

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-Bromo-5-*tert*-butyl-2-hydroxybenzaldehyde

V. Balasubramani,^a T. Vinuchakkaravarthy,^b Sreeraj Gopi,^a S. Narasimhan^a and D. Velmurugan^b*

^aAsthagiri Herbal Research Foundation, 162-A, Industrial Estate, Perungudi, Chennai 600 092, India, and ^bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Maraimalai Campus (Guindy Campus), Chennai 600 025, India

Correspondence e-mail: shirai2011@gmail.com

Received 24 October 2011; accepted 16 November 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.056; wR factor = 0.162; data-to-parameter ratio = 21.4.

The molecular conformation of the title compound, $C_{11}H_{13}BrO_2$, is stabilized by an intramolecular $O-H\cdots O$ hydrogen bond. All non-H atoms except the methyl groups lie approximately in a common plane (r.m.s. deviation = 0.011 Å).

Related literature

For the biological activity of substituted salicylaldehyde and its derivatives, see: Mounika *et al.* (2010); Dueke-Eze *et al.* (2010); Jesmin *et al.* (2010). For a related structure, see: Wang *et al.* (2010).

Experimental

Crystal data $C_{11}H_{13}BrO_2$ $M_r = 257.11$

Orthorhombic, *Pbca* a = 9.9727 (19) Å b = 12.174 (2) Å c = 18.558 (3) Å V = 2253.0 (7) Å³ Z = 8

Data collection

Bruker SMART APEXII areadetector diffractometer 11555 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.162$ S = 1.022808 reflections $\mu = 3.62 \text{ mm}^{-1}$ T = 293 K $0.2 \times 0.2 \times 0.2 \text{ mm}$

Mo $K\alpha$ radiation

organic compounds

2808 independent reflections 1442 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.079$

131 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.59 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.49 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2-H2A\cdots O1$	0.82	1.93	2.650 (6)	145

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5688).

References

- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dueke-Eze, C. U., Fasina, T. M. & Idika, N. (2010). Afr. J. Pure Appl. Chem. 5, 13–18.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Jesmin, M., Ali, M. M. & Khanam, J. A. (2010). Thai J. Pharm. Sci. 34, 20-31.
- Mounika, K., Anupama, B., Pragathi, J. & Gyanakumari, C. (2010). J. Sci. Res. 2, 513-524.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wang, Y., Qiu, Z. & Liang, H. (2010). Acta Cryst. E66, o2218.

supporting information

Acta Cryst. (2011). E67, o3375 [https://doi.org/10.1107/S1600536811048847]

3-Bromo-5-tert-butyl-2-hydroxybenzaldehyde

V. Balasubramani, T. Vinuchakkaravarthy, Sreeraj Gopi, S. Narasimhan and D. Velmurugan

S1. Comment

The crystal structure determination of the title compound was undertaken as a part of the synthesis, structure and properties of new substituted salicylaldehyde derivatives.

In the title compound, the substituted aldehyde group, hydroxy group and and bromine are essentially coplanar with the benzene ring with a plane mean deviation of 0.025 (6)°, -0.029 (4)°, -0.015 (1)° and -0.015 (1)°, respectively. An intramolecular O2—H2A···O(1) hydrogen bonding observed between the oxygen atoms of the hydroxy group and the aldehyde group stabilizes the molecular structure.

S2. Experimental

The synthesis of the title compound follows the modified Riemmer-Tiemann reaction, in which the substituted salicylaldehydes were synthesized from substituted phenols. To 80 mL of water 60g of sodium hydroxide was added and dissolved completely. Then 15g of 4-*tert*-butyl phenol was added and heated to 60-65°C. 30 mL chloroform was added step by step to the mixture. The resulting reaction mixture was heated for one hour, until the formation of precipitate. The liquid layer containing 5-*tert*-butyl-2-hydroxy benzaldehyde as the product was separated through suction pump. It was then brominated using liquid bromine and acetic acid. The final product 3-bromo-5-*tert*-butyl-2-hydroxy benzaldehyde with a maximum yield of 83% was checked for purity using TLC.

S3. Refinement

Hydrogen atoms were placed in calculated positions with O—H = 0.82Å, $C_{aromatic}$ —H = 0.93Å, C_{methyl} —H = 0.96Å and refined using a riding model with fixed isotropic displacement parameters $U_{iso}(H) = 1.5 U_{eq}(C_{methyl}, O)$ or $U_{iso}(H) = 1.2 U_{eq}(C_{aromatic})$ or.

Figure 1

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.

3-Bromo-5-tert-butyl-2-hydroxybenzaldehyde

Crystal data

$C_{11}H_{13}BrO_2$	F(000) = 1040
$M_r = 257.11$	$D_{\rm x} = 1.516 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, Pbca	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 2808 reflections
a = 9.9727 (19) Å	$\theta = 2.2 - 28.3^{\circ}$
b = 12.174 (2) Å	$\mu = 3.62 \text{ mm}^{-1}$
c = 18.558 (3) Å	T = 293 K
V = 2253.0 (7) Å ³	Block, red
Z = 8	$0.2 \times 0.2 \times 0.2 \text{ mm}$
Data collection	
Bruker SMART APEXII area-detector	1442 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.079$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 28.3^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$
Graphite monochromator	$h = -13 \rightarrow 13$
ω and φ scans	$k = -16 \rightarrow 16$
11555 measured reflections	$l = -24 \rightarrow 24$
2808 independent reflections	
-	

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.056$	H-atom parameters constrained
$wR(F^2) = 0.162$	$w = 1/[\sigma^2(F_o^2) + (0.0685P)^2 + 1.3566P]$
S = 1.02	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2808 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
131 parameters	$\Delta \rho_{\rm max} = 0.59 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.49 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.0228 (17)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	v	Ζ	$U_{\rm iso}^*/U_{\rm eg}$
C1	0.2770 (5)	0.1032 (4)	0.2246 (2)	0.0474 (11)
C2	0.3680 (5)	0.0161 (4)	0.2178 (2)	0.0507 (12)
C3	0.4296 (4)	-0.0219 (3)	0.2794 (2)	0.0454 (10)
C4	0.4025 (4)	0.0242 (3)	0.3456 (2)	0.0462 (10)
H4	0.4468	-0.0027	0.3860	0.055*
C5	0.3112 (4)	0.1097 (3)	0.3540 (2)	0.0422 (10)
C6	0.2493 (5)	0.1482 (3)	0.2924 (2)	0.0473 (11)
H2	0.1878	0.2054	0.2960	0.057*
C7	0.2094 (6)	0.1487 (4)	0.1612 (3)	0.0656 (14)
H7	0.1509	0.2073	0.1680	0.079*
C8	0.2802 (5)	0.1613 (4)	0.4275 (2)	0.0526 (12)
С9	0.1367 (8)	0.1334 (7)	0.4478 (4)	0.136 (3)
H9A	0.1272	0.1358	0.4992	0.204*
H9B	0.1153	0.0610	0.4308	0.204*
H9C	0.0770	0.1857	0.4262	0.204*
C10	0.3682 (8)	0.1149 (6)	0.4877 (3)	0.104 (2)
H10A	0.4604	0.1319	0.4780	0.156*
H10B	0.3570	0.0367	0.4901	0.156*
H10C	0.3423	0.1471	0.5328	0.156*
C11	0.3014 (10)	0.2826 (5)	0.4242 (3)	0.131 (4)
H11A	0.3899	0.2977	0.4063	0.196*
H11B	0.2919	0.3133	0.4716	0.196*
H11C	0.2362	0.3149	0.3926	0.196*

supporting information

01	0.2253 (5)	0.1147 (3)	0.1006 (2)	0.0919 (14)
O2	0.3953 (4)	-0.0316 (3)	0.15377 (18)	0.0749 (10)
H2A	0.3523	-0.0009	0.1219	0.112*
Br1	0.55350 (5)	-0.13980 (4)	0.27226 (4)	0.0729 (3)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.050 (3)	0.052 (2)	0.040 (2)	-0.012 (2)	0.001 (2)	-0.0048 (19)
C2	0.050 (3)	0.056 (2)	0.047 (3)	-0.017 (2)	0.013 (2)	-0.012 (2)
C3	0.041 (2)	0.0376 (19)	0.057 (3)	-0.0019 (17)	0.005 (2)	-0.0125 (18)
C4	0.046 (2)	0.045 (2)	0.047 (3)	-0.004 (2)	-0.005 (2)	-0.0026 (19)
C5	0.047 (3)	0.042 (2)	0.038 (2)	-0.0035 (18)	0.001 (2)	-0.0045 (16)
C6	0.052 (3)	0.043 (2)	0.047 (3)	0.001 (2)	0.000 (2)	-0.0012 (17)
C7	0.073 (4)	0.076 (3)	0.048 (3)	-0.003 (3)	-0.010 (3)	0.002 (2)
C8	0.065 (3)	0.057 (3)	0.036 (2)	0.010 (2)	0.007 (3)	-0.0029 (19)
C9	0.095 (5)	0.231 (10)	0.081 (5)	-0.019 (6)	0.037 (5)	-0.059 (5)
C10	0.142 (7)	0.119 (5)	0.052 (3)	0.040 (5)	-0.007 (4)	-0.004 (3)
C11	0.276 (12)	0.059 (3)	0.057 (3)	0.006 (5)	-0.001 (5)	-0.017 (3)
01	0.111 (4)	0.119 (3)	0.046 (2)	-0.009 (3)	-0.015 (2)	-0.001 (2)
O2	0.080(2)	0.092 (2)	0.053 (2)	-0.007 (2)	0.019 (2)	-0.0289 (18)
Br1	0.0566 (4)	0.0588 (4)	0.1033 (6)	0.0078 (2)	0.0097 (3)	-0.0204 (3)

Geometric parameters (Å, °)

C1—C6	1.400 (6)	C8—C11	1.494 (7)	
C1—C2	1.401 (7)	C8—C9	1.518 (9)	
C1—C7	1.465 (7)	C8—C10	1.528 (8)	
C2—O2	1.350 (5)	С9—Н9А	0.9600	
C2—C3	1.377 (6)	С9—Н9В	0.9600	
C3—C4	1.377 (6)	С9—Н9С	0.9600	
C3—Br1	1.899 (4)	C10—H10A	0.9600	
C4—C5	1.392 (6)	C10—H10B	0.9600	
C4—H4	0.9300	C10—H10C	0.9600	
С5—С6	1.381 (6)	C11—H11A	0.9600	
C5—C8	1.533 (6)	C11—H11B	0.9600	
С6—Н2	0.9300	C11—H11C	0.9600	
C7—O1	1.209 (6)	O2—H2A	0.8200	
С7—Н7	0.9300			
C6—C1—C2	120.3 (4)	C9—C8—C10	106.1 (5)	
C6—C1—C7	118.9 (4)	C11—C8—C5	109.8 (4)	
C2C1C7	120.8 (4)	C9—C8—C5	108.6 (5)	
O2—C2—C3	119.8 (4)	C10—C8—C5	112.6 (4)	
O2—C2—C1	122.3 (4)	С8—С9—Н9А	109.5	
C3—C2—C1	117.9 (4)	C8—C9—H9B	109.5	
C4—C3—C2	121.1 (4)	H9A—C9—H9B	109.5	
C4—C3—Br1	119.8 (4)	C8—C9—H9C	109.5	

C2—C3—Br1	119.1 (3)	Н9А—С9—Н9С	109.5
C3—C4—C5	122.2 (4)	H9B—C9—H9C	109.5
C3—C4—H4	118.9	C8-C10-H10A	109.5
C5—C4—H4	118.9	C8—C10—H10B	109.5
C6—C5—C4	116.9 (4)	H10A—C10—H10B	109.5
C6—C5—C8	120.5 (4)	C8—C10—H10C	109.5
C4—C5—C8	122.5 (4)	H10A—C10—H10C	109.5
C5—C6—C1	121.6 (4)	H10B-C10-H10C	109.5
С5—С6—Н2	119.2	C8—C11—H11A	109.5
С1—С6—Н2	119.2	C8—C11—H11B	109.5
O1—C7—C1	123.9 (5)	H11A—C11—H11B	109.5
O1—C7—H7	118.1	C8—C11—H11C	109.5
С1—С7—Н7	118.1	H11A—C11—H11C	109.5
C11—C8—C9	111.4 (6)	H11B—C11—H11C	109.5
C11—C8—C10	108.3 (5)	C2—O2—H2A	109.5
C6—C1—C2—O2	178.4 (4)	C4C5C6C1	0.1 (6)
C7—C1—C2—O2	-1.7 (7)	C8—C5—C6—C1	179.4 (4)
C6—C1—C2—C3	-0.8 (6)	C2-C1-C6-C5	0.8 (7)
C7—C1—C2—C3	179.0 (4)	C7—C1—C6—C5	-179.1 (4)
O2—C2—C3—C4	-179.2 (4)	C6-C1-C7-O1	-179.1 (5)
C1—C2—C3—C4	0.0 (6)	C2C1C7O1	1.0 (8)
O2—C2—C3—Br1	0.7 (6)	C6C5C8C11	-53.8 (7)
C1-C2-C3-Br1	180.0 (3)	C4C5C8C11	125.4 (6)
C2—C3—C4—C5	0.9 (7)	C6—C5—C8—C9	68.3 (6)
Br1—C3—C4—C5	-179.1 (3)	C4—C5—C8—C9	-112.5 (6)
C3—C4—C5—C6	-0.9 (6)	C6—C5—C8—C10	-174.5 (5)
C3—C4—C5—C8	179.8 (4)	C4C5C8C10	4.7 (7)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
02—H2A…O1	0.82	1.93	2.650 (6)	145