organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-{[4-(Dimethylamino)benzylidene]amino}phenyl disulfide

Qing-Peng He,^a* Li Dai^b and Bo Tan^a

^aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China, and ^bLiaocheng Bureau of Quality and Technical Supervision, Shandong 252059, People's Republic of China Correspondence e-mail: heqp2008@163.com

Received 26 October 2011; accepted 2 November 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.051; wR factor = 0.122; data-to-parameter ratio = 14.7.

In the title molecule, $C_{30}H_{30}N_4S_2$, the two benzene rings connected through the disulfide chain form a dihedral angle of 88.7 (1)°, and the two benzene rings in the benzylideneaniline fragments form dihedral angles of 34.0 (1) and 35.4 (1)°. The crystal packing exhibits no significantly short intermolecular contacts.

Related literature

For biological activity of Shiff base derivatives, see: Loncle *et al.* (2004); Li *et al.* (2004). For a related structure, see: Roy *et al.* (2009).

Experimental

Crystal data C₃₀H₃₀N₄S₂

 $M_r = 510.70$

```
Monoclinic, P2_1/n

a = 10.673 (1) Å

b = 22.906 (2) Å

c = 11.2939 (11) Å

\beta = 95.784 (1)°

V = 2747.0 (4) Å<sup>3</sup>
```

Data collection

Bruker SMART APEX CCD areaetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.937, T_{max} = 0.974$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.051 & 329 \text{ parameters} \\ wR(F^2) = 0.122 & H\text{-atom parameters constrained} \\ S = 0.83 & \Delta\rho_{\max} = 0.29 \text{ e } \text{\AA}^{-3} \\ 4851 \text{ reflections} & \Delta\rho_{\min} = -0.14 \text{ e } \text{\AA}^{-3} \end{array}$

Z = 4

Mo $K\alpha$ radiation

 $0.30 \times 0.26 \times 0.12 \text{ mm}$

13873 measured reflections

4851 independent reflections 2145 reflections with $I > 2\sigma(I)$

 $\mu = 0.22 \text{ mm}^{-1}$

T = 298 K

 $R_{\rm int} = 0.057$

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This project was supported by the Foundation of Liaocheng University (grant No. X10007) and the Graduate Education Innovation Program of Liaocheng University (grant No. LCUYZ11001).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5186).

References

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Li, M. X., Cai, P., Duan, C. Y., Lu, F., Xie, J. & Meng, Q. J. (2004). *Inorg. Chem.* **43**, 5174–5176.
- Loncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). *Eur. J. Med. Chem.* 39, 1067–1071.

Roy, N., Sproules, S., Weyhermuller, T. & Wieghardt, K. (2009). *Inorg. Chem.* 48, 3783–3791.

Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.

supporting information

Acta Cryst. (2011). E67, o3240 [https://doi.org/10.1107/S1600536811046277]

2-{[4-(Dimethylamino)benzylidene]amino}phenyl disulfide

Qing-Peng He, Li Dai and Bo Tan

S1. Comment

In recent years, a number of Schiff base derivatives were shown to exhibit a wide range of interesting biological activities, including antibacteriale antifungal, anticonvulsant, anticancer activities as well as herbicidal and fungicidal activity (Loncle *et al.*, 2004; Li *et al.*, 2004). As a part of our continuing interest in Schiff's bases contained imine N and anionic S atoms, we report here the crystal structure of the title compound (I).

In (I) (Fig. 1), the molecule has a *trans* configuration about the S—S bond. All bond lengths and angles are normal and comparable to those observed in similar compound 2,2'-(disulfanediylbis(2,1-phenylenenitrilomethylylidene)) bis(4,6-di-tbutylphenol) (Roy *et al.*, 2009). Two benzene rings connected through disulfide chain form a dihedral angle of 88.7 (1)°, and two benzene rings in two benzylideneaniline fragments form the dihedral angles of 34.0 (1) and 35.4 (1)°, respectively. The crystal packing exhibits no significantly short intermolecular contacts.

S2. Experimental

4-(Dimethylamino)benzaldehyde (6 mmol) and 2,2'-diaminodiphenyl disulfide (3 mmol) was refluxed in 20 ml of ethanol for 4.0 h, the mixture then cooling slowly to room temperature and affording the title compound, then recrystallized from ethanol, affording the title compound as a yellow crystalline solid.

S3. Refinement

All H atoms were positioned geometrically, with C—H=0.93–0.96 Å, and refined as riding, with U_{iso} (H)=1.2–1.5 U_{eq} (C).

Figure 1

ORTEP drawing of the title complex with atomic numbering scheme and thermal ellipsoids at 30% probability level.

2-{[4-(Dimethylamino)benzylidene]amino}phenyl disulfide

Crystal data

 $\begin{array}{l} C_{30}H_{30}N_4S_2\\ M_r = 510.70\\ \text{Monoclinic, } P2_1/n\\ a = 10.673 \ (1) \ \text{\AA}\\ b = 22.906 \ (2) \ \text{\AA}\\ c = 11.2939 \ (11) \ \text{\AA}\\ \beta = 95.784 \ (1)^\circ\\ V = 2747.0 \ (4) \ \text{\AA}^3\\ Z = 4 \end{array}$

Data collection

Bruker SMART APEX CCD area-etector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.937, T_{\max} = 0.974$

Refinement

Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.051$	Hydrogen site location: inferred from
$wR(F^2) = 0.122$	neighbouring sites
<i>S</i> = 0.83	H-atom parameters constrained
4851 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0486P)^2]$
329 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.29 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 1080

 $\theta = 2.5 - 18.1^{\circ}$

 $\mu = 0.22 \text{ mm}^{-1}$

Block, yellow

 $0.30 \times 0.26 \times 0.12 \text{ mm}$

 $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$

13873 measured reflections

4851 independent reflections 2145 reflections with $I > 2\sigma(I)$

T = 298 K

 $R_{\rm int} = 0.057$

 $h = -12 \rightarrow 12$

 $k = -27 \rightarrow 25$

 $l = -13 \rightarrow 11$

 $D_{\rm x} = 1.235 {\rm Mg} {\rm m}^{-3}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 1564 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.19747 (8)	0.14806 (4)	0.72993 (7)	0.0713 (3)	
0.11991 (8)	0.22645 (4)	0.67335 (8)	0.0755 (3)	
-0.1215 (2)	0.28105 (12)	0.6062 (2)	0.0628 (7)	
0.3431 (2)	0.04770 (12)	0.7508 (2)	0.0705 (8)	
-0.3191 (3)	0.51151 (12)	0.8653 (3)	0.0786 (8)	
	x 0.19747 (8) 0.11991 (8) -0.1215 (2) 0.3431 (2) -0.3191 (3)	x y 0.19747 (8) 0.14806 (4) 0.11991 (8) 0.22645 (4) -0.1215 (2) 0.28105 (12) 0.3431 (2) 0.04770 (12) -0.3191 (3) 0.51151 (12)	x y z 0.19747 (8) 0.14806 (4) 0.72993 (7) 0.11991 (8) 0.22645 (4) 0.67335 (8) -0.1215 (2) 0.28105 (12) 0.6062 (2) 0.3431 (2) 0.04770 (12) 0.7508 (2) -0.3191 (3) 0.51151 (12) 0.8653 (3)	xyz $U_{iso}*/U_{eq}$ 0.19747 (8)0.14806 (4)0.72993 (7)0.0713 (3)0.11991 (8)0.22645 (4)0.67335 (8)0.0755 (3)-0.1215 (2)0.28105 (12)0.6062 (2)0.0628 (7)0.3431 (2)0.04770 (12)0.7508 (2)0.0705 (8)-0.3191 (3)0.51151 (12)0.8653 (3)0.0786 (8)

N4	0.1784 (4)	-0.16806 (15)	1.0685 (3)	0.0984 (10)
C1	0.0171 (3)	0.20663 (13)	0.5451 (3)	0.0584 (8)
C2	0.0478 (3)	0.16385 (15)	0.4662 (3)	0.0704 (10)
H2	0.1245	0.1445	0.4793	0.085*
C3	-0.0350 (4)	0.14966 (15)	0.3680 (3)	0.0805 (10)
H3	-0.0139	0.1209	0.3155	0.097*
C4	-0.1484 (4)	0.17819 (16)	0.3485 (3)	0.0841 (11)
H4	-0.2047	0.1683	0.2834	0.101*
C5	-0.1786(3)	0.22166 (15)	0.4258(3)	0.0745 (10)
H5	-0.2556	0.2408	0.4122	0.089*
C6	-0.0955(3)	0.23708 (14)	0.5236 (3)	0.0582 (8)
C7	-0.1777(3)	0.32766 (15)	0.5290(3) 0.5692(3)	0.0660 (9)
е, Н7	-0.1983	0.3318	0.4877	0.079*
C8	-0.2120(3)	0.37512 (14)	0.6467(3)	0.0612 (9)
C9	-0.1778(3)	0.37524(14)	0.7692 (3)	0.0012(9)
НО	-0.1314	0.37524(14) 0.3441	0.7072 (3)	0.0075())
C10	-0.2107(3)	0.3441	0.8050	0.0700 (9)
U10	-0.1851	0.42000 (13)	0.0212	0.0700 (9)
C11	-0.1031 -0.2918(2)	0.4109 0.46755 (14)	0.9213 0.7035 (3)	0.064°
C11 C12	-0.2818(3)	0.40755(14)	0.7933(3)	0.0031(9)
U12	-0.3114(3)	0.40801 (14)	0.0097 (3)	0.0716(10)
H12	-0.3553	0.5002	0.0344	0.080*
C13	-0.2766(3)	0.42355 (15)	0.5998 (3)	0.0723 (10)
HI3	-0.29/1	0.4257	0.51/9	0.08/*
C14	-0.3916 (3)	0.56013 (16)	0.8147 (3)	0.1046 (13)
H14A	-0.3512	0.5762	0.7498	0.157*
H14B	-0.3972	0.5895	0.8745	0.157*
H14C	-0.4746	0.5471	0.7862	0.157*
C15	-0.3011 (4)	0.50616 (15)	0.9928 (3)	0.1034 (13)
H15A	-0.3390	0.4706	1.0165	0.155*
H15B	-0.3396	0.5388	1.0284	0.155*
H15C	-0.2126	0.5056	1.0187	0.155*
C16	0.3436 (3)	0.14305 (15)	0.6678 (3)	0.0619 (9)
C17	0.3972 (4)	0.18706 (15)	0.6046 (3)	0.0798 (10)
H17	0.3565	0.2228	0.5932	0.096*
C18	0.5101 (4)	0.17773 (18)	0.5590 (4)	0.0983 (13)
H18	0.5459	0.2073	0.5171	0.118*
C19	0.5702 (4)	0.1251 (2)	0.5750 (4)	0.1061 (14)
H19	0.6458	0.1188	0.5425	0.127*
C20	0.5192 (4)	0.08124 (17)	0.6390 (3)	0.0945 (12)
H20	0.5609	0.0457	0.6493	0.113*
C21	0.4060 (3)	0.08967 (15)	0.6882 (3)	0.0673 (9)
C22	0.4045 (3)	0.00799 (16)	0.8111 (3)	0.0750 (10)
H22	0.4919	0.0084	0.8145	0.090*
C23	0.3452 (3)	-0.03744 (15)	0.8743 (3)	0.0657 (9)
C24	0.2152 (3)	-0.04379 (15)	0.8688 (3)	0.0710 (10)
H24	0.1641	-0.0184	0.8214	0.085*
C25	0.1604 (3)	-0.08633 (16)	0.9311 (3)	0.0768 (10)
H25	0.0731	-0.0894	0.9241	0.092*

C26	0.2329 (4)	-0.12559 (16)	1.0054 (3)	0.0764 (10)	
C27	0.3634 (4)	-0.11984 (16)	1.0115 (3)	0.0863 (11)	
H27	0.4150	-0.1450	1.0591	0.104*	
C28	0.4159 (3)	-0.07660 (16)	0.9467 (3)	0.0872 (11)	
H28	0.5032	-0.0737	0.9519	0.105*	
C29	0.0443 (5)	-0.17245 (17)	1.0621 (4)	0.1289 (17)	
H29A	0.0103	-0.1368	1.0903	0.193*	
H29B	0.0216	-0.2044	1.1107	0.193*	
H29C	0.0109	-0.1791	0.9811	0.193*	
C30	0.2540 (4)	-0.20578 (17)	1.1510 (3)	0.1166 (15)	
H30A	0.3060	-0.2304	1.1075	0.175*	
H30B	0.1996	-0.2296	1.1935	0.175*	
H30C	0.3063	-0.1823	1.2064	0.175*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
S1	0.0717 (6)	0.0764 (7)	0.0644 (6)	0.0111 (5)	-0.0005 (5)	0.0060 (5)
S2	0.0801 (6)	0.0720 (6)	0.0704 (6)	0.0154 (5)	-0.0128 (5)	-0.0120 (5)
N1	0.0643 (18)	0.0658 (19)	0.0583 (17)	0.0104 (15)	0.0060 (14)	0.0049 (15)
N2	0.0727 (19)	0.064 (2)	0.073 (2)	0.0052 (16)	0.0010 (16)	0.0112 (16)
N3	0.096 (2)	0.060 (2)	0.081 (2)	0.0147 (17)	0.0124 (18)	0.0007 (17)
N4	0.114 (3)	0.083 (3)	0.105 (3)	-0.015 (2)	0.041 (2)	0.003 (2)
C1	0.063 (2)	0.059 (2)	0.053 (2)	0.0074 (17)	0.0034 (17)	0.0004 (17)
C2	0.073 (2)	0.073 (3)	0.064 (2)	0.0103 (19)	0.001 (2)	-0.0028 (19)
C3	0.100 (3)	0.075 (3)	0.064 (2)	0.015 (2)	-0.003 (2)	-0.0136 (19)
C4	0.096 (3)	0.085 (3)	0.066 (3)	0.011 (2)	-0.020 (2)	-0.012 (2)
C5	0.069 (2)	0.078 (3)	0.073 (2)	0.0173 (19)	-0.008(2)	0.001 (2)
C6	0.064 (2)	0.062 (2)	0.048 (2)	0.0032 (18)	0.0043 (18)	0.0001 (17)
C7	0.065 (2)	0.075 (3)	0.057 (2)	0.0060 (19)	0.0044 (18)	0.0046 (19)
C8	0.062 (2)	0.060 (2)	0.062 (2)	0.0096 (17)	0.0117 (18)	0.0079 (18)
C9	0.082 (2)	0.060 (2)	0.061 (2)	0.0090 (18)	0.009 (2)	0.0105 (19)
C10	0.087 (2)	0.067 (3)	0.057 (2)	0.006 (2)	0.0074 (19)	0.0074 (19)
C11	0.058 (2)	0.056 (2)	0.077 (3)	0.0023 (17)	0.012 (2)	0.004 (2)
C12	0.076 (2)	0.059 (2)	0.079 (3)	0.0150 (18)	0.000 (2)	0.010 (2)
C13	0.078 (2)	0.071 (3)	0.066 (2)	0.015 (2)	-0.0003 (19)	0.008 (2)
C14	0.106 (3)	0.081 (3)	0.124 (3)	0.030 (2)	0.002 (3)	-0.010 (3)
C15	0.149 (4)	0.072 (3)	0.095 (3)	0.012 (2)	0.038 (3)	-0.002 (2)
C16	0.061 (2)	0.064 (2)	0.059 (2)	0.0001 (19)	-0.0057 (17)	0.0063 (17)
C17	0.080 (3)	0.067 (3)	0.092 (3)	0.003 (2)	0.003 (2)	0.010 (2)
C18	0.079 (3)	0.090 (3)	0.128 (4)	0.003 (2)	0.021 (3)	0.037 (3)
C19	0.074 (3)	0.116 (4)	0.133 (4)	0.012 (3)	0.029 (3)	0.034 (3)
C20	0.081 (3)	0.089 (3)	0.116 (3)	0.019 (2)	0.021 (3)	0.029 (2)
C21	0.061 (2)	0.070 (3)	0.071 (2)	0.006 (2)	0.0053 (19)	0.0096 (19)
C22	0.066 (2)	0.075 (3)	0.084 (3)	0.005 (2)	0.006 (2)	0.006 (2)
C23	0.059 (2)	0.065 (3)	0.073 (2)	0.0095 (19)	0.008 (2)	0.0055 (18)
C24	0.072 (3)	0.067 (3)	0.072 (2)	0.009 (2)	0.001 (2)	-0.0030 (19)
C25	0.073 (3)	0.077 (3)	0.081 (3)	-0.006 (2)	0.010 (2)	-0.009 (2)

supporting information

C26	0.095 (3)	0.062 (3)	0.077 (3)	-0.002 (2)	0.028 (2)	-0.006 (2)
C27	0.080 (3)	0.078 (3)	0.103 (3)	0.020 (2)	0.020 (2)	0.029 (2)
C28	0.067 (2)	0.085 (3)	0.112 (3)	0.018 (2)	0.020 (2)	0.023 (2)
C29	0.145 (5)	0.101 (4)	0.151 (4)	-0.040 (3)	0.070 (4)	-0.015 (3)
C30	0.175 (5)	0.084 (3)	0.095 (3)	-0.006 (3)	0.034 (3)	0.015 (3)

Geometric parameters (Å, °)

S1—C16	1.777 (3)	C14—H14A	0.9600
S1—S2	2.0521 (12)	C14—H14B	0.9600
S2—C1	1.786 (3)	C14—H14C	0.9600
N1—C7	1.274 (3)	C15—H15A	0.9600
N1—C6	1.419 (4)	C15—H15B	0.9600
N2—C22	1.277 (4)	C15—H15C	0.9600
N2—C21	1.404 (4)	C16—C17	1.391 (4)
N3—C11	1.376 (4)	C16—C21	1.400 (4)
N3—C15	1.440 (4)	C17—C18	1.375 (4)
N3—C14	1.441 (4)	C17—H17	0.9300
N4—C26	1.370 (4)	C18—C19	1.370 (5)
N4—C29	1.429 (5)	C18—H18	0.9300
N4—C30	1.454 (4)	C19—C20	1.380 (4)
C1—C2	1.386 (4)	С19—Н19	0.9300
C1—C6	1.389 (4)	C20—C21	1.393 (4)
C2—C3	1.385 (4)	C20—H20	0.9300
С2—Н2	0.9300	C22—C23	1.444 (4)
C3—C4	1.373 (4)	C22—H22	0.9300
С3—Н3	0.9300	C23—C28	1.385 (4)
C4—C5	1.384 (4)	C23—C24	1.390 (4)
C4—H4	0.9300	C24—C25	1.367 (4)
C5—C6	1.391 (4)	C24—H24	0.9300
С5—Н5	0.9300	C25—C26	1.408 (4)
С7—С8	1.465 (4)	C25—H25	0.9300
С7—Н7	0.9300	C26—C27	1.393 (4)
C8—C13	1.383 (4)	C27—C28	1.384 (4)
C8—C9	1.395 (4)	С27—Н27	0.9300
C9—C10	1.370 (4)	C28—H28	0.9300
С9—Н9	0.9300	C29—H29A	0.9600
C10—C11	1.399 (4)	C29—H29B	0.9600
C10—H10	0.9300	C29—H29C	0.9600
C11—C12	1.403 (4)	C30—H30A	0.9600
C12—C13	1.373 (4)	C30—H30B	0.9600
C12—H12	0.9300	C30—H30C	0.9600
С13—Н13	0.9300		
C16—S1—S2	106.03 (12)	N3—C15—H15B	109.5
C1—S2—S1	103.05 (11)	H15A—C15—H15B	109.5
C7—N1—C6	119.7 (3)	N3—C15—H15C	109.5
C22—N2—C21	120.7 (3)	H15A—C15—H15C	109.5

G11 N2 G15	100 7 (2)		100 5
C11—N3—C15	120.7 (3)	H15B—C15—H15C	109.5
C11—N3—C14	120.5 (3)	C17—C16—C21	120.2 (3)
C15—N3—C14	118.3 (3)	C17—C16—S1	125.3 (3)
C26—N4—C29	120.0 (4)	C21—C16—S1	114.4 (3)
C26—N4—C30	121.2 (4)	C18—C17—C16	120.1 (3)
C29—N4—C30	118.6 (3)	С18—С17—Н17	120.0
C2—C1—C6	120.0 (3)	С16—С17—Н17	120.0
C2—C1—S2	122.4 (3)	C19—C18—C17	120.3 (4)
C6—C1—S2	117.6 (2)	C19—C18—H18	119.9
C3—C2—C1	120.5 (3)	C17—C18—H18	119.9
C3—C2—H2	119.8	C18 - C19 - C20	120 3 (4)
C1 - C2 - H2	119.8	C18 - C19 - H19	119.8
C_{4} C_{3} C_{2}	119.8 (3)	C_{20} C_{19} H_{19}	119.0
$C_4 = C_3 = C_2$	120.1	$C_{10} = C_{10} = C_{11}$	117.0 120.8(A)
C_{1} C_{2} C_{3} H_{3}	120.1	$C_{19} = C_{20} = C_{21}$	120.0 (4)
$C_2 = C_3 = H_3$	120.1	$C_{19} = C_{20} = H_{20}$	119.0
$C_3 = C_4 = C_5$	119.9 (3)	$C_{21} = C_{20} = H_{20}$	119.0
C3—C4—H4	120.0	$C_{20} = C_{21} = C_{16}$	118.2 (3)
C5—C4—H4	120.0	C20—C21—N2	125.8 (3)
C4—C5—C6	120.8 (3)	C16—C21—N2	115.9 (3)
C4—C5—H5	119.6	N2—C22—C23	123.4 (3)
С6—С5—Н5	119.6	N2—C22—H22	118.3
C1—C6—C5	118.8 (3)	С23—С22—Н22	118.3
C1C6N1	117.7 (3)	C28—C23—C24	116.2 (3)
C5—C6—N1	123.4 (3)	C28—C23—C22	121.2 (3)
N1—C7—C8	124.3 (3)	C24—C23—C22	122.6 (3)
N1—C7—H7	117.9	C25—C24—C23	121.9 (3)
С8—С7—Н7	117.9	C25—C24—H24	119.1
C13—C8—C9	116.7 (3)	C23—C24—H24	119.1
C13—C8—C7	120.7 (3)	C24—C25—C26	121.6 (3)
C9—C8—C7	122.5 (3)	C24—C25—H25	119.2
C10-C9-C8	121.6 (3)	C26—C25—H25	119.2
C10-C9-H9	119.2	N4—C26—C27	121 1 (4)
C8-C9-H9	119.2	N4-C26-C25	121.1(1) 121.8(4)
C_{0} C_{10} C_{11}	121.6 (3)	C_{27} C_{26} C_{25}	121.0(4) 1171(3)
C_{0} C_{10} H_{10}	121.0 (3)	$C_{21} = C_{20} = C_{25}$	117.1(3) 110.0(4)
$C_{11} = C_{10} = H_{10}$	119.2	$C_{20} = C_{27} = C_{20}$	119.9 (4)
$N_{2} = C_{11} = C_{10}$	119.2 121.7(2)	$C_{20} = C_{27} = H_{27}$	120.1
N3 - C11 - C10	121.7(3)	$C_{20} = C_{27} = H_{27}$	120.1
N3 - C11 - C12	121.7(3)	$C_2/-C_{28}-C_{23}$	123.3 (3)
	116.6 (3)	C27—C28—H28	118.3
C13—C12—C11	120.9 (3)	С23—С28—Н28	118.3
C13—C12—H12	119.6	N4—C29—H29A	109.5
C11—C12—H12	119.6	N4—C29—H29B	109.5
C12—C13—C8	122.4 (3)	H29A—C29—H29B	109.5
C12—C13—H13	118.8	N4—C29—H29C	109.5
C8—C13—H13	118.8	H29A—C29—H29C	109.5
N3—C14—H14A	109.5	H29B—C29—H29C	109.5
N3—C14—H14B	109.5	N4—C30—H30A	109.5
H14A—C14—H14B	109.5	N4—C30—H30B	109.5

supporting information

N3—C14—H14C	109.5	H30A—C30—H30B	109.5
H14A—C14—H14C	109.5	N4—C30—H30C	109.5
H14B—C14—H14C	109.5	H30A—C30—H30C	109.5
N3—C15—H15A	109.5	H30B—C30—H30C	109.5