Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

10-Ethyl-10H-phenothiazine-3-carbaldehyde

Dao-Hui Yu, Jian-Qing Wang, Lin Kong* and Zhao-di Liu
Department of Chemistry, Anhui University, Hefei 230039, People's Republic of China, and Key Laboratory of Functional Inorganic Materials, Chemistry, Hefei 230039, People's Republic of China
Correspondence e-mail: kong_lin2009@126.com

Received 26 October 2011; accepted 10 November 2011
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.041 ; w R$ factor $=0.109$; data-to-parameter ratio $=13.3$.

In the title molecule, $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NOS}$, the two benzene rings of the tricyclic fused-ring system are inclined at 21.1 (1) ${ }^{\circ}$. In the crystal, weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into chains along [001]. The crystal packing also exhibits $\pi-\pi$ interactions with a distance of 3.801 (5) \AA between the centroids of the benzene rings of neighbouring molecules.

Related literature

For related structures, see: Chu \& Van der Helm (1975); Hdii et al. (1998); Li et al. (2009a,b).

Experimental

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NOS} \\
& M_{r}=255.32 \\
& \text { Orthorhombic, } P b c a \\
& a=8.0867(1) \AA \\
& b=15.3271(3) \AA \\
& c=20.3369(4) \AA
\end{aligned}
$$

$$
V=2520.67(8) \AA^{3}
$$

$Z=8$
Mo $K \alpha$ radiation
$\mu=0.24 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.20 \times 0.10 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART APEX diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.953, T_{\text {max }}=0.976$
17210 measured reflections 2225 independent reflections 1909 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.028$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.109$
$S=1.08$
2225 reflections
167 parameters

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 14-\mathrm{H} 14 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.97	2.64	$3.563(3)$	158
Symmetry code: (i) $-x+\frac{1}{2},-y+1, z+\frac{1}{2}$.				

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We gratefully acknowledge the NSFC (grant Nos. 21071001, 50873001 and 20875001), the Science and Technological Fund of Anhui Province for Outstanding Youth (grant No. 10040606Y22) and the 211 Project of Anhui University for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5184).

References

Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chu, S. S. C. \& Van der Helm, D. (1975). Acta Cryst. B31, 1179-1183.
Hdii, F., Reboul, J.-P., Barbe, J., Siri, D. \& Pèpe, G. (1998). Acta Cryst. C54, 1151-1152.
Li, D. M., Hu, R. T., Zhou, W., Sun, P. P., Kan, Y. H., Tian, Y. P., Zhou, H. P., Wu, J. Y., Tao, X. T. \& Jiang, M. H. (2009b). Eur. J. Inorg. Chem. pp. $2664-$ 2672.

Li, D. M., Lv, L. F., Sun, P. P., Zhou, W., Wang, P., Wu, J. Y., Kan, Y. H., Zhou, H. P. \& Tian, Y. P. (2009a). Dyes Pigments, 83, 180-186.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, o3344 [https://doi.org/10.1107/S1600536811047799]

10-Ethyl-10H-phenothiazine-3-carbaldehyde

Dao-Hui Yu, Jian-Qing Wang, Lin Kong and Zhao-di Liu

S1. Comment

The title compound (I) is often used as intermediate in the synthesis of organic compounds with optical properties (Li et $a l ., 2009 a, b)$. Herewith we present its crystal structure.

In (I) (Fig.1), two benzene rings form the dihedral angles of $10.0(8)^{\circ}$ and $12.0(8)^{\circ}$, respectively, with the thiomorpholine mean plane. The folding of the molecule is characterized by dihedral angle formed by two benzene rings, which is $21.1(1)^{\circ}$. In the related compounds, 10-ethylphenothiazine (Chu et al., 1975) and 10-ethyl-3-nitrophenothiazine (Hdii et al., 1998), the corresponding dihedral angle is $44.9(1)$ and $22.8(1)^{\circ}$, respectively, showing that any substitution added to benzene ring flattens the tricycle. This tendency also observed in the structure of (E)-3-(10-ethyl-10H-pheno-thiazin-3-yl)acrylic acid (Li et al., 2009b), where these dihedral angles in two independent molecules are 25.3 (9) ${ }^{\circ}$ and $29.8(8)^{\circ}$, respectively. The ethyl group in (I) is almost orthogonal to the thiazine ring, the torsion angle $\mathrm{C} 6-\mathrm{N} 1-\mathrm{Cl} 4-$ C15 is $85.6(1)^{\circ}$. While in 10-ethylphenothiazine (Chu et al., 1975), the corresponding angle is $146.1(4)^{\circ}$, and in 10-ethyl-3-nitrophenothiazine (Hon et al., 1998) this angle is $-84.9(2)^{\circ}$. The aldehyde group is almost coplanar with its attached phenyl ring, the torsion angle $\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 13-\mathrm{O} 1$ being -2.59°.

In the crystal, weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) link molecules into chains along [001]. The crystal packing exhibits $\pi \cdots \pi$ interactions with the distance of 3.801 (5) \AA between the centroids of benzene rings from the neighbouring molecules.

S2. Experimental

$\mathrm{NaH}(4.08 \mathrm{~g}, 0.17 \mathrm{~mol})$ and $\mathrm{DMF}(5 \mathrm{ml})$ were added to a three-necked flask equipped with a magnetic stirrer and a reflux condenser, and then phenothiazine ($20.0 \mathrm{~g}, 0.1 \mathrm{~mol}$), DMF (10 ml) were added dropwisely (about 30 min), refluxed for another 20 min . Then $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}(17 \mathrm{ml})$ was dropped into the mixture and refluxed for 2 h with TLC detection. The pH of the solution was adjusted to acidic with hydrochloric acid then extracted with 500 ml of ethyl acetate, washed three times with distilled water, and dried with anhydrous magnesium sulfate. It was then filtered and concentrated to produce 18.2 g needle crystals in 80% yield.
N-ethyl-phenothiazine ($11.35 \mathrm{~g}, 0.05 \mathrm{~mol}$) and DMF (39 ml) were added to a three-necked flask in ice equipped with a magnetic stirrer and a reflux condenser, then $\mathrm{POCl}_{3}(92 \mathrm{ml})$ was added dropwisely (about 30 min), the mixture was refluxed for 1 h . Then the mixture was poured into ice to get light yellow solid. The pH of the mixture was adjusted to neutral with NaOH and extracted three times with 150 ml of ethyl acetate. The organic layer was washed with distilled water and then saturated brine. The organic extracts were dried with anhydrous magnesium sulfate. The solvent was removed in vacuo. The residue was purified by column chromatography on silica gel with petroleum ether as eluent to give 7.6 g titled compound as a yellow solid in 60% yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.569(\mathrm{~s}, 1 \mathrm{H}), 7.157(\mathrm{t}, 1 \mathrm{H})$, $7.097(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.912(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.896(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.974(\mathrm{q}, 2 \mathrm{H}), 1.447(\mathrm{t}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}) .89,42.47,114.40,115.58,123.30,123.56,124.51,127.49,127.59,128.25,130.16,131.04,189.98$.

S3. Refinement

The methine H atoms was located on a difference map and isotropically refined. All the rest H atoms were placed in geometrically idealized positions ($\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$) and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=$ 1.2-1.5 $U_{\text {eq }}(\mathrm{C})$.

Figure 1
The molecular structure of the title molecule with 50% probability displacement ellipsoids.

10-Ethyl-10H-phenothiazine-3-carbaldehyde

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NOS}$
$M_{r}=255.32$
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
$a=8.0867$ (1) \AA
$b=15.3271$ (3) \AA
$c=20.3369(4) \AA$
$V=2520.67(8) \AA^{3}$
$Z=8$

Data collection

Bruker SMART APEX
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.953, T_{\text {max }}=0.976$
$F(000)=1072$
$D_{\mathrm{x}}=1.346 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 7387 reflections
$\theta=2.7-27.1^{\circ}$
$\mu=0.24 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Needle, yellow
$0.20 \times 0.10 \times 0.10 \mathrm{~mm}$

17210 measured reflections
2225 independent reflections
1909 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.0^{\circ}$
$h=-9 \rightarrow 9$
$k=-17 \rightarrow 18$
$l=-22 \rightarrow 24$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.109$
$S=1.08$
2225 reflections
167 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

> Hydrogen site location: inferred from \quad neighbouring sites
> H atoms treated by a mixture of independent and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.048 P)^{2}+1.0328 P\right]$ where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.030$
> $\Delta \rho_{\max }=0.40 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.42 \mathrm{e} \AA^{-3}$

Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0062 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
S1	$0.24520(8)$	$0.67345(3)$	$0.06193(3)$	$0.0654(2)$
C6	$0.0560(2)$	$0.57828(11)$	$0.14810(8)$	$0.0434(4)$
N1	$0.13723(18)$	$0.50268(9)$	$0.12517(7)$	$0.0460(4)$
C1	$0.0870(2)$	$0.66009(11)$	$0.12020(9)$	$0.0473(4)$
C8	$0.1974(2)$	$0.49538(11)$	$0.06126(8)$	$0.0415(4)$
O1	$0.4535(2)$	$0.53800(12)$	$-0.16387(7)$	$0.0733(4)$
C12	$0.3099(2)$	$0.56256(12)$	$-0.03694(9)$	$0.0480(4)$
H12	0.3371	0.6129	-0.0601	0.058^{*}
C11	$0.3359(2)$	$0.48174(13)$	$-0.06591(8)$	$0.0488(4)$
C14	$0.1335(2)$	$0.42393(12)$	$0.16677(10)$	$0.0541(5)$
H14A	0.1398	0.4419	0.2124	0.065^{*}
H14B	0.2313	0.3894	0.1574	0.065^{*}
C7	$0.2448(2)$	$0.56995(11)$	$0.02515(9)$	$0.0434(4)$
C2	$0.0052(3)$	$0.73369(13)$	$0.14222(10)$	$0.0583(5)$
H2	0.0247	0.7871	0.1219	0.070^{*}
C5	$-0.0556(2)$	$0.57511(13)$	$0.20039(10)$	$0.0554(5)$
H5	-0.0786	0.5219	0.2204	0.066^{*}
C13	$0.4132(3)$	$0.47568(17)$	$-0.13082(10)$	$0.0598(5)$
C9	$0.2197(2)$	$0.41474(12)$	$0.03065(10)$	$0.0506(5)$
H9	0.1869	0.3643	0.0525	0.061^{*}
C10	$0.2888(2)$	$0.40786(13)$	$-0.03095(10)$	$0.0540(5)$
H10	0.3043	0.3530	0.065^{*}	
C15	$-0.0183(3)$	$0.36605(15)$	$0.15823(12)$	$0.0694(6)$
C				

H15A	-0.1153	0.3976	0.1714	0.104^{*}
H15B	-0.0068	0.3148	0.1850	0.104^{*}
H15C	-0.0282	0.3492	0.1129	0.104^{*}
C4	$-0.1325(3)$	$0.64997(17)$	$0.22290(11)$	$0.0677(6)$
H4	-0.2044	0.6465	0.2585	0.081^{*}
C3	$-0.1046(3)$	$0.72895(16)$	$0.19376(11)$	$0.0679(6)$
H3	-0.1590	0.7787	0.2085	0.081^{*}
H13	$0.429(4)$	$0.4148(18)$	$-0.1460(14)$	0.102^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0860(4)$	$0.0370(3)$	$0.0734(4)$	$-0.0115(2)$	$0.0224(3)$	$-0.0011(2)$
C6	$0.0406(9)$	$0.0475(10)$	$0.0421(9)$	$0.0007(7)$	$-0.0072(7)$	$0.0005(7)$
N1	$0.0503(8)$	$0.0407(8)$	$0.0471(8)$	$0.0021(6)$	$0.0024(7)$	$0.0102(6)$
C1	$0.0509(10)$	$0.0449(10)$	$0.0461(10)$	$0.0015(8)$	$-0.0072(8)$	$-0.0011(8)$
C8	$0.0400(8)$	$0.0382(9)$	$0.0464(9)$	$-0.0009(7)$	$-0.0030(7)$	$0.0056(7)$
O1	$0.0770(10)$	$0.0945(12)$	$0.0485(8)$	$-0.0086(9)$	$0.0078(7)$	$-0.0013(8)$
C12	$0.0490(10)$	$0.0496(10)$	$0.0455(10)$	$-0.0053(8)$	$-0.0021(8)$	$0.0086(8)$
C11	$0.0427(10)$	$0.0585(12)$	$0.0453(10)$	$0.0012(8)$	$-0.0057(7)$	$-0.0019(8)$
C14	$0.0547(11)$	$0.0518(11)$	$0.0558(11)$	$0.0035(9)$	$-0.0008(9)$	$0.0213(8)$
C7	$0.0452(10)$	$0.0373(9)$	$0.0476(10)$	$-0.0012(7)$	$-0.0013(8)$	$0.0041(7)$
C2	$0.0629(12)$	$0.0484(11)$	$0.0635(12)$	$0.0078(9)$	$-0.0119(10)$	$-0.0070(9)$
C5	$0.0503(10)$	$0.0677(13)$	$0.0481(10)$	$-0.0041(9)$	$-0.0001(9)$	$0.0016(9)$
C13	$0.0505(11)$	$0.0781(15)$	$0.0508(11)$	$0.0003(11)$	$-0.0066(9)$	$-0.0080(11)$
C9	$0.0541(11)$	$0.0371(9)$	$0.0607(12)$	$-0.0007(8)$	$0.0000(9)$	$0.0055(8)$
C10	$0.0545(11)$	$0.0474(11)$	$0.0600(12)$	$0.0036(9)$	$-0.0063(9)$	$-0.0085(9)$
C15	$0.0670(13)$	$0.0598(13)$	$0.0813(15)$	$-0.0072(10)$	$0.0038(11)$	$0.0263(11)$
C4	$0.0539(12)$	$0.0902(17)$	$0.0589(12)$	$0.0050(11)$	$0.0047(10)$	$-0.0172(12)$
C3	$0.0597(12)$	$0.0707(14)$	$0.0732(14)$	$0.0152(11)$	$-0.0059(11)$	$-0.0206(12)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{S} 1-\mathrm{C} 7$	$1.7538(18)$	$\mathrm{C} 14-\mathrm{H} 14 \mathrm{~A}$	0.9700
$\mathrm{~S} 1-\mathrm{C} 1$	$1.756(2)$	$\mathrm{C} 14-\mathrm{H} 14 \mathrm{~B}$	0.9700
$\mathrm{C} 6-\mathrm{C} 5$	$1.396(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.376(3)$
$\mathrm{C} 6-\mathrm{C} 1$	$1.399(2)$	$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{C} 6-\mathrm{N} 1$	$1.411(2)$	$\mathrm{C} 5-\mathrm{C} 4$	$1.383(3)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.392(2)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{~N} 1-\mathrm{C} 14$	$1.474(2)$	$\mathrm{C} 13-\mathrm{H} 13$	$0.99(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.382(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.376(3)$
$\mathrm{C} 8-\mathrm{C} 9$	$1.396(3)$	$\mathrm{C} 9-\mathrm{H} 9$	0.9300
$\mathrm{C} 8-\mathrm{C} 7$	$1.412(2)$	$\mathrm{C} 10-\mathrm{H} 10$	0.9300
$\mathrm{O} 1-\mathrm{C} 13$	$1.212(3)$	$\mathrm{C} 15-\mathrm{H} 15 \mathrm{~A}$	0.9600
$\mathrm{C} 12-\mathrm{C} 7$	$1.372(3)$	$\mathrm{C} 15-\mathrm{H} 15 \mathrm{~B}$	0.9600
$\mathrm{C} 12-\mathrm{C} 11$	$1.388(3)$	$\mathrm{C} 15-\mathrm{H} 15 \mathrm{C}$	0.9600
$\mathrm{C} 12-\mathrm{H} 12$	0.9300	$\mathrm{C} 4-\mathrm{C} 3$	$1.366(3)$
$\mathrm{C} 11-\mathrm{C} 10$	$1.390(3)$	$\mathrm{C} 4-\mathrm{H} 4$	0.9300

C11-C13	1.463 (3)
C14-C15	1.524 (3)
C7-S1-C1	100.44 (8)
C5-C6-C1	117.13 (17)
C5-C6-N1	121.61 (16)
C1-C6-N1	121.24 (16)
C8-N1-C6	122.48 (14)
C8-N1-C14	118.49 (15)
C6-N1-C14	118.24 (15)
C2-C1-C6	120.97 (18)
C2- $\mathrm{C} 1-\mathrm{S} 1$	118.17 (15)
C6-C1-S1	120.58 (14)
N1-C8-C9	122.20 (15)
N1-C8-C7	121.03 (15)
C9-C8-C7	116.73 (16)
C7-C12-C11	121.50 (17)
$\mathrm{C} 7-\mathrm{C} 12-\mathrm{H} 12$	119.3
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12$	119.3
C12-C11-C10	117.92 (17)
C12-C11-C13	120.29 (19)
C10-C11-C13	121.78 (19)
N1-C14-C15	115.30 (16)
N1-C14-H14A	108.4
C15-C14-H14A	108.4
N1-C14-H14B	108.4
C15-C14-H14B	108.4
H14A-C14-H14B	107.5
C12-C7-C8	121.06 (16)
C12-C7-S1	117.80 (13)
C8-C7-S1	120.72 (14)
C5-C6-N1-C8	155.35 (17)
C1-C6-N1-C8	-26.1 (2)
C5-C6-N1-C14	-14.3 (2)
C1-C6-N1-C14	164.21 (16)
C5-C6-C1-C2	-2.4 (3)
N1-C6-C1-C2	179.03 (16)
C5-C6-C1-S1	171.37 (14)
N1-C6-C1-S1	-7.2 (2)
C7-S1-C1-C2	-155.68 (15)
C7-S1-C1-C6	30.42 (16)
C6-N1-C8-C9	-155.31 (17)
C14-N1-C8-C9	14.4 (3)
C6-N1-C8-C7	27.1 (2)
C14-N1-C8-C7	-163.21 (16)
C7-C12-C11-C10	2.1 (3)
C7-C12-C11-C13	-176.89 (17)

$\mathrm{C} 3 — \mathrm{H} 3 \quad 0.9300$

$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$120.8(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.6
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.6
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$120.93(19)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	119.5
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	119.5
$\mathrm{O} 1-\mathrm{C} 13-\mathrm{C} 11$	$124.4(2)$
$\mathrm{O} 1-\mathrm{C} 13-\mathrm{H} 13$	$122.3(17)$
$\mathrm{C} 11-\mathrm{C} 13-\mathrm{H} 13$	$113.3(17)$
C10-C9-C8	$121.78(17)$
C10-C9-H9	119.1
C8-C9-H9	119.1
C9-C10-C11	$120.97(18)$
C9-C10-H10	119.5
C11-C10-H10	119.5
C14-C15-H15A	109.5
C14-C15-H15B	109.5
H15A-C15-H15B	109.5
C14-C15-H15C	109.5
H15A-C15-H15C	109.5
H15B-C15-H15C	109.5
C3-C4-C5	$121.2(2)$
C3-C4-H4	119.4
C5-C4-H4	119.4
C4-C3-C2	$118.9(2)$
C4-C3-H3	120.5
C2-C3-H3	120.5

$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 12$	$177.55(16)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 12$	$-0.1(3)$
$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 7-\mathrm{S} 1$	$5.2(2)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7-\mathrm{S} 1$	$-172.52(13)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 7-\mathrm{C} 12$	$157.90(15)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 7-\mathrm{C} 8$	$-29.47(16)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$2.3(3)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-171.58(16)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$0.5(3)$
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$179.09(17)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 13-\mathrm{O} 1$	$-2.6(3)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 13-\mathrm{O} 1$	$178.44(19)$
$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-175.86(17)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$1.8(3)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$-1.5(3)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 9$	$-0.5(3)$

supporting information

$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 14-\mathrm{C} 15$	$-84.5(2)$	$\mathrm{C} 13-\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 9$	$178.53(18)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 14-\mathrm{C} 15$	$85.6(2)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$1.5(3)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 7-\mathrm{C} 8$	$-1.8(3)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$-1.6(3)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 7-\mathrm{S} 1$	$170.76(14)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.3(3)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{C} 14 — \mathrm{H} 14 A \cdots 1^{\mathrm{i}}$	0.97	2.64	$3.563(3)$	158

Symmetry code: (i) $-x+1 / 2,-y+1, z+1 / 2$.

