organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[2-(4-aminophenyl)-4,5-dihydro-1*H*imidazol-3-ium] dichloride monohydrate

Krešimir Molčanov,^a* Ivana Stolić,^b Biserka Kojić-Prodić^a and Miroslav Bajić^b

^aLaboratory of Chemical and Biological Crystallography, Department of Physical Chemistry, Rudjer Bošković Institute, POB-180, HR-10002 Zagreb, Croatia, and ^bDepartment of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000 Zagreb, Croatia Correspondence e-mail: kmolcano@irb.hr

Received 7 November 2011; accepted 22 November 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.045; wR factor = 0.116; data-to-parameter ratio = 12.6.

The asymmetric unit of the title compound, $2C_9H_{12}N_3^+$.- $2Cl^-\cdot H_2O$, comprises two molecules, two chloride anions and one molecule of crystal water. In the imidazolinium ring, the protonation contributes to delocalization of the positive charge over the two C–N bonds. Both chloride anions are acceptors of four hydrogen bonds in a flattened tetrahedron environment. The donors are NH₂ groups, the NH groups of the imidazolinium rings and the water molecule. These hydrogen bonds and N–H···O(H₂O) hydrogen bonds form a three-dimensional network.

Related literature

For background and the biological activity of aromatic amidines, see: Chen *et al.* (2010); Hu *et al.* (2009); Del Poeta *et al.* (1998); Baraldi *et al.* (2004); Jarak *et al.* (2011); Neidle (2001); Stolić *et al.* (2011). For the synthesis, see Widra *et al.* (1990). For related compounds see: Jarak *et al.* (2005); Legrand *et al.* (2008). For puckering parameters, see: Cremer & Pople (1975);

Experimental

Crystal data $2C_9H_{12}N_3^+ \cdot 2Cl^- \cdot H_2O$ $M_r = 413.35$ Orthorhombic, *Pbca* a = 10.5307 (2) Å b = 17.9659 (4) Å c = 22.4290 (5) Å

 $V = 4243.42 (16) \text{ Å}^{3}$ Z = 8Cu K\alpha radiation $\mu = 2.91 \text{ mm}^{-1}$ T = 293 K $0.4 \times 0.05 \times 0.04 \text{ mm}$

13695 measured reflections

 $R_{\rm int} = 0.030$

4375 independent reflections

3054 reflections with $I > 2\sigma(I)$

Data collection

Oxford Xcalibur Nova R Ruby diffractometer Absorption correction: multi-scan (*ABSPACK*; Oxford Diffraction, 2010)

 $T_{\min} = 0.389, T_{\max} = 0.892$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	H atoms treated by a mixture of
$wR(F^2) = 0.116$	independent and constrained
S = 1.00	refinement
4375 reflections	$\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^{-3}$
348 parameters	$\Delta \rho_{\rm min} = -0.13 \text{ e} \text{ Å}^{-3}$
3 restraints	

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{split} N1A - H11 \cdots Cl2^{i} \\ N1A - H12 \cdots Cl1 \\ N1B - H21 \cdots Cl2^{ii} \\ N1B - H22 \cdots O1^{iii} \\ N2A - H2C \cdots Cl2 \\ N2B - H2D \cdots Cl1^{ii} \\ N3A - H3C \cdots Cl1^{i} \end{split}$	0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86	2.45 2.45 2.59 2.02 2.29 2.35 2.36	3.296 (2) 3.304 (2) 3.448 (2) 2.882 (3) 3.1113 (18) 3.1615 (19) 3.1900 (17)	170 170 174 177 160 157 162
$D1 - H1A \cdots Cl2^{iv}$ $D1 - H1B \cdots Cl1^{v}$	0.93 (2) 0.95 (2)	2.21 (2) 2.21 (2)	3.1329 (19) 3.147 (2)	178 (3) 170 (3)

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (iii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (iv) -x + 1, -y + 1, -z + 1; (v) x, y + 1, z.

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This research was funded by the Croatian Ministry of Science, Education and Sports, grant Nos. 098–1191344-2943 and 053–0982914-2965.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2316).

References

- Baraldi, P. G., Bovero, A., Fruttarolo, F., Preti, D., Tabrizi, M. A., Pavani, M. G. & Romagnoli, R. (2004). *Med. Res. Rev.* 24, 475–528.
- Chen, X., Orser, B. A. & MacDonald, J. F. (2010). Eur. J. Pharmacol. 648, 15– 23.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Del Poeta, M., Schell, W. A., Dykstra, C. C., Jones, S. K., Tidwell, R. R., Czarny, A., Bajić, M., Bajić, Ma., Kumar, A., Boykin, D. W. & Perfect, J. R. (1998). *Antimicrob. Agents Chemother.* 42, 2495–2502.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hu, L., Kully, M. L., Boykin, D. W. & Abood, N. (2009). Bioorg. Med. Chem. Lett. 19, 4626–4629.
- Jarak, I., Karminski-Zamola, G., Pavlović, G. & Popović, Z. (2005). Acta Cryst. C61, 098–0100.
- Jarak, I., Marjanović, M., Piantanida, I., Kralj, M. & Karminski-Zamola, G. (2011). Eur. J. Med. Chem. 46, 2807–2815.
- Legrand, Y. M., van der Lee, A. & Barboiu, M. (2008). Acta Cryst. E64, 0967-0968.

Neidle, S. (2001). *Nat. Prod. Rep.* **18**, 291–309. Oxford Diffraction (2010). *ABSPACK* and *CrysAlis PRO*. Oxford Diffraction Ltd, Yarnton, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Stolić, I., Mišković, K., Piantanida, I., Baus Lončar, M., Glavaš-Obrovac, Lj. & Bajić, M. (2011). *Eur. J. Med. Chem.* 46, 743–755.
 Widra, R. L., Patterson, S. E. & Strekowski, L. (1990). *J. Heterocycl. Chem.* 27,

803-805.

supporting information

Acta Cryst. (2011). E67, o3450–o3451 [https://doi.org/10.1107/S1600536811050070] Bis[2-(4-aminophenyl)-4,5-dihydro-1*H*-imidazol-3-ium] dichloride monohydrate Krešimir Molčanov, Ivana Stolić, Biserka Kojić-Prodić and Miroslav Bajić

S1. Comment

Nucleic acids are important targets for many biomolecules and small molecules. Many anticancer drugs are known to exert their biological activity through bonding into minor groove of DNA. Aromatic amidines which bind strongly into the DNA minor groove exhibit outstandindg antiparasitic (Chen *et al.*, 2010), antibacterial (Hu *et al.*, 2009), antifungal (Del Poeta *et al.*, 1998), and antitumor activity (Baraldi *et al.*, 2004). The amidinium moiety is known to contribute to DNA binding of small molecules by electrostatic, van der Waals and hydrogen bonding interactions (Neidle, 2001). Aminobenzamidine derivatives are very useful building blocks for construction of target complex molecules (Jarak *et al.*, 2011). We found out that 4,5-dihydroimidazoles with cyclic amidine moiety at the terminal positions show sometimes better antitumor activity than corresponding unsubstituted or alkyl substituted amidines (Stolić *et al.*, 2011). Detail analysis of interactions of these compounds with nucleic acids can help to design more potent agents against different types of diseases.

The asymmetric unit of **I** comprises two molecules (labeled as **A** and **B**) and a single molecule of crystal water (Fig. 1). The five-membered rings of the cations are almost planar, the Cremer-Pople (Cremer & Pople, 1975) puckering parameters Θ being 3.2° and 0.6° for **A** and **B** molecules, respectively. The cations, however, are not planar, since mean planes of six- and five-membered rings are tilted by 9.3° and 14.8°, respectively. Both imino nitrogen atoms of the imidazolinium ring are protonated, since the imidazole is stronger proton acceptor than the amine nitrogen. The positive charge is delocalized over the two C—N bonds in the five-membered ring (Scheme 1, Fig. 1), further stabilizing the cation. The chloride anions are acceptors of four hydrogen bonds in the shapes of flattened tetrahedra with different donor groups: Cl1 accepts hydrogen bonds from two NH group of the imidazolinium ring, one NH₂ group and a water molecule; Cl2 is surrounded by two NH₂ groups, one imidazolinium NH and a water molecule. The molecule of crystal water is a proton donor to chloride ions and acceptor of N—H…O bonds. Thus, crystal packing comprises three-dimensional hydrogen bonding network (Fig. 2, Table 1).

S2. Experimental

The crude imidate ester hydrochloride (2.39 g, 12.8 mmol) prepared from 4-aminobenzonitrile (1.66 g, 14.1 mmol) in anhydrous methanol by Pinner reaction was suspended in anhydrous methanol (50 ml), 1,2-diaminoethane (12 ml) was added and mixture was refluxed for 12 h under the nitrogen atmosphere. The solvent was removed under reduced pressure and residue was recrystallized from ethanol-diethyl ether to yield 1.27 g (50.5%) of pale brown powder, m.p. 473 K; IR (ν_{max} /cm⁻¹): 3353, 3099, 1582, 1502, 1364, 1191, 949, 835; ¹H NMR (DMSO-d6) δ /p.p.m.: 10.12 (s, 2H, NH), 7.76 (s, 2H, NH2), 6.65 (s, 2H, ArH), 6.46 (s, 2H, ArH), 2.50 (s, 4H, CH2).

S3. Refinement

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and 0.97 Å for C and 0.86 Å for N atom and $U_{iso}(H) = 1.2U_{eq}(C,N)$. The H atoms of water were located in difference map and then allowed to ride on their parent atoms, with O—H = 0.95 Å and $1.5U_{eq}(O)$.

Figure 1

ORTEP-3 (Farrugia, 1997) drawing of the asymmetric unit of **I**. Displacement ellipsoids are drawn for the probability of 50% and hydrogen atoms are depicted as spheres of arbitrary radii.

Hydrogen bonding in I. Symmetry operators: (i) x + 1/2, -y + 1/2, -z + 1; (ii) x - 1, y, z; (iii) -x + 1, y - 3/2, -z + 1/2; (iv) x, y - 1, z; (v) -x + 1, -y, -z + 1.

Bis[2-(4-aminophenyl)-4,5-dihydro-1H-imidazol-3-ium] dichloride hydrate

Crystal data

$2C_9H_{12}N_3^+\cdot 2Cl^-\cdot H_2O$	F(000) = 1744
$M_r = 413.35$	$D_{\rm x} = 1.294 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, Pbca	Cu K α radiation, $\lambda = 1.54184$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 4375 reflections
a = 10.5307 (2) Å	$\theta = 3.2 - 76.0^{\circ}$
b = 17.9659 (4) Å	$\mu = 2.91 \text{ mm}^{-1}$
c = 22.4290(5) Å	T = 293 K
V = 4243.42 (16) Å ³	Prism, colourless
Z = 8	$0.4 \times 0.05 \times 0.04 \text{ mm}$
Data collection	
Oxford Xcalibur Nova R Ruby	4375 independent reflections

Oxford Acallour Nova K Kuby	45/5 independent reflections
diffractometer	3054 reflections with $I > 2\sigma(I)$
CCD detector, ω scans	$R_{\rm int} = 0.030$
Absorption correction: multi-scan	$\theta_{\rm max} = 76.2^\circ, \ \theta_{\rm min} = 3.9^\circ$
(ABSPACK; Oxford Diffraction, 2010)	$h = -10 \rightarrow 13$
$T_{\min} = 0.389, \ T_{\max} = 0.892$	$k = -22 \rightarrow 18$
13695 measured reflections	$l = -12 \rightarrow 27$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.116$ S = 1.004375 reflections 348 parameters 3 restraints

H atoms treated by a mixture of independent	$(\Delta/\sigma)_{\rm max} < 0.001$
and constrained refinement	$\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$
$w = 1/[\sigma^2(F_o^2) + (0.0664P)^2 + 0.1666P]$	$\Delta \rho_{\rm min} = -0.13 \text{ e } \text{\AA}^{-3}$
where $P = (F_0^2 + 2F_c^2)/3$	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1A	0.15472 (18)	0.24466 (12)	0.46353 (9)	0.0591 (4)
C2A	0.2329 (2)	0.20468 (13)	0.50240 (9)	0.0677 (5)
H2A	0.2799	0.1647	0.488	0.081*
C3A	0.2413 (2)	0.22367 (13)	0.56166 (9)	0.0649 (5)
H3A	0.2947	0.1966	0.5866	0.078*
C4A	0.17150 (17)	0.28251 (10)	0.58513 (8)	0.0529 (4)
C5A	0.09206 (18)	0.32174 (11)	0.54635 (9)	0.0590 (4)
H5A	0.0434	0.3609	0.561	0.071*
C6A	0.08469 (19)	0.30346 (12)	0.48693 (9)	0.0630 (5)
H6A	0.032	0.3309	0.4619	0.076*
C7A	0.17897 (17)	0.30141 (10)	0.64793 (8)	0.0536 (4)
C8A	0.2419 (2)	0.29987 (16)	0.74592 (10)	0.0797 (6)
H811	0.3175	0.3238	0.7616	0.096*
H812	0.2177	0.2594	0.7722	0.096*
C9A	0.1344 (2)	0.35524 (14)	0.73860 (10)	0.0759 (6)
H911	0.0625	0.3423	0.7636	0.091*
H912	0.1618	0.4054	0.7481	0.091*
N1A	0.1465 (2)	0.22627 (13)	0.40482 (8)	0.0825 (6)
H11	0.0974	0.2511	0.3815	0.099*
H12	0.1904	0.1898	0.391	0.099*
N2A	0.26224 (17)	0.27362 (11)	0.68540 (8)	0.0705 (5)
H2C	0.3218	0.2434	0.6753	0.085*
N3A	0.10317 (17)	0.34793 (10)	0.67552 (8)	0.0671 (4)
H3C	0.0421	0.3714	0.6584	0.081*
C1B	0.7185 (2)	0.49540 (12)	0.38839 (10)	0.0699 (5)
C2B	0.7994 (2)	0.48300 (13)	0.43669 (11)	0.0726 (6)
H2B	0.8718	0.4542	0.4314	0.087*
C3B	0.7741 (2)	0.51242 (13)	0.49165 (10)	0.0677 (5)
H3B	0.8288	0.5024	0.5232	0.081*
C4B	0.66745 (19)	0.55730 (11)	0.50120 (9)	0.0597 (4)
C5B	0.5881 (2)	0.57082 (13)	0.45265 (11)	0.0679 (5)
H5B	0.5171	0.601	0.4577	0.082*
C6B	0.6124 (2)	0.54067 (14)	0.39764 (11)	0.0738 (6)
H6B	0.5576	0.5505	0.3661	0.089*
C7B	0.64277 (17)	0.58804 (11)	0.55951 (10)	0.0593 (5)

supporting information

C8B	0.6543 (2)	0.60604 (14)	0.66131 (11)	0.0752 (6)
H821	0.7238	0.632	0.6807	0.09*
H822	0.6143	0.5728	0.6897	0.09*
C9B	0.5585 (2)	0.66057 (15)	0.63481 (12)	0.0809 (7)
H921	0.4744	0.6527	0.6512	0.097*
H922	0.5839	0.7117	0.6419	0.097*
N1B	0.7415 (2)	0.46400 (14)	0.33459 (10)	0.0947 (7)
H21	0.8067	0.4359	0.3298	0.114*
H22	0.6908	0.4722	0.3053	0.114*
N2B	0.69789 (18)	0.56590 (11)	0.60876 (8)	0.0702 (5)
H2D	0.7541	0.5312	0.6099	0.084*
N3B	0.56234 (18)	0.64252 (11)	0.57148 (9)	0.0762 (5)
H3D	0.5174	0.6648	0.5449	0.091*
Cl1	0.33702 (5)	0.08741 (3)	0.36842 (2)	0.06847 (16)
C12	0.48675 (5)	0.16106 (3)	0.68365 (3)	0.08017 (19)
01	0.4366 (2)	0.99224 (11)	0.26032 (8)	0.0905 (5)
H1A	0.461 (3)	0.9475 (12)	0.2776 (14)	0.136*
H1B	0.396 (3)	1.0191 (15)	0.2913 (12)	0.136*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
C1A	0.0660 (10)	0.0683 (11)	0.0431 (10)	-0.0008 (9)	0.0021 (9)	0.0024 (9)
C2A	0.0789 (12)	0.0720 (13)	0.0522 (12)	0.0194 (10)	0.0007 (10)	-0.0040 (10)
C3A	0.0728 (11)	0.0716 (12)	0.0503 (11)	0.0160 (10)	-0.0065 (9)	-0.0001 (9)
C4A	0.0563 (9)	0.0563 (10)	0.0461 (10)	-0.0010 (8)	0.0003 (8)	0.0006 (8)
C5A	0.0666 (10)	0.0577 (10)	0.0527 (11)	0.0084 (9)	0.0027 (9)	0.0007 (8)
C6A	0.0677 (10)	0.0707 (12)	0.0506 (11)	0.0092 (10)	-0.0040 (9)	0.0071 (9)
C7A	0.0588 (9)	0.0527 (9)	0.0492 (10)	-0.0024 (8)	-0.0012 (8)	0.0008 (8)
C8A	0.0945 (15)	0.0948 (17)	0.0499 (12)	0.0214 (13)	-0.0123 (11)	-0.0105 (11)
C9A	0.0898 (14)	0.0868 (15)	0.0511 (12)	0.0187 (13)	-0.0059 (11)	-0.0109 (11)
N1A	0.1041 (14)	0.0982 (15)	0.0453 (10)	0.0272 (12)	-0.0067 (10)	-0.0056 (9)
N2A	0.0768 (10)	0.0855 (12)	0.0491 (10)	0.0234 (9)	-0.0076 (8)	-0.0075 (8)
N3A	0.0762 (10)	0.0756 (11)	0.0496 (10)	0.0201 (9)	-0.0077 (8)	-0.0088 (8)
C1B	0.0866 (13)	0.0648 (12)	0.0582 (12)	-0.0045 (11)	0.0046 (11)	0.0040 (10)
C2B	0.0807 (13)	0.0690 (13)	0.0682 (14)	0.0124 (11)	0.0058 (11)	0.0054 (11)
C3B	0.0758 (12)	0.0672 (12)	0.0601 (13)	0.0098 (10)	-0.0006 (10)	0.0069 (10)
C4B	0.0647 (10)	0.0540 (10)	0.0606 (12)	-0.0013 (9)	0.0017 (9)	0.0084 (9)
C5B	0.0686 (11)	0.0669 (12)	0.0684 (14)	0.0044 (10)	-0.0027 (10)	0.0054 (10)
C6B	0.0821 (13)	0.0794 (15)	0.0600 (13)	-0.0002 (12)	-0.0092 (11)	0.0080 (11)
C7B	0.0587 (9)	0.0559 (10)	0.0634 (12)	0.0002 (8)	0.0003 (9)	0.0057 (9)
C8B	0.0797 (13)	0.0808 (15)	0.0652 (14)	0.0153 (12)	0.0023 (11)	-0.0055 (11)
C9B	0.0854 (14)	0.0821 (15)	0.0753 (16)	0.0220 (13)	0.0018 (13)	-0.0069 (12)
N1B	0.1131 (15)	0.1059 (17)	0.0651 (13)	0.0179 (14)	-0.0007 (12)	-0.0067 (12)
N2B	0.0787 (10)	0.0727 (11)	0.0592 (10)	0.0204 (9)	-0.0019 (9)	-0.0008(8)
N3B	0.0819 (11)	0.0759 (11)	0.0707 (12)	0.0247 (10)	-0.0048 (10)	0.0015 (9)
Cl1	0.0833 (3)	0.0644 (3)	0.0577 (3)	-0.0134 (2)	0.0066 (2)	-0.0012 (2)
C12	0.0760 (3)	0.0766 (3)	0.0879 (4)	0.0119 (3)	0.0061 (3)	0.0194 (3)

01 0.1249 (14) 0.0828 (11) 0.0637 (10) 0.0098 (11) 0.0000 (10) 0.0030 (8) Geometric parameters (Å, °) C1A-N1A 1.360(3) C1B-C2B 1.396 (3) C1A—C6A 1.391 (3) C1B-C6B 1.397 (3) C1A-C2A 1.398 (3) C2B-C3B 1.367 (3) C2A—C3A C2B-H2B 0.93 1.375 (3) C2A—H2A 1.399 (3) 0.93 C3B-C4B C3A—C4A 1.391 (3) СЗВ—НЗВ 0.93 СЗА—НЗА 0.93 C4B-C5B 1.394 (3) C4A—C5A 1.398(3)C4B—C7B 1.443(3)C4A—C7A 1.451 (3) C5B-C6B 1.372 (3) C5A—C6A 1.375 (3) C5B—H5B 0.93 C5A—H5A 0.93 C6B—H6B 0.93 C6A—H6A 0.93 C7B-N2B 1.310(3)C7A—N3A 1.311(2)C7B-N3B 1.322(3)C7A-N2A C8B-N2B 1.313(2)1.456 (3) C8A-N2A C8B-C9B 1.453(3)1.527(3)C8A-C9A C8B-H821 0.97 1.516(3) C8A-H811 0.97 C8B-H822 0.97 C8A-H812 0.97 C9B-N3B 1.458 (3) C9A-N3A 1.458 (3) C9B-H921 0.97 C9A-H911 0.97 C9B-H922 0.97 C9A-H912 0.97 N1B-H21 0.86 N1A-H11 0.86 N1B-H22 0.86 N1A-H12 0.86 N2B-H2D 0.86 N2A—H2C N3B—H3D 0.86 0.86 01—H1A N3A—H3C 0.86 0.928(17)C1B-N1B 1.354 (3) O1-H1B 0.947(17)N1A-C1A-C6A 121.06 (19) N1B-C1B-C6B 121.2(2)N1A-C1A-C2A 121.1 (2) C2B-C1B-C6B 117.7 (2) C6A-C1A-C2A 117.84 (19) C3B-C2B-C1B 121.3 (2) C3A-C2A-C1A 120.9 (2) C3B-C2B-H2B 119.4 C3A—C2A—H2A 119.6 C1B-C2B-H2B 119.4 C1A—C2A—H2A 119.6 C2B-C3B-C4B 121.1 (2) C2A-C3A-C4A 121.37 (19) С2В-С3В-Н3В 119.4 С2А—С3А—НЗА 119.3 119.4 C4B-C3B-H3B С4А—С3А—Н3А 119.3 C5B-C4B-C3B 117.5 (2) C3A-C4A-C5A C5B-C4B-C7B 122.24 (19) 117.64 (18) C3A-C4A-C7A 121.11 (17) C3B-C4B-C7B 120.26 (19) C5A-C4A-C7A 121.23 (17) C6B-C5B-C4B 121.5(2)

C6B-C5B-H5B

C4B-C5B-H5B

C5B-C6B-C1B

C5B-C6B-H6B

C1B-C6B-H6B

C6A-C5A-C4A

С6А-С5А-Н5А

С4А-С5А-Н5А

C5A-C6A-C1A

С5А-С6А-Н6А

121.10 (19)

121.15 (19)

119.4

119.4

119.4

119.3

119.3

119.6

119.6

120.8(2)

supporting information

С1А—С6А—Н6А	119.4	N2B—C7B—N3B	109.7 (2)
N3A—C7A—N2A	110.29 (18)	N2B—C7B—C4B	124.63 (18)
N3A—C7A—C4A	125.06 (17)	N3B—C7B—C4B	125.64 (19)
N2A—C7A—C4A	124.64 (18)	N2B—C8B—C9B	102.17 (19)
N2A—C8A—C9A	102.81 (17)	N2B—C8B—H821	111.3
N2A—C8A—H811	111.2	C9B—C8B—H821	111.3
С9А—С8А—Н811	111.2	N2B—C8B—H822	111.3
N2A—C8A—H812	111.2	C9B—C8B—H822	111.3
С9А—С8А—Н812	111.2	H821—C8B—H822	109.2
H811—C8A—H812	109.1	N3B—C9B—C8B	102.61 (18)
N3A—C9A—C8A	102.38 (17)	N3B—C9B—H921	111.2
N3A—C9A—H911	111.3	C8B—C9B—H921	111.2
C8A—C9A—H911	111.3	N3B—C9B—H922	111.2
N3A—C9A—H912	111.3	C8B—C9B—H922	111.2
C8A—C9A—H912	111.3	H921—C9B—H922	109.2
H911—C9A—H912	109.2	C1B— $N1B$ — $H21$	120
CIA—NIA—HII	120	C1B $N1B$ $H22$	120
C1A— $N1A$ — $H12$	120	H_{21} N_{1B} H_{22}	120
H11—N1A—H12	120	C7B— $N2B$ — $C8B$	113 13 (18)
C7A - N2A - C8A	112 10 (18)	C7B $N2B$ $H2D$	123.4
C7A - N2A - H2C	124	C8B—N2B—H2D	123.4
C8A = N2A = H2C	124	C7B $N3B$ $C9B$	112 36 (19)
C7A - N3A - C9A	112 22 (17)	C7B—N3B—H3D	123.8
C7A—N3A—H3C	123.9	C9B—N3B—H3D	123.8
C9A - N3A - H3C	123.9	H1A-O1-H1B	105(2)
NIB-CIB-C2B	121.1 (2)		105 (2)
	121.1 (2)		
N1A—C1A—C2A—C3A	179.7 (2)	N1B—C1B—C2B—C3B	-177.6 (2)
C6A—C1A—C2A—C3A	-0.8 (3)	C6B—C1B—C2B—C3B	1.7 (4)
C1A—C2A—C3A—C4A	0.7 (4)	C1B—C2B—C3B—C4B	-1.3 (4)
C2A—C3A—C4A—C5A	0.1 (3)	C2B—C3B—C4B—C5B	0.0 (3)
C2A—C3A—C4A—C7A	178.9 (2)	C2B—C3B—C4B—C7B	-179.8(2)
C3A—C4A—C5A—C6A	-0.9(3)	C3B—C4B—C5B—C6B	0.8 (3)
C7A—C4A—C5A—C6A	-179.66 (19)	C7B—C4B—C5B—C6B	-179.5 (2)
C4A—C5A—C6A—C1A	0.9 (3)	C4B—C5B—C6B—C1B	-0.3 (4)
N1A—C1A—C6A—C5A	179.4 (2)	N1B—C1B—C6B—C5B	178.4 (2)
C2A—C1A—C6A—C5A	0.0 (3)	C2B-C1B-C6B-C5B	-0.9(3)
C3A—C4A—C7A—N3A	-169.1 (2)	C5B—C4B—C7B—N2B	165.7 (2)
C5A—C4A—C7A—N3A	9.6 (3)	C3B—C4B—C7B—N2B	-14.6(3)
C3A—C4A—C7A—N2A	10.2 (3)	C5B—C4B—C7B—N3B	-14.6(3)
C5A—C4A—C7A—N2A	-171.1 (2)	C3B—C4B—C7B—N3B	165.2 (2)
N2A—C8A—C9A—N3A	4.1 (3)	N2B-C8B-C9B-N3B	0.3 (3)
N3A—C7A—N2A—C8A	2.6 (3)	N3B—C7B—N2B—C8B	0.8 (3)
C4A—C7A—N2A—C8A	-176.8 (2)	C4B—C7B—N2B—C8B	-179.5 (2)
C9A—C8A—N2A—C7A	-4.3 (3)	C9B—C8B—N2B—C7B	-0.7 (3)
N2A—C7A—N3A—C9A	0.5 (3)	N2B—C7B—N3B—C9B	-0.6 (3)
C4A—C7A—N3A—C9A	179.9 (2)	C4B—C7B—N3B—C9B	179.7 (2)
C8A—C9A—N3A—C7A	-3.1 (3)	C8B—C9B—N3B—C7B	0.1 (3)
	× /		× /

<i>D</i> —Н	H···A	$D \cdots A$	D—H…A
0.86	2.45	3.296 (2)	170
0.86	2.45	3.304 (2)	170
0.86	2.59	3.448 (2)	174
0.86	2.02	2.882 (3)	177
0.86	2.29	3.1113 (18)	160
0.86	2.35	3.1615 (19)	157
0.86	2.36	3.1900 (17)	162
0.93 (2)	2.21 (2)	3.1329 (19)	178 (3)
0.95 (2)	2.21 (2)	3.147 (2)	170 (3)
	<i>D</i> —H 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86	D—H H…A 0.86 2.45 0.86 2.45 0.86 2.59 0.86 2.02 0.86 2.29 0.86 2.35 0.86 2.35 0.86 2.36 0.93 (2) 2.21 (2) 0.95 (2) 2.21 (2)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) x-1/2, -y+1/2, -z+1; (ii) x+1/2, -y+1/2, -z+1; (iii) -x+1, y-1/2, -z+1/2; (iv) -x+1, -y+1, -z+1; (v) x, y+1, z.