organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N,N'-Dimethyl-N,N'-bis(pyridin-2-yl)methanediamine

Moon-Sun Lee,^a Minyoung Yoon,^b O-bong Yang,^c Dong-Heon Lee^a* and Gyungse Park^d*

^aDepartment of Chemistry, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea, ^bNational Creative Research Initiative Center for Smart Supramolecules (CSS), Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea, ^cSchool of Semiconductor and Chemical Engineering & Solar Energy Research Center, Chonbuk National University, Jeoniu, Chonbuk 561-756, Republic of Korea, and ^dThe Department of Chemistry, College of Science and Technology, Kunsan National University, 68 Miryong-Dong, Kusan, Jeollabuk-Do 573-701, Republic of Korea

Correspondence e-mail: parkg@kunsan.ac.kr, parkg@kunsan.ac.kr

Received 22 October 2011; accepted 3 November 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.125; data-to-parameter ratio = 11.5.

The title compound, $C_{13}H_{16}N_4$, consists of two pyridine rings which are linked by an N,N'-dimethylmethaneamine chain. The pyridine rings adopt a twist conformation and the dihedral angle between them is $60.85 (5)^\circ$. The crystal packing is stabilized by weak $C-H \cdots \pi$ interactions.

Related literature

For the synthesis of the title compound, see: Kahn et al. (1945). For applications of heteroaromatic amines, see: Mehrkhodavandi & Schrock (2001); Hall et al. (1998); Lee (2003).

Experimental

Crystal data

 $C_{13}H_{16}N_4$ $M_{\rm r} = 228.30$ Monoclinic, $P2_1/n$ a = 11.6652 (7) Åb = 8.3921 (5) Å c = 12.8966 (7) Å $\beta = 106.634 \ (2)^{\circ}$

Data collection

Bruker APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.963, \ T_{\max} = 0.986$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.125$ S = 0.962516 reflections

2516 independent reflections 2105 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.050$

27844 measured reflections

218 parameters All H-atom parameters refined $\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\min} = -0.21 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the N1/C1-C5 and N4/C9-C15 rings. respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1 - H1 \cdots Cg2^{i}$ $C6 - H7 \cdots Cg2^{ii}$ $C10 - H13 \cdots Cg1^{iii}$	0.99 (2) 1.00 (2) 0.95 (2)	2.64 (2) 2.75 (2) 2.90 (1)	3.484 (1) 3.545 (2) 3.637 (1)	143 (1) 137 (1) 135 (1)

Symmetry codes: (i) -x + 1, -y, -z + 2; (ii) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (iii) x, y - 1, z.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97.

This work was supported by the "Human Resource Development (project name: Advanced track for Si-based solar cell materials and devices, project No. 201040100660)" of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean Government Ministry of Knowledge Economy.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2378).

References

- Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hall, J., Haner, R., Aime, S., Botta, M., Faulkner, S., Parker, D. & de Sousa, S. S. (1998). New J. Chem. pp. 627-631.
- Kahn, H. J., Petrow, V. A., Wien, R. & Harrison, J. (1945). J. Chem. Soc. pp. 858-861
- Lee, D.-H. (2003). J. Kor. Chem. Soc. 47, 427-431.
- Mehrkhodavandi, P. & Schrock, R. R. (2001). J. Am. Chem. Soc. 123, 10746-10747.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2011). E67, o3226 [https://doi.org/10.1107/S1600536811046320]

N,*N*'-Dimethyl-*N*,*N*'-bis(pyridin-2-yl)methanediamine

Moon-Sun Lee, Minyoung Yoon, O-bong Yang, Dong-Heon Lee and Gyungse Park

S1. Comment

Heteroaromatic amines based metal complexes have been extensively studied due to their numerous potential applications as catalysts, drugs, biomimetic chemistry, and so on. (Mehrkhodavandi, *et al.*, (2001), Hall, *et al.*,(1998), Lee, (2003). We are interested in the use of chelates containing pyridylamine. We report here the crystal structure of the title compound, Fig. 1, which consists of two 2-pyridyl rings which are linked together by a *N*,*N'*-dimethylmethaneamine chain .The pyridine rings adopt a twist conformation and the dihedral angle between them is 60.85 (5)°. The crystal packing is stabilized by weak C—H^{...} π interactions, Fig. 2, Table 1.

S2. Experimental

N,N'-dimethyl-*N,N'*-di(pyridin-2-yl)methanediamine was prepared by a reported method, Kahn, *et al.*, (1945). A solution of 2-(methylamino)pyridine (5.00 g, 4.62×10^{-2} mol) in water (50 ml) was added dropwise to 37% formaldehyde solution (1.83 ml, 2.31×10^{-2} mol) at 0°C. The reation mixture was stirred at room temperature for overnight and the white precipitate formed was filtered,washed with water and dried. It was dissolved in acetone, dried over MgSO₄ and concentrated. It was recrystallized in acetonitrile. Yield: 92% (4.88 g)

S3. Refinement

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.95 Å for the aryl, 0.99 Å for the methylene, and 0.00 Å for the methyl H atoms, respectively, and with $U_{iso}(H) = 1.2Ueq(C)$ for the aryl and methylene H atoms, and 1.5Ueq(C) for the methyl H atoms.

A view of the title compound showing the labelling of the atoms. Displacement ellipsoids are shown at the 50% probability level.

N,N'-Dimethyl-N,N'-bis(pyridin-2-yl)methanediamine

Crystal data

 $C_{13}H_{16}N_4$ $M_r = 228.30$ Monoclinic, $P2_1/n$ Hall symbol: -P2yn a = 11.6652 (7) Å b = 8.3921 (5) Å c = 12.8966 (7) Å $\beta = 106.634$ (2)° V = 1209.69 (12) Å³ Z = 4

Data collection

Bruker APEXII	2516 independent reflections
diffractometer	2105 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.050$
Graphite monochromator	$\theta_{\rm max} = 26.5^{\circ}, \theta_{\rm min} = 2.1^{\circ}$
$\theta/2\phi$ scans	$h = -14 \rightarrow 14$
Absorption correction: multi-scan	$k = -10 \rightarrow 10$
(SADABS; Sheldrick, 1996)	$l = -16 \rightarrow 14$
$T_{\min} = 0.963, \ T_{\max} = 0.986$	4 standard reflections every 30 min
27844 measured reflections	intensity decay: 0.0%

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from
$wR(F^2) = 0.125$	neighbouring sites
S = 0.96	All H-atom parameters refined
2516 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$
218 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.23 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

F(000) = 488

 $\theta = 2.1 - 26.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$

Rod. colourless

 $0.12 \times 0.08 \times 0.08 \text{ mm}$

T = 100 K

 $D_{\rm x} = 1.254 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2516 reflections

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.43474 (8)	0.22148 (11)	0.82931 (7)	0.0194 (3)	
N2	0.61745 (8)	0.11262 (11)	0.82658 (8)	0.0203 (3)	
N3	0.59838 (8)	-0.15394 (11)	0.89105 (8)	0.0189 (3)	

N4	0.79220 (8)	-0.22454 (12)	0.98754 (7)	0.0182 (3)
C1	0.34526 (10)	0.32394 (15)	0.78856 (9)	0.0211 (3)
C2	0.33876 (11)	0.42500 (14)	0.70242 (9)	0.0214 (3)
C3	0.43186 (10)	0.41792 (14)	0.65514 (9)	0.0200 (3)
C4	0.52555 (10)	0.31431 (14)	0.69472 (9)	0.0173 (3)
C5	0.52473 (10)	0.21664 (13)	0.78366 (9)	0.0160 (3)
C6	0.71691 (12)	0.09942 (17)	0.78056 (12)	0.0272 (3)
C7	0.62117 (10)	0.01339 (13)	0.91939 (9)	0.0173 (3)
C8	0.47475 (11)	-0.19594 (16)	0.83643 (11)	0.0240 (3)
C9	0.67862 (10)	-0.27049 (13)	0.94043 (8)	0.0163 (3)
C10	0.64315 (11)	-0.43154 (14)	0.93928 (9)	0.0205 (3)
C11	0.72811 (12)	-0.54307 (15)	0.98755 (9)	0.0248 (3)
C12	0.84533 (12)	-0.49686 (15)	1.03581 (9)	0.0255 (3)
C13	0.87199 (11)	-0.33721 (14)	1.03368 (9)	0.0221 (3)
H1	0.2816 (13)	0.3259 (16)	0.8256 (12)	0.031 (4)*
H2	0.2701 (12)	0.4955 (17)	0.6790 (10)	0.029 (4)*
Н3	0.4313 (12)	0.4841 (17)	0.5946 (11)	0.028 (4)*
H4	0.5883 (13)	0.3065 (16)	0.6629 (11)	0.025 (3)*
Н5	0.7601 (15)	0.201 (2)	0.7856 (14)	0.048 (5)*
H6	0.7696 (15)	0.022 (2)	0.8232 (13)	0.047 (4)*
H7	0.6898 (15)	0.059 (2)	0.7046 (14)	0.045 (4)*
H8	0.5576 (11)	0.0536 (14)	0.9520 (10)	0.018 (3)*
H9	0.6997 (13)	0.0194 (15)	0.9712 (11)	0.023 (3)*
H10	0.4350 (13)	-0.1019 (18)	0.8023 (12)	0.032 (4)*
H11	0.4723 (12)	-0.2806 (19)	0.7818 (13)	0.035 (4)*
H12	0.4316 (13)	-0.2327 (17)	0.8900 (12)	0.033 (4)*
H13	0.5616 (13)	-0.4628 (16)	0.9100 (11)	0.028 (4)*
H14	0.7042 (13)	-0.6532 (18)	0.9862 (12)	0.032 (4)*
H15	0.9091 (13)	-0.5706 (18)	1.0696 (11)	0.033 (4)*
H16	0.9557 (12)	-0.3009 (15)	1.0693 (11)	0.021 (3)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
N1	0.0190 (5)	0.0203 (5)	0.0189 (5)	0.0021 (4)	0.0054 (4)	0.0009 (4)	
N2	0.0208 (5)	0.0187 (5)	0.0239 (5)	0.0052 (4)	0.0102 (4)	0.0059 (4)	
N3	0.0177 (5)	0.0145 (5)	0.0211 (5)	-0.0003 (4)	0.0003 (4)	0.0002 (4)	
N4	0.0185 (5)	0.0185 (5)	0.0166 (5)	0.0017 (4)	0.0035 (4)	0.0008 (4)	
C1	0.0178 (6)	0.0235 (6)	0.0218 (6)	0.0025 (5)	0.0051 (5)	-0.0018 (5)	
C2	0.0200 (6)	0.0186 (6)	0.0218 (6)	0.0038 (5)	-0.0002(5)	-0.0010 (5)	
C3	0.0260 (6)	0.0146 (6)	0.0170 (6)	-0.0035 (5)	0.0021 (5)	0.0005 (4)	
C4	0.0186 (6)	0.0159 (6)	0.0177 (6)	-0.0029 (4)	0.0055 (5)	-0.0019 (4)	
C5	0.0178 (6)	0.0133 (6)	0.0162 (5)	-0.0015 (4)	0.0037 (4)	-0.0029 (4)	
C6	0.0236 (7)	0.0254 (7)	0.0363 (8)	0.0077 (6)	0.0145 (6)	0.0075 (6)	
C7	0.0197 (6)	0.0149 (6)	0.0159 (6)	0.0004 (5)	0.0030 (5)	0.0000 (4)	
C8	0.0196 (6)	0.0204 (7)	0.0274 (7)	-0.0006 (5)	-0.0007(5)	-0.0002 (5)	
C9	0.0208 (6)	0.0172 (6)	0.0120 (5)	0.0008 (5)	0.0063 (4)	0.0005 (4)	
C10	0.0254 (7)	0.0185 (6)	0.0178 (6)	-0.0024 (5)	0.0067 (5)	-0.0015 (4)	

C11	0.0400 (8)	0.0151 (6)	0.0208 (6)	0.0022 (5)	0.0111 (6)	0.0001 (5)
C12	0.0342 (7)	0.0219 (6)	0.0202 (6)	0.0119 (5)	0.0072 (5)	0.0039 (5)
C13	0.0224 (6)	0.0258 (7)	0.0173 (6)	0.0063 (5)	0.0044 (5)	0.0011 (5)

Geometric parameters (Å, °)

N1—C1	1.3382 (15)	C4—H4	0.938 (15)
N1—C5	1.3431 (15)	C6—H5	0.983 (17)
N2—C5	1.3769 (15)	С6—Н6	0.951 (18)
N2—C7	1.4485 (14)	С6—Н7	0.998 (17)
N2—C6	1.4508 (15)	С7—Н8	1.010 (13)
N3—C9	1.3773 (15)	С7—Н9	0.968 (14)
N3—C8	1.4556 (15)	C8—H10	0.957 (16)
N3—C7	1.4563 (15)	C8—H11	0.996 (16)
N4—C13	1.3406 (15)	C8—H12	1.012 (16)
N4—C9	1.3463 (15)	C9—C10	1.4123 (16)
C1—C2	1.3823 (17)	C10—C11	1.3756 (17)
C1—H1	0.992 (15)	C10—H13	0.954 (14)
C2—C3	1.3907 (17)	C11—C12	1.3858 (19)
C2—H2	0.972 (14)	C11—H14	0.964 (15)
C3—C4	1.3753 (17)	C12—C13	1.3775 (18)
С3—Н3	0.957 (15)	C12—H15	0.969 (15)
C4—C5	1.4121 (16)	C13—H16	1.001 (14)
C1—N1—C5	117.83 (10)	H6—C6—H7	108.0 (13)
C5—N2—C7	122.07 (9)	N2—C7—N3	112.76 (9)
C5—N2—C6	120.81 (10)	N2—C7—H8	107.5 (7)
C7—N2—C6	117.12 (9)	N3—C7—H8	108.9 (7)
C9—N3—C8	119.99 (10)	N2—C7—H9	109.8 (8)
C9—N3—C7	121.18 (9)	N3—C7—H9	107.0 (8)
C8—N3—C7	116.06 (10)	Н8—С7—Н9	111.0 (10)
C13—N4—C9	117.83 (10)	N3—C8—H10	107.8 (9)
N1-C1-C2	124.54 (11)	N3—C8—H11	109.9 (8)
N1-C1-H1	115.4 (8)	H10—C8—H11	110.5 (12)
C2-C1-H1	120.0 (8)	N3—C8—H12	111.2 (8)
C1—C2—C3	117.13 (11)	H10-C8-H12	107.2 (12)
C1-C2-H2	118.3 (8)	H11—C8—H12	110.2 (13)
С3—С2—Н2	124.6 (8)	N4—C9—N3	117.13 (10)
C4—C3—C2	120.11 (11)	N4—C9—C10	121.76 (10)
С4—С3—Н3	119.2 (9)	N3—C9—C10	121.10 (10)
С2—С3—Н3	120.7 (9)	C11—C10—C9	118.39 (11)
C3—C4—C5	118.62 (11)	C11—C10—H13	119.9 (9)
C3—C4—H4	121.2 (9)	C9—C10—H13	121.6 (8)
C5—C4—H4	120.1 (9)	C10-C11-C12	120.22 (12)
N1-C5-N2	117.75 (10)	C10-C11-H14	118.5 (9)
N1—C5—C4	121.76 (10)	C12—C11—H14	121.3 (9)
N2—C5—C4	120.49 (10)	C13—C12—C11	117.55 (11)
N2—C6—H5	111.2 (10)	C13—C12—H15	118.8 (9)

N2—C6—H6	106.0 (10)	С11—С12—Н15	123.7 (9)
Н5—С6—Н6	108.4 (14)	N4—C13—C12	124.25 (12)
N2—C6—H7	111.2 (10)	N4—C13—H16	116.8 (7)
Н5—С6—Н7	111.7 (14)	С12—С13—Н16	118.9 (7)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1/C1–C5 and N4/C9–C15 rings, respectively.

D—H···A	<i>D</i> —Н	H···A	D···A	D—H···A	
$C1$ — $H1$ ··· $Cg2^i$	0.99 (2)	2.64 (2)	3.484 (1)	143 (1)	
C6—H7…Cg2 ⁱⁱ	1.00 (2)	2.75 (2)	3.545 (2)	137 (1)	
C10—H13…Cg1 ⁱⁱⁱ	0.95 (2)	2.90(1)	3.637 (1)	135 (1)	

Symmetry codes: (i) -*x*+1, -*y*, -*z*+2; (ii) -*x*+3/2, *y*+1/2, -*z*+3/2; (iii) *x*, *y*-1, *z*.