

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N'-[6-(3,5-Dimethyl-1*H*-pyrazol-1-yl)-1,2,4,5-tetrazin-3-yl]butanohydrazide

Qi-Dong Yan, Feng Xu* and Jun Xu

Department of Biological &Chemical Engineering, Taizhou Vocational & Technical college, Taizhou, 318000, People's Republic of China Correspondence e-mail: xufeng901@126.com

Received 4 November 2011; accepted 11 November 2011

Key indicators: single-crystal X-ray study; T = 103 K; mean σ (C–C) = 0.002 Å; *R* factor = 0.036; *wR* factor = 0.098; data-to-parameter ratio = 15.7.

In the title compound, $C_{11}H_{16}N_8O$, the tetrazine and pyrazole rings form a dihedral angle of 48.75 (2)°. In the crystal, N– H···O and N–H···N hydrogen bonds link the molecules into layers parallel to (101).

Related literature

For related structures, see: Xu *et al.* (2010, 2011). For applications of 1,2,4,5-tetrazine derivatives, see: Sauer (1996).

Experimental

Crystal data

$C_{11}H_{16}N_8O$
$M_r = 276.32$
Monoclinic, $P2_1/n$

a = 10.977 (3) Å
b = 7.688 (2) Å
c = 15.887 (5) Å

$\beta = 99.798 \ (5)^{\circ}$
V = 1321.2 (6) Å ³
Z = 4
Mo $K\alpha$ radiation

Data collection

Rigaku AFC10/Saturn724+	
diffractometer	
1624 measured reflections	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.098$ S = 1.003019 reflections 192 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} \mathbf{N14} - \mathbf{H14} \mathbf{N} \cdots \mathbf{O17^{i}} \\ \mathbf{N15} - \mathbf{H15} \mathbf{N} \cdots \mathbf{N8^{ii}} \end{array}$	$0.903 (15) \\ 0.880 (16)$	1.923 (16) 2.008 (16)	2.8221 (15) 2.8851 (16)	173.8 (14) 174.5 (15)
Symmetry codes: (i) $-x$	$+\frac{3}{2}, y + \frac{1}{2}, -z +$	$-\frac{3}{2}$; (ii) $-x + 1$, -	-y + 1, -z + 1.	

Data collection: CrystalClear (Rigaku/MSC, 2008); cell refinement:

CrystalClear; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

We are very grateful to the Foundation of Taizhou Vocational and Technical College for support (grant No. 2012ZD05).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5192).

References

- Rigaku/MSC (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sauer, J. (1996). *Comprehensive Heterocyclic Chemistry*, 2nd ed., edited by A. J. Boulton, Vol. 6, pp. 901–955. Oxford, England: Elsevier.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Xu, F., Yang, Z. Z., Hu, W. X. & Xi, L. M. (2010). Chin. J. Org. Chem. 30, 260–265.
- Xu, F., Yang, Z. Z., Zhang, S. J. & Hu, W. X. (2011). Synth. Commun. 41, 3367– 3375.

organic compounds

 $\mu = 0.10 \text{ mm}^{-1}$ T = 103 K

 $R_{\rm int}=0.025$

refinement

 $\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$

 $0.40 \times 0.37 \times 0.33 \text{ mm}$

3019 independent reflections

2570 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

supporting information

Acta Cryst. (2011). E67, o3339 [https://doi.org/10.1107/S1600536811048033]

N'-[6-(3,5-Dimethyl-1H-pyrazol-1-yl)-1,2,4,5-tetrazin-3-yl]butanohydrazide

Qi-Dong Yan, Feng Xu and Jun Xu

S1. Comment

1,2,4,5-Tetrazine derivatives exhibit a wide spectrum of antiviral and antitumor properties. They have been used in pesticides and herbicides (Sauer, 1996). In continuation of our search for the structure-activity relationships of 1,2,4,5-tetrazine derivatives (Xu *et al.*, 2010; 2011), we present here the title compound (I).

In (I) (Fig.1), the tetrazine and pyrazole rings form a dihedral angle of 48.75 (2)°. The N14/N15/C16/O17 and C16/C18/C19 planes make the dihedral angles of 82.56 (2)° and 83.83 (2)°, respectively, with the tetrazine ring. Intermolecular N—H—N and N—H—O hydrogen bonds (Table 1) link molecules into layers parallel to (101) plane (Fig. 2).

S2. Experimental

3,6-Bis(3,5-dimethyl-1*H*-pyrazol-1-yl)-1,2,4,5-tetrazine (3.0 mmol), chloroform (10 ml) and pyridine(0.25 ml,3.1 mmol) were mixed. Butyryl chloride(3.0 mmol) in chloroform (10 ml) was added dropwise with stirring at room temperature. After the starting 1,2,4,5-tetrazine was completely consumed (the reaction courses was monitored by TLC, ethyl acetate system), evaporation of the chloroform, crude product was obtained and purified by preparative thin-layer chromatography over silica gel GF254(2 mm) (dichloromethane: petroleum ether=1:1). The solution of the compound in anhydrous ethanol was concentrated gradually at room temperature to afford single crystals, which was suitable for X-ray diffraction.

S3. Refinement

N-bound H atoms were located on a difference map and isotropically refined with N—H bond length restrained to 0.89 (2) Å. Methyl H atoms were placed in calculated positions with C—H = 0.96 Å and torsion angles were refined to fit the electron density, with $U_{iso}(H) = 1.5U_{eq}(C)$. Other C-bound H atoms were placed in calculated positions with C—H = 0.93 Å, and refined in riding mode, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 2

A portion of the crystal packing viewed down the *b* axis. N—H…O and N—H…N hydrogen bonds are shown as dashed lines.

N'-[6-(3,5-Dimethyl-1H-pyrazol-1-yl)-1,2,4,5-tetrazin-3-yl]butanohydrazide

Crystal data

C₁₁H₁₆N₈O $M_r = 276.32$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 10.977 (3) Å b = 7.688 (2) Å c = 15.887 (5) Å $\beta = 99.798$ (5)° V = 1321.2 (6) Å³ Z = 4

Data collection

Rigaku AFC10/Saturn724+	3019 independent reflections
diffractometer	2570 reflections with $I > 2\sigma(I)$
Radiation source: Rotating Anode	$R_{\rm int} = 0.025$
Graphite monochromator	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 3.3^{\circ}$
Detector resolution: 28.5714 pixels mm ⁻¹	$h = -13 \rightarrow 14$
phi and ω scans	$k = -9 \longrightarrow 9$
11624 measured reflections	$l = -20 \rightarrow 20$

F(000) = 584

 $\theta = 3.3 - 27.5^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$

T = 103 K

Block, red

 $D_{\rm x} = 1.389 {\rm Mg} {\rm m}^{-3}$

 $0.40 \times 0.37 \times 0.33 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3486 reflections

Refinement

5	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from
$wR(F^2) = 0.098$	neighbouring sites
S = 1.00	H atoms treated by a mixture of independent
3019 reflections	and constrained refinement
192 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0569P)^2 + 0.316P]$
0 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.30 \ { m e} \ { m \AA}^{-3}$
	$\Delta ho_{ m min} = -0.22$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
017	0.66813 (8)	0.18530 (11)	0.72170 (5)	0.0179 (2)	
N1	0.36379 (9)	0.45388 (13)	0.57707 (6)	0.0166 (2)	
N2	0.48309 (9)	0.41717 (13)	0.58523 (6)	0.0165 (2)	
N4	0.52508 (9)	0.63680 (13)	0.69398 (6)	0.0178 (2)	
N5	0.40619 (9)	0.67242 (13)	0.68429 (6)	0.0178 (2)	

N7	0.20565 (9)	0.62907 (13)	0.61117 (6)	0.0153 (2)
N8	0.14658 (9)	0.65755 (13)	0.52903 (6)	0.0159 (2)
N14	0.68389 (9)	0.49646 (13)	0.64665 (6)	0.0149 (2)
N15	0.73094 (9)	0.34414 (13)	0.61788 (6)	0.0150 (2)
C3	0.56031 (11)	0.51505 (15)	0.64082 (7)	0.0142 (2)
C6	0.33149 (11)	0.58299 (15)	0.62452 (7)	0.0147 (2)
C9	0.03300 (11)	0.70598 (15)	0.53650 (8)	0.0167 (2)
C10	0.01821 (11)	0.70610 (16)	0.62297 (8)	0.0195 (3)
H10	-0.0548	0.7345	0.6447	0.023*
C11	0.12946 (11)	0.65738 (15)	0.66942 (8)	0.0175 (3)
C12	0.16684 (13)	0.62803 (19)	0.76288 (8)	0.0249 (3)
H12A	0.0950	0.6437	0.7913	0.030*
H12B	0.2313	0.7116	0.7860	0.030*
H12C	0.1988	0.5094	0.7729	0.030*
C13	-0.05815 (11)	0.75347 (17)	0.45905 (8)	0.0205 (3)
H13A	-0.0631	0.8804	0.4538	0.025*
H13B	-0.1396	0.7069	0.4643	0.025*
H13C	-0.0316	0.7043	0.4082	0.025*
C16	0.72224 (10)	0.19424 (15)	0.65988 (7)	0.0146 (2)
C18	0.78094 (11)	0.03842 (15)	0.62567 (7)	0.0170 (3)
H18A	0.8220	-0.0332	0.6741	0.020*
H18B	0.8451	0.0783	0.5932	0.020*
C19	0.68652 (12)	-0.07353 (16)	0.56757 (8)	0.0192 (3)
H19A	0.7237	-0.1886	0.5601	0.023*
H19B	0.6138	-0.0922	0.5957	0.023*
C20	0.64377 (12)	0.00742 (17)	0.48013 (8)	0.0217 (3)
H20A	0.6048	0.1201	0.4869	0.026*
H20B	0.5839	-0.0699	0.4458	0.026*
H20C	0.7151	0.0242	0.4513	0.026*
H14N	0.7349 (14)	0.550 (2)	0.6894 (10)	0.028 (4)*
H15N	0.7670 (15)	0.351 (2)	0.5726 (10)	0.028 (4)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
017	0.0175 (4)	0.0219 (4)	0.0153 (4)	0.0035 (3)	0.0055 (3)	0.0029 (3)
N1	0.0149 (5)	0.0183 (5)	0.0168 (5)	0.0010 (4)	0.0032 (4)	-0.0008(4)
N2	0.0146 (5)	0.0180 (5)	0.0169 (5)	0.0016 (4)	0.0023 (4)	-0.0015 (4)
N4	0.0161 (5)	0.0196 (5)	0.0175 (5)	0.0025 (4)	0.0019 (4)	-0.0026 (4)
N5	0.0160 (5)	0.0198 (5)	0.0174 (5)	0.0027 (4)	0.0021 (4)	-0.0013 (4)
N7	0.0152 (5)	0.0187 (5)	0.0125 (5)	0.0019 (4)	0.0037 (4)	0.0006 (4)
N8	0.0146 (5)	0.0191 (5)	0.0141 (5)	0.0013 (4)	0.0025 (4)	0.0015 (4)
N14	0.0146 (5)	0.0152 (5)	0.0150 (5)	0.0011 (4)	0.0024 (4)	-0.0027 (4)
N15	0.0163 (5)	0.0157 (5)	0.0142 (5)	0.0021 (4)	0.0058 (4)	-0.0011 (4)
C3	0.0168 (6)	0.0138 (5)	0.0121 (5)	0.0009 (4)	0.0029 (4)	0.0028 (4)
C6	0.0158 (5)	0.0153 (6)	0.0133 (5)	0.0009 (4)	0.0034 (4)	0.0019 (4)
C9	0.0142 (5)	0.0149 (6)	0.0216 (6)	0.0001 (4)	0.0048 (5)	0.0000 (4)
C10	0.0178 (6)	0.0200 (6)	0.0228 (6)	0.0028 (5)	0.0092 (5)	-0.0002 (5)

supporting information

C11 C12 C13	0.0200 (6) 0.0294 (7) 0.0145 (6)	0.0166 (6) 0.0297 (7) 0.0218 (6)	0.0180 (6) 0.0175 (6) 0.0246 (6)	0.0006 (5) 0.0039 (6) 0.0018 (5) 0.0012 (4)	0.0088 (5) 0.0096 (5) 0.0017 (5)	-0.0009 (5) 0.0015 (5) 0.0007 (5)
C18	0.0168 (6)	0.0182 (6)	0.0163 (5)	0.0036 (5)	0.0037 (4)	0.0012 (5)
C19	0.0216 (6)	0.0164 (6)	0.0199 (6)	0.0004 (5)	0.0048 (5)	0.0000 (5)
C20	0.0216 (6)	0.0240 (7)	0.0189 (6)	-0.0028 (5)	0.0023 (5)	-0.0015 (5)

Geometric parameters (Å, °)

017—C16	1.2332 (14)	C10—H10	0.9500
N1—N2	1.3243 (14)	C11—C12	1.4887 (17)
N1—C6	1.3304 (15)	C12—H12A	0.9800
N2—C3	1.3453 (16)	C12—H12B	0.9800
N4—N5	1.3166 (14)	C12—H12C	0.9800
N4—C3	1.3602 (15)	C13—H13A	0.9800
N5—C6	1.3349 (15)	C13—H13B	0.9800
N7-C11	1.3663 (15)	C13—H13C	0.9800
N7—N8	1.3723 (13)	C16—C18	1.5049 (16)
N7—C6	1.4068 (15)	C18—C19	1.5301 (17)
N8—C9	1.3258 (15)	C18—H18A	0.9900
N14—C3	1.3515 (15)	C18—H18B	0.9900
N14—N15	1.3883 (14)	C19—C20	1.5216 (17)
N14—H14N	0.904 (16)	C19—H19A	0.9900
N15-C16	1.3432 (15)	C19—H19B	0.9900
N15—H15N	0.880 (17)	C20—H20A	0.9800
C9—C10	1.4104 (17)	C20—H20B	0.9800
C9—C13	1.4932 (17)	C20—H20C	0.9800
C10—C11	1.3674 (17)		
N2—N1—C6	117.26 (10)	H12A—C12—H12B	109.5
N1—N2—C3	116.57 (10)	C11—C12—H12C	109.5
N5—N4—C3	116.84 (10)	H12A—C12—H12C	109.5
N4—N5—C6	116.92 (10)	H12B—C12—H12C	109.5
C11—N7—N8	111.97 (10)	C9—C13—H13A	109.5
C11—N7—C6	129.54 (10)	C9—C13—H13B	109.5
N8—N7—C6	118.45 (9)	H13A—C13—H13B	109.5
C9—N8—N7	105.01 (9)	C9—C13—H13C	109.5
C3—N14—N15	119.47 (10)	H13A—C13—H13C	109.5
C3—N14—H14N	119.3 (10)	H13B—C13—H13C	109.5
N15—N14—H14N	114.6 (10)	O17—C16—N15	121.87 (11)
C16—N15—N14	119.89 (10)	O17—C16—C18	122.49 (11)
C16—N15—H15N	122.5 (10)	N15—C16—C18	115.63 (10)
N14—N15—H15N	117.6 (10)	C16—C18—C19	112.20 (10)
N2-C3-N14	119.92 (10)	C16—C18—H18A	109.2
N2-C3-N4	125.35 (11)	C19—C18—H18A	109.2
N14—C3—N4	114.73 (10)	C16—C18—H18B	109.2
N1—C6—N5	126.63 (11)	C19—C18—H18B	109.2

N1—C6—N7	116.88 (10)	H18A—C18—H18B	107.9
N5—C6—N7	116.49 (10)	C20-C19-C18	113.12 (10)
N8—C9—C10	110.69 (11)	С20—С19—Н19А	109.0
N8—C9—C13	120.23 (10)	C18—C19—H19A	109.0
C10—C9—C13	129.07 (11)	С20—С19—Н19В	109.0
С11—С10—С9	106.57 (11)	C18—C19—H19B	109.0
C11—C10—H10	126.7	H19A—C19—H19B	107.8
C9—C10—H10	126.7	С19—С20—Н20А	109.5
N7—C11—C10	105.75 (10)	С19—С20—Н20В	109.5
N7—C11—C12	123.70 (11)	H20A—C20—H20B	109.5
C10-C11-C12	130.47 (11)	С19—С20—Н20С	109.5
C11—C12—H12A	109.5	H20A—C20—H20C	109.5
C11—C12—H12B	109.5	H20B—C20—H20C	109.5
C6—N1—N2—C3	-0.22 (15)	C11—N7—C6—N5	-46.50 (17)
C3—N4—N5—C6	1.40 (16)	N8—N7—C6—N5	130.92 (11)
C11—N7—N8—C9	0.71 (13)	N7—N8—C9—C10	-0.93 (13)
C6—N7—N8—C9	-177.14 (10)	N7—N8—C9—C13	178.23 (10)
C3—N14—N15—C16	-68.57 (14)	N8—C9—C10—C11	0.84 (14)
N1—N2—C3—N14	-173.71 (10)	C13—C9—C10—C11	-178.22 (12)
N1—N2—C3—N4	6.04 (17)	N8—N7—C11—C10	-0.20 (14)
N15—N14—C3—N2	-20.85 (16)	C6—N7—C11—C10	177.35 (11)
N15—N14—C3—N4	159.37 (10)	N8—N7—C11—C12	176.86 (11)
N5—N4—C3—N2	-6.68 (17)	C6—N7—C11—C12	-5.59 (19)
N5—N4—C3—N14	173.08 (10)	C9—C10—C11—N7	-0.36 (13)
N2—N1—C6—N5	-5.02 (18)	C9-C10-C11-C12	-177.15 (13)
N2—N1—C6—N7	175.72 (10)	N14—N15—C16—O17	3.44 (17)
N4—N5—C6—N1	4.37 (18)	N14—N15—C16—C18	-177.48 (9)
N4—N5—C6—N7	-176.37 (10)	O17—C16—C18—C19	80.97 (14)
C11—N7—C6—N1	132.83 (12)	N15-C16-C18-C19	-98.10 (12)
N8—N7—C6—N1	-49.75 (15)	C16—C18—C19—C20	74.42 (13)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N14—H14 <i>N</i> ···O17 ⁱ	0.903 (15)	1.923 (16)	2.8221 (15)	173.8 (14)
N15—H15 <i>N</i> ····N8 ⁱⁱ	0.880 (16)	2.008 (16)	2.8851 (16)	174.5 (15)

Symmetry codes: (i) -x+3/2, y+1/2, -z+3/2; (ii) -x+1, -y+1, -z+1.