compound obtained from pyrolysis method.

The title compound, $C_{22}H_{29}O_3$, forms tricycle adjoined two benzene skeleton in C10 and C11, and C9 and C12 through O1 (Fig. 1). All atoms lies in almost a plane, the dihedral angle between two benzene skeletons is 3.47 (13)° and 5-membered furan ring is a plane with the largest deviation of 0.0052 (14) Å. The bond distance of C10—C11 [1.443 (3) Å] in $sp^2 - sp^2$ hybridization, which connects two benzene skeleton, is considerably shorter than that of C1—C13 [1.538 (3) Å] or C8—C14 [1.530 (3) Å] in $sp^2 - sp^3$ hybridization. C15—H15A… π (3/2 - x, 1/2 + y, 1/2 - z) interaction involving the benzene ring (C5-C8/C11-C12) and, C15—H15B… π and C22—H22A… π (2 - x, 2 - y, -z) interactions involing furan ring (O1/C9—C12) are found in the crystal structure (Fig. 2 and Table 1). No classical hydrogen bond is found in the crystal structure.

S2. Experimental

A mixture of BHA (1.20 g, 6.65 mmol) and iron (0.95 g) and copper (0.89 g) powder in a Schlenk tube was heated under argon gas until BHA was melt and this mixture keep *ca* 170°C for 24 h. Dissolving the product with 30 ml CH₂Cl₂ for 3 times, the solution was chromatographed on Al₂O₃ eluting with CH₂Cl₂/n-hexane(1:1) to afford the title compound. Single crystals of the compound for X-ray analysis were obtained by recrystallization from CH₂Cl₂/n-hexane (1:1) at -20°C. ¹³C-NMR (THF- d^5) δ 29.245 (C(*C*H₃)₃), 32.843 ((O-*C*H₃), 54.707 (*C*(CH₃)₃), 11.825, 113.253, 128.572, 139.625, 145.875, 153.619 (Phenyl). ESI-MS (*M*/*z*) C₂₂H₂₈O₃; Observed (cal'd): [*M*+H]⁺ = 341.2186 (340.46).

S3. Refinement

The H atoms were positioned geometrically and ride on their respective parent atoms. C—H Distance is 0.93 Å (CH, sp^2) with $U_{iso} = 1.2U_{eq}(C)$ and 0.96 Å (CH₃) with $U_{iso} = 1.5U_{eq}(C)$.

Figure 1

The structure of the title compound with displacement ellipsoids drawn at 50% probability level.

Figure 2

A packing diagram of the title compound. Dashed lines represent C—H $\cdots\pi$ interactions.

6,10-di-tert-butyl-4,12-dimethoxy-8-oxatricyclo[7.4.0.0^{2,7}]trideca-1(9),2(7),3,5,10,12-hexaene

F(000) = 736

 $\theta = 3.2 - 27.5^{\circ}$

 $\mu = 0.07 \text{ mm}^{-1}$ T = 100 K

Block, brown

 $0.5 \times 0.4 \times 0.2 \text{ mm}$

 $D_{\rm x} = 1.137 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 18260 reflections

Crystal data

 $C_{22}H_{28}O_3$ $M_r = 340.44$ Monoclinic, $P2_1/n$ a = 15.631 (3) Å b = 8.2487 (14) Å c = 16.000 (3) Å $\beta = 105.438$ (5)° V = 1988.5 (6) Å³ Z = 4

Data collection

Rigaku R-AXIS RAPID II-S	18260 measured reflections
diffractometer	4563 independent reflections
Radiation source: fine-focus sealed tube	2123 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.107$
ω scans	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 3.2^{\circ}$
Absorption correction: multi-scan	$h = -20 \rightarrow 20$
(RAPID-AUTO; Rigaku, 2008)	$k = -9 \rightarrow 10$
$T_{\min} = 0.965, \ T_{\max} = 0.985$	$l = -20 \rightarrow 20$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.076$ $wR(F^2) = 0.229$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
<i>S</i> = 0.99	H-atom parameters not refined
4563 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1073P)^2]$
227 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.009$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.90422 (11)	0.83006 (19)	0.11113 (11)	0.0570 (5)
O2	0.87127 (14)	1.1093 (2)	0.41186 (12)	0.0787 (6)
C11	0.81556 (16)	1.0573 (3)	0.08804 (16)	0.0515 (6)
C10	0.84681 (16)	1.0295 (3)	0.18023 (17)	0.0524 (6)
C12	0.85219 (16)	0.9345 (3)	0.04927 (17)	0.0528 (6)

03	0.68536 (15)	1.2535 (2)	-0.11118 (13)	0.0805 (6)
C5	0.75816 (17)	1.1710 (3)	0.03733 (17)	0.0585 (7)
Н5	0.7323	1.2532	0.0621	0.070*
C4	0.83376 (17)	1.1096 (3)	0.25353 (17)	0.0560 (6)
H4	0.7990	1.2024	0.2483	0.067*
C3	0.87496 (17)	1.0440 (3)	0.33359 (17)	0.0592 (7)
C1	0.93919 (17)	0.8188 (3)	0.27084 (18)	0.0589(7)
C7	0.78180 (18)	1.0324 (3)	-0.08857 (18)	0.0633 (7)
H7	0.7697	1.0287	-0.1487	0.076*
С9	0.89907 (17)	0.8908 (3)	0.19084 (17)	0.0551 (6)
C6	0.74191 (18)	1.1549 (3)	-0.05084(18)	0.0610 (7)
C8	0.83866 (17)	0.9163 (3)	-0.03992(17)	0.0563 (6)
C14	0 87778 (18)	0 7790 (3)	-0.08242(18)	0.0617(7)
C2	0.92504 (17)	0.9010 (3)	0.34121 (18)	0.0633(7)
H2	0.9499	0.8595	0.3964	0.076*
C13	0.9922(2)	0.6597 (3)	0.2794 (2)	0.0734 (8)
C15	0.8178(2)	1 2486 (4)	0.4088(2)	0 0791 (9)
H15A	0.8197	1 2819	0 4668	0.119*
H15R	0.7577	1 2238	0.3779	0.119*
H15C	0.8397	1 3345	0.3797	0.119*
C18	0.0337 0.9331 (2)	0 5255 (3)	0.2286 (2)	0.0874(10)
H18A	0.9123	0.5566	0.1688	0.131*
H18R	0.8834	0.5088	0.2521	0.131*
H18C	0.9667	0.4269	0.2321	0.131*
C22	0.9007 0.9777 (2)	0.7683 (5)	-0.0432(3)	0.1029 (13)
H22A	1 0051	0.7005 (5)	-0.0547	0.1029(13)
H22R	1.0031	0.6787	-0.0686	0.154*
H22C	0.0000	0.7524	0.0080	0.154*
C16	0.5500	1 3580 (1)	-0.0816(2)	0.134 0.0826 (0)
H16A	0.5937	1.3389 (4)	-0.1295	0.0820 (9)
HIGA HIGB	0.5957	1.4200	-0.0302	0.124
	0.0039	1.4317	-0.0558	0.124*
C10	0.3907	1.2908	-0.0338	0.124° 0.1022 (12)
	1.0732 (2)	0.0880 (4)	0.2420 (3)	0.1052 (12)
HI9A	1.0551	0.7258	0.1838	0.155*
П19Б	1.1050	0.3881	0.2439	0.155*
HI9C	1.1110	0.7070	0.2//1	0.155°
	0.8337 (2)	0.0190(4)	-0.0038 (2)	0.0932 (11)
H20A	0.8430	0.6067	-0.004/	0.143*
H20B	0.8040	0.5312	-0.0870	0.143*
H20C	0.7736	0.6207	-0.0954	0.143*
C21	0.8591 (3)	0.8028 (5)	-0.1807 (2)	0.1160 (14)
H2IA	0.8840	0.9041	-0.1923	0.1/4*
H21B	0.7962	0.8035	-0.2063	0.174*
H2IC	0.8855	0./15/	-0.2049	0.1/4*
U17	1.0251 (3)	0.6062 (4)	0.3745 (2)	0.1147 (14)
HI/A	1.0570	0.5060	0.3778	0.172*
HI7B	0.9752	0.5913	0.3981	0.172*
H17C	1.0636	0.6880	0.4071	0.172*

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0590 (10)	0.0531 (10)	0.0617 (12)	0.0046 (8)	0.0209 (9)	-0.0053 (8)
02	0.0938 (15)	0.0840 (13)	0.0594 (12)	0.0314 (11)	0.0220 (11)	-0.0055 (10)
C11	0.0529 (13)	0.0463 (12)	0.0617 (16)	-0.0036 (10)	0.0262 (12)	-0.0047 (11)
C10	0.0525 (14)	0.0471 (12)	0.0619 (16)	-0.0012 (10)	0.0225 (12)	-0.0034 (11)
C12	0.0525 (13)	0.0456 (12)	0.0644 (16)	-0.0011 (10)	0.0230 (12)	0.0009 (12)
03	0.0993 (15)	0.0751 (13)	0.0708 (13)	0.0233 (12)	0.0293 (12)	0.0033 (10)
C5	0.0650 (16)	0.0509 (13)	0.0654 (17)	0.0050 (12)	0.0275 (13)	-0.0009 (12)
C4	0.0599 (15)	0.0498 (13)	0.0628 (16)	0.0045 (11)	0.0240 (13)	-0.0023 (12)
C3	0.0636 (16)	0.0601 (15)	0.0578 (16)	0.0047 (12)	0.0226 (13)	-0.0073 (13)
C1	0.0559 (14)	0.0522 (14)	0.0683 (18)	0.0053 (11)	0.0159 (13)	-0.0020 (13)
C7	0.0722 (17)	0.0631 (16)	0.0608 (16)	-0.0004 (14)	0.0286 (14)	-0.0035 (13)
С9	0.0559 (14)	0.0493 (13)	0.0631 (16)	-0.0016 (11)	0.0209 (12)	-0.0076 (12)
C6	0.0662 (16)	0.0562 (14)	0.0654 (17)	0.0056 (12)	0.0258 (14)	0.0056 (13)
C8	0.0588 (15)	0.0542 (14)	0.0615 (16)	-0.0036 (12)	0.0261 (13)	-0.0076 (12)
C14	0.0662 (16)	0.0605 (15)	0.0666 (18)	-0.0005 (13)	0.0317 (14)	-0.0107 (13)
C2	0.0664 (16)	0.0594 (15)	0.0632 (16)	0.0100 (13)	0.0158 (13)	-0.0003 (13)
C13	0.079 (2)	0.0594 (16)	0.078 (2)	0.0187 (14)	0.0146 (16)	-0.0048 (15)
C15	0.085 (2)	0.084 (2)	0.0688 (19)	0.0247 (16)	0.0222 (16)	-0.0115 (16)
C18	0.105 (2)	0.0525 (16)	0.101 (3)	0.0133 (16)	0.022 (2)	0.0001 (16)
C22	0.069 (2)	0.124 (3)	0.125 (3)	0.0018 (19)	0.041 (2)	-0.056 (2)
C16	0.092 (2)	0.0692 (18)	0.087 (2)	0.0197 (16)	0.0261 (18)	0.0021 (17)
C19	0.069 (2)	0.095 (2)	0.143 (4)	0.0249 (18)	0.024 (2)	-0.020 (2)
C20	0.110 (3)	0.0655 (19)	0.121 (3)	-0.0122 (18)	0.051 (2)	-0.0273 (19)
C21	0.176 (4)	0.109 (3)	0.078 (2)	0.046 (3)	0.059 (3)	-0.009 (2)
C17	0.151 (4)	0.086 (2)	0.086 (2)	0.054 (2)	-0.004 (2)	0.002 (2)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

01—C9	1.393 (3)	C13—C18	1.529 (4)
O1—C12	1.398 (3)	C13—C17	1.536 (4)
O2—C3	1.378 (3)	C13—C19	1.549 (5)
O2—C15	1.413 (3)	C15—H15A	0.9600
C11—C12	1.389 (3)	C15—H15B	0.9600
C11—C5	1.398 (3)	C15—H15C	0.9600
C11—C10	1.443 (3)	C18—H18A	0.9600
С10—С9	1.390 (3)	C18—H18B	0.9600
C10—C4	1.407 (3)	C18—H18C	0.9600
С12—С8	1.394 (3)	C22—H22A	0.9600
O3—C6	1.386 (3)	C22—H22B	0.9600
O3—C16	1.408 (3)	C22—H22C	0.9600
C5—C6	1.372 (4)	C16—H16A	0.9600
С5—Н5	0.9300	C16—H16B	0.9600
C4—C3	1.382 (4)	C16—H16C	0.9600
C4—H4	0.9300	C19—H19A	0.9600
C3—C2	1.403 (3)	C19—H19B	0.9600

supporting information

C1—C2	1.382 (4)	C19—H19C	0.9600
C1—C9	1.399 (4)	С20—Н20А	0.9600
C1—C13	1.538 (3)	C20—H20B	0.9600
C7—C8	1.395 (4)	C20—H20C	0.9600
C7—C6	1 405 (4)	C21—H21A	0.9600
C7—H7	0.9300	C_{21} H21B	0.9600
C8-C14	1 530 (3)	C_{21} H21C	0.9600
C_{14} C_{22}	1.530(5) 1.523(4)	C17 H17A	0.9000
$C_{14} = C_{22}$	1.525(4) 1.524(4)	C17 H17R	0.9000
$C_{14} = C_{20}$	1.524(4)	C17 - H17C	0.9000
$C_1 = C_2$	0.0200	CI/—HI/C	0.9000
C2—n2	0.9300		
C9—O1—C12	105.20 (18)	C1—C13—C19	108.2 (2)
C3—O2—C15	117.0 (2)	O2—C15—H15A	109.5
C12—C11—C5	120.5 (2)	O2—C15—H15B	109.5
C12—C11—C10	105.8 (2)	H15A—C15—H15B	109.5
C5—C11—C10	133.6 (2)	O2—C15—H15C	109.5
C9—C10—C4	119.7 (2)	H15A—C15—H15C	109.5
C9—C10—C11	106.5 (2)	H15B—C15—H15C	109.5
C4—C10—C11	133.8 (2)	C13—C18—H18A	109.5
C11—C12—C8	124.6 (2)	C13—C18—H18B	109.5
C11—C12—O1	111.4 (2)	H18A—C18—H18B	109.5
C8-C12-O1	124.0(2)	C13—C18—H18C	109.5
C6-O3-C16	117.9(2)	H18A - C18 - H18C	109.5
C6-C5-C11	1165(2)	H18B— $C18$ — $H18C$	109.5
С6—С5—Н5	121 7	C14 - C22 - H22A	109.5
$C_{11} - C_{5} - H_{5}$	121.7	C14 - C22 - H22B	109.5
C_{3} C_{4} C_{10}	121.7 1170(2)	$H_{22}A = C_{22} = H_{22}B$	109.5
$C_3 - C_4 - H_4$	121.5	C14 - C22 - H22C	109.5
C10-C4-H4	121.5	H_{22}^{-} H_{22}^{-} H_{22}^{-}	109.5
$0^{2}-0^{3}-0^{4}$	121.5 124.6(2)	$H_{22}R_{-}C_{22} = H_{22}C_{-}$	109.5
$O_2 = C_3 = C_4$	124.0(2) 114.0(2)	03 C16 H16A	109.5
$C_2 = C_3 = C_2$	114.0(2) 121.4(2)	O_3 C_{16} H_{16B}	109.5
$C_1 = C_2 = C_2$	121.4(2) 114.0(2)	H16A C16 H16B	109.5
$C_2 = C_1 = C_3$	114.0(2) 123.1(2)	Ω_{3} C16 H16C	109.5
$C_2 - C_1 - C_{13}$	123.1(2) 122.0(2)		109.5
$C_{2} = C_{1} = C_{13}$	122.9(2) 122.0(3)	H16A C16 H16C	109.5
C°	123.0 (3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_{0} = C_{1} = H_{1}$	118.5	C12 = C19 = H19A	109.5
$C_0 - C_1 - H_1$	110.5		109.5
C10 - C9 - C1	111.1(2)	HI9A—CI9—HI9B	109.5
C10-C9-C1	124.6 (2)	СІЗ—СІ9—НІ9С	109.5
	124.3 (2)	HIYA—UIY—HIYU	109.5
03	124.7 (2)	H19B—C19—H19C	109.5
C5—C6—C7	122.0 (3)	C14—C20—H20A	109.5
03-C6-C7	113.3 (2)	C14—C20—H20B	109.5
C12—C8—C7	113.4 (2)	H20A—C20—H20B	109.5
C12—C8—C14	124.4 (2)	C14—C20—H20C	109.5
C7—C8—C14	122.1 (2)	H20A—C20—H20C	109.5

C22—C14—C20 C22—C14—C8 C20—C14—C8	108.7 (3) 110.3 (2) 108.6 (2)	H20B—C20—H20C C14—C21—H21A C14—C21—H21B	109.5 109.5 109.5
C22-C14-C21 C20-C14-C21 C8-C14-C21	108.9 (3) 108.4 (3) 111.8 (2)	H21A—C21—H21B C14—C21—H21C H21A—C21—H21C	109.5 109.5 109.5
C1—C2—C3 C1—C2—H2 C2—C2—H2	123.3 (3) 118.4	H21B—C21—H21C C13—C17—H17A C12—C17—H17P	109.5 109.5
C18—C13—C17 C18—C13—C17 C18—C13—C1	108.3 (3) 109.6 (2)	H17A—C17—H17B C13—C17—H17B	109.5 109.5 109.5
C17—C13—C1 C18—C13—C19 C17—C13—C19	111.3 (2) 110.2 (3) 109.2 (3)	H17A—C17—H17C H17B—C17—H17C	109.5 109.5

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C5–C8/C11/C12 and O1/C9–C12 rings, respectively.

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C15—H15 A ···Cg1 ⁱ	0.96	2.98	3.580 (3)	121
C15—H15 B ···Cg2 ⁱ	0.96	2.65	3.200 (3)	117
C22—H15A····Cg2 ⁱⁱⁱⁱ	0.96	2.99	3.872 (4)	152

Symmetry codes: (i) -x+3/2, y+1/2, -z+1/2; (ii) -x+2, -y+2, -z.