Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(Z)-N,N-Dimethyl-2-[phenyl(pyridin-2yl)methylidene]hydrazinecarbothioamide

K. Jayakumar, ${ }^{\text {a }}$ M. Sithambaresan ${ }^{\text {b }}$ * and
M. R. Prathapachandra Kurup ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, and ${ }^{\text {b }}$ Department of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka
Correspondence e-mail: eesans@yahoo.com

Received 5 October 2011; accepted 31 October 2011
Key indicators: single-crystal X-ray study; $T=153 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.039 ; w R$ factor $=0.110$; data-to-parameter ratio $=15.0$.

The title compound, $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{~S}$, exists in the Z conformation with the thionyl S atom lying cis to the azomethine N atom. The shortening of the $\mathrm{N}-\mathrm{N}$ distance [1.3697 (17) \AA] is due to extensive delocalization with the pyridine ring. The hydra-zine-carbothioamide unit is almost planar, with a maximum deviation of 0.013 (2) \AA for the amide N atom. The stability of this conformation is favoured by the formation of an intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond. The packing of the molecules involves no classical intermolecular hydrogenbonding interactions; however, a $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction occurs.

Related literature

For abackground to hydrazinecarbothioamide and its derivatives, see: Beraldo \& Gambino (2004). For the synthesis, see: Joseph et al. (2006). For related structures of hydrazinecarbothioamides, see: Philip et al. (2006); Arumugam et al. (2011). For related structures, see: Seena et al. (2008); Usman et al. (2002); Huheey et al. (1993); Joseph et al. (2004).

Experimental

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{~S}$

$$
\begin{aligned}
& b=8.888(2) \AA \AA \\
& c=16.256(4) \AA \\
& \beta=94.528(3)^{\circ}
\end{aligned}
$$

$$
V=1441.9(6) \AA^{3}
$$

$Z=4$

Mo $K \alpha$ radiation
$\mu=0.22 \mathrm{~mm}^{-1}$
Data collection
Bruker P4 diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
$T_{\text {min }}=0.932, T_{\text {max }}=0.953$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.110$
$S=1.06$
2828 reflections
188 parameters
$T=153 \mathrm{~K}$
$0.32 \times 0.28 \times 0.22 \mathrm{~mm}$

14231 measured reflections 2828 independent reflections 2405 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.031$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max }=0.19 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.20 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
$C g$ is the centroid of the $\mathrm{N} 1 / \mathrm{C} 8-\mathrm{C} 12$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H}^{\prime} \cdots \mathrm{N} 1$	$0.837(17)$	$1.869(17)$	$2.602(2)$	$145.4(15)$
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{Cg}^{\mathrm{i}}$	0.93	2.66	$3.536(2)$	157

Symmetry code: (i) $-x+2,-y+1,-z+1$.
Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

KJ thanks the UGC, New Delhi, for the award of a Teacher Fellowship. The authors also thank the STIC, CUSAT, Kochi22, for providing the single-crystal XRD data.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2463).

References

Arumugam, S. R., Dasary, S. S. R., Venkatraman, R., Yu, H. \& Fronczek, F. R. (2011). Acta Cryst. E67, m1409-m1410.

Beraldo, H. \& Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31-39.
Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Huheey, J. E., Keiter, E. A. \& Keitar, R. L. (1993). Inorganic Chemistry. Principles of Structure and Reactivity, 4th ed. New York: Harper Collins.
Joseph, M., Kuriakose, M., Kurup, M. R. P., Suresh, E., Kishore, A. \& Bhat, S. G. (2006). Polyhedron, 25, 61-70.

Joseph, M., Suni, V., Nayar, C. R., Kurup, M. R. P. \& Fun, H.-K. (2004). J. Mol. Struct. 705, 63-70.
Philip, V., Suni, V., Kurup, M. R. P. \& Nethaji, M. (2006). Spectrochim. Acta Part A, 64, 171-177.
Seena, E. B., Kurup, M. R. P. \& Suresh, E. (2008). J. Chem. Crystallogr. 38, 9396.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Usman, A., Razak, I. A., Chantrapromma, S., Fun, H.-K., Sreekanth, A., Sivakumar, S. \& Prathapachandra Kurup, M. R. (2002). Acta Cryst. C58, m461-m463.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2011). E67, o3195 [https://doi.org/10.1107/S1600536811045739]

(Z)-N,N-Dimethyl-2-[phenyl(pyridin-2-yl)methylidene]hydrazinecarbothioamide

K. Jayakumar, M. Sithambaresan and M. R. Prathapachandra Kurup

S1. Comment

A large number of studies have been devoted to the search for derivatives of hydrazinecarbothioamide, which have been used as drugs and have the ability to form complexes. The biological activity of these compounds depends on the parent aldehyde or ketone (Beraldo \& Gambino, 2004). Derivatives of hydrazinecarbothioamide constitute an important group of multidentate ligands with potential binding sites available for a wide variety of metal ions. These thiourea derivatives find substantial applications in different facets of contemporary scientific research.
The title compound (Z)-2-N,N-dimethyl-2-[phenyl(pyridin-2-yl)methylidene]hydrazinecarbothioamide is found to exist in Z configuration. A perspective view of the molecular structure of the title compound, along with the atom-labeling scheme, is given in Fig. 1. The $\mathrm{S} 1=\mathrm{C} 13-\mathrm{N} 3-\mathrm{N} 2$ torsion-angle [14.4 (2) ${ }^{\circ}$] indicates that thionyl atom S 1 is positioned cis to azomethane nitrogen atom N2. The hydrazinecarbothioamide moiety adopts an extended conjugation, with electron delocalization throughout the $\mathrm{N} 4 / \mathrm{C} 13 / \mathrm{S} 1 / \mathrm{N} 3 / \mathrm{N} 2$ group. The fact that the compound exists in the thione form is confirmed by the N3-N2, N4-C13 and $\mathrm{C} 13=\mathrm{S} 1$ bond distances. The $\mathrm{C} 13=\mathrm{S} 1$ bond distance is close to that expected for a $\mathrm{C}=\mathrm{S}$ double bond of $1.60 \AA$ (Huheey et al., 1993). The N3-N2 bond distance is very close to the reported similar substituted hydrazinecarbothioamide (Joseph et al., 2004). The resonance form involving pyridine ring would account for the shortening of the $\mathrm{N}-\mathrm{N}$ distance through extensive electron delocalization.

The hydrazinecarbothioamide moiety, comprising atoms $\mathrm{N} 3, \mathrm{C} 13, \mathrm{~S} 1$ and N 4 , is almost planar with the maximum deviation of 0.013 (2) \AA for atom N4. The pyridyl ring and phenyl ring are not in the same plane and the pyridyl ring is twisted significantly from the hydrazinecarbothioamide plane, with a torsionl angle of -176.3 (2) ${ }^{\circ}$.
Two types of intramolecular (classical and non-classical) hydrogen bond interactions are found in this molecule. A classical hydrogen bonding interaction between the hydrogen attached to the N3 nitrogen and the N1 nitrogen with the $\mathrm{D} \cdots$ A distance of 2.602 (2) \AA and the non-classical hydrogen bonding interaction between one of the hydrogen atom attached to the C 14 atom and the S 1 atom of the molecule with a $\mathrm{D} \cdots \mathrm{A}$ distance of 3.030 (2) \AA as described in Table 1.
Fig. 2 shows the packing diagram of the title compound. Packing of these molecules does not include any classical intermolecular hydrogen bonding interactions in its molecular array. However, it may be directed by the $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction between the pyridine ring and the hydrogen attached at C 5 carbon atom of the phenyl ring of the another molecule. There are four very weak $\pi-\pi$ interactions present in this molecular array with the distances of 5.5874 (17), 4.8708 (15), 5.5455 (17) and 4.9165 (15) \AA between the centroids of the corresponding rings involving interactions.

S2. Experimental

The title compound was prepared by adapting a reported procedure (Joseph et al., 2006) by refluxing a mixture of methanolic solutions of 2-benzoylpyridine ($11 \mathrm{mmol}, 2.032 \mathrm{~g}$) and N,N-dimethylhydrazinecarbothioamide (11 mmol , 1.320 g) for five hours after adding 5 drops of acetic acid. Yellow crystals were collected, washed with few drops of methanol and dried over $\mathrm{P}_{4} \mathrm{O}_{10}$ in vacuo. Single crystals of the title compound suitable for X-ray analysis were obtained
by slow evaporation from its methanolic solution.

S3. Refinement

All H atoms on C were placed in calculated positions, guided by difference maps, with $\mathrm{C}-\mathrm{H}$ bond distances $0.93-0.96$
\AA. H atoms were assigned as $U_{\mathrm{iso}}=1.2 \mathrm{Ueq}(1.5$ for Me). N3—H3' hydrogen was located from difference maps and restrained using DFIX instruction.

Figure 1
The molecular structure of the title compound with displacement ellipsoids are drawn at 50% probability level.

Figure 2
Packing diagram of the title compound, the unit cell is viewed down the a axis.
(Z)-N,N-Dimethyl-2-[phenyl(pyridin-2- yl)methylidene]hydrazinecarbothioamide

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{~S}$
$M_{r}=284.39$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=10.011$ (2) \AA
$b=8.888$ (2) \AA
$c=16.256$ (4) \AA
$\beta=94.528(3)^{\circ}$
$V=1441.9(6) \AA^{3}$
$Z=4$

Data collection

Bruker P4
diffractometer
Radiation source: fine-focus sealed tube
$F(000)=600.0$
$D_{\mathrm{x}}=1.310 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 8120 reflections
$\theta=2.0-26.0^{\circ}$
$\mu=0.22 \mathrm{~mm}^{-1}$
$T=153 \mathrm{~K}$
Block, yellow
$0.32 \times 0.28 \times 0.22 \mathrm{~mm}$

Graphite monochromator

Detector resolution: 8.33 pixels mm^{-1}
ω scans

Absorption correction: multi-scan
(SADABS; Bruker, 2004)
$T_{\min }=0.932, T_{\text {max }}=0.953$
14231 measured reflections
2828 independent reflections 2405 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.110$
$S=1.06$
2828 reflections
188 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

$$
\begin{aligned}
& R_{\text {int }}=0.031 \\
& \theta_{\max }=26.0^{\circ}, \theta_{\min }=2.0^{\circ} \\
& h=-12 \rightarrow 12 \\
& k=-10 \rightarrow 10 \\
& l=-20 \rightarrow 20
\end{aligned}
$$

> Hydrogen site location: inferred from \quad neighbouring sites
> H atoms treated by a mixture of independent and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0606 P)^{2}+0.2366 P\right]$
> \quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.014$
> $\Delta \rho_{\max }=0.19 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.20$ e \AA^{-3}

Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0104 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
S1	$0.75460(4)$	$0.15132(5)$	$0.31975(3)$	$0.05808(18)$
N1	$0.98755(14)$	$0.68420(14)$	$0.33757(8)$	$0.0466(3)$
N2	$0.99018(12)$	$0.35758(13)$	$0.36663(7)$	$0.0413(3)$
N3	$0.87523(12)$	$0.42001(16)$	$0.33015(8)$	$0.0459(3)$
N4	$0.68025(13)$	$0.41370(17)$	$0.25113(9)$	$0.0552(4)$
C1	$1.33165(15)$	$0.42244(19)$	$0.39734(10)$	$0.0496(4)$
H1	1.3333	0.4983	0.3580	0.059^{*}
C2	$1.44999(16)$	$0.3531(2)$	$0.42682(12)$	$0.0584(5)$
H2	1.5307	0.3820	0.4069	0.070^{*}
C3	$1.44848(18)$	$0.2420(2)$	$0.48527(12)$	$0.0604(5)$
H3	1.5280	0.1956	0.5048	0.072^{*}
C4	$1.32983(18)$	$0.1993(2)$	$0.51494(11)$	$0.0586(5)$
H4	1.3291	0.1248	0.5551	0.070^{*}
C5	$1.21090(16)$	$0.26692(18)$	$0.48536(10)$	$0.0474(4)$
H5	1.1305	0.2368	0.5053	0.057^{*}
C6	$1.21111(14)$	$0.37895(16)$	$0.42634(9)$	$0.0386(3)$
C7	$1.08395(14)$	$0.45037(16)$	$0.39224(8)$	$0.0383(3)$
C8	$1.07742(14)$	$0.61797(16)$	$0.39196(9)$	$0.0404(3)$

C9	$1.15590(16)$	$0.70179(18)$	$0.44910(10)$	$0.0499(4)$
H9	1.2173	0.6546	0.4865	0.060^{*}
C10	$1.14187(19)$	$0.85641(19)$	$0.44978(13)$	$0.0600(5)$
H10	1.1928	0.9143	0.4882	0.072^{*}
C11	$1.05114(18)$	$0.92430(19)$	$0.39262(12)$	$0.0574(4)$
H11	1.0408	1.0283	0.3912	0.069^{*}
C12	$0.97729(18)$	$0.83393(18)$	$0.33834(11)$	$0.0527(4)$
H12	0.9165	0.8793	0.2998	0.063^{*}
C13	$0.77074(15)$	$0.33429(18)$	$0.29902(9)$	$0.0442(4)$
C14	$0.56134(19)$	$0.3425(3)$	$0.21167(14)$	$0.0755(6)$
H14A	0.5778	0.3140	0.1564	0.113^{*}
H14B	0.4877	0.4119	0.2101	0.113^{*}
H14C	0.5400	0.2547	0.2424	0.113^{*}
C15	$0.6980(2)$	$0.5728(2)$	$0.23277(14)$	$0.0770(6)$
H15A	0.6945	0.6306	0.2824	0.115^{*}
H15B	0.6279	0.6051	0.1930	0.115^{*}
H15C	0.7833	0.5874	0.2108	0.115^{*}
H3'	$0.8833(15)$	$0.511(2)$	$0.3188(9)$	$0.043(4)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0506(3)$	$0.0477(3)$	$0.0740(3)$	$-0.00580(18)$	$-0.0075(2)$	$-0.00052(19)$
N 1	$0.0516(8)$	$0.0409(7)$	$0.0469(7)$	$0.0035(6)$	$0.0016(6)$	$0.0030(5)$
N 2	$0.0353(6)$	$0.0410(7)$	$0.0462(7)$	$0.0030(5)$	$-0.0045(5)$	$0.0000(5)$
N 3	$0.0394(7)$	$0.0388(7)$	$0.0574(8)$	$0.0035(5)$	$-0.0087(6)$	$0.0003(6)$
N 4	$0.0427(7)$	$0.0588(9)$	$0.0613(8)$	$0.0069(6)$	$-0.0143(6)$	$-0.0006(7)$
C1	$0.0441(9)$	$0.0505(9)$	$0.0542(9)$	$0.0001(7)$	$0.0042(7)$	$0.0044(7)$
C2	$0.0347(8)$	$0.0697(12)$	$0.0705(11)$	$0.0005(8)$	$0.0022(8)$	$-0.0032(9)$
C3	$0.0425(9)$	$0.0639(11)$	$0.0711(11)$	$0.0098(8)$	$-0.0182(8)$	$-0.0052(9)$
C4	$0.0562(10)$	$0.0552(10)$	$0.0611(10)$	$0.0010(8)$	$-0.0157(8)$	$0.0113(8)$
C5	$0.0418(8)$	$0.0478(9)$	$0.0513(9)$	$-0.0055(7)$	$-0.0045(7)$	$0.0039(7)$
C6	$0.0363(7)$	$0.0361(7)$	$0.0421(8)$	$0.0002(6)$	$-0.0042(6)$	$-0.0050(6)$
C7	$0.0372(7)$	$0.0394(7)$	$0.0380(7)$	$0.0016(6)$	$0.0014(6)$	$-0.0007(6)$
C8	$0.0373(7)$	$0.0400(8)$	$0.0442(8)$	$0.0019(6)$	$0.0058(6)$	$0.0004(6)$
C9	$0.0448(9)$	$0.0463(9)$	$0.0577(9)$	$-0.0007(7)$	$-0.0016(7)$	$-0.0048(7)$
C10	$0.0582(11)$	$0.0457(10)$	$0.0756(12)$	$-0.0065(8)$	$0.0024(9)$	$-0.0123(8)$
C11	$0.0634(11)$	$0.0360(8)$	$0.0745(11)$	$-0.0007(8)$	$0.0162(9)$	$-0.0006(8)$
C12	$0.0595(10)$	$0.0438(9)$	$0.0553(9)$	$0.0074(7)$	$0.0069(8)$	$0.0092(7)$
C13	$0.0373(8)$	$0.0499(9)$	$0.0444(8)$	$0.0043(6)$	$-0.0021(6)$	$-0.0052(6)$
C14	$0.0502(11)$	$0.0935(16)$	$0.0781(13)$	$0.0042(10)$	$-0.0250(10)$	$-0.0092(11)$
C15	$0.0699(13)$	$0.0660(13)$	$0.0902(15)$	$0.0183(10)$	$-0.0245(11)$	$0.0121(11)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{S} 1-\mathrm{C} 13$	$1.6712(17)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.383(2)$
$\mathrm{N} 1-\mathrm{C} 12$	$1.335(2)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{~N} 1-\mathrm{C} 8$	$1.3461(19)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.4898(19)$

N2-C7	1.2934 (18)	C7-C8	1.491 (2)
N2-N3	1.3697 (17)	C8-C9	1.386 (2)
N3-C13	1.3591 (19)	C9-C10	1.381 (2)
N3-H3'	0.837 (17)	C9-H9	0.9300
N4-C13	1.3466 (19)	C10-C11	1.385 (3)
N4-C14	1.452 (2)	C10-H10	0.9300
N4-C15	1.459 (3)	C11-C12	1.366 (2)
C1-C6	1.385 (2)	C11-H11	0.9300
C1-C2	1.387 (2)	C12-H12	0.9300
C1-H1	0.9300	C14-H14A	0.9600
C2-C3	1.371 (3)	C14-H14B	0.9600
C2-H2	0.9300	C14-H14C	0.9600
C3-C4	1.370 (3)	C15-H15A	0.9600
C3-H3	0.9300	C15-H15B	0.9600
C4-C5	1.385 (2)	C15-H15C	0.9600
C4-H4	0.9300		
C12-N1-C8	118.54 (14)	N1-C8-C7	117.75 (13)
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{N} 3$	116.40 (12)	C9-C8-C7	120.85 (13)
$\mathrm{C} 13-\mathrm{N} 3-\mathrm{N} 2$	121.99 (13)	C10-C9-C8	119.18 (16)
C13-N3-H3'	123.1 (11)	C10-C9-H9	120.4
N2-N3-H3'	113.3 (11)	C8-C9-H9	120.4
C13-N4-C14	121.18 (15)	C9-C10-C11	119.31 (16)
C13-N4-C15	122.61 (14)	C9-C10-H10	120.3
C14-N4-C15	116.16 (14)	C11-C10-H10	120.3
C6- $\mathrm{C} 1-\mathrm{C} 2$	120.13 (16)	C12-C11-C10	118.02 (15)
C6- $\mathrm{C} 1-\mathrm{H} 1$	119.9	C12- $\mathrm{C} 11-\mathrm{H} 11$	121.0
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	119.9	C10-C11-H11	121.0
C3-C2-C1	120.23 (16)	N1-C12-C11	123.63 (16)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.9	N1-C12-H12	118.2
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.9	C11-C12-H12	118.2
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	120.04 (16)	N4-C13-N3	112.61 (14)
C4-C3-H3	120.0	N4-C13-S1	123.72 (12)
C2-C3-H3	120.0	N3-C13-S1	123.65 (11)
C3-C4-C5	120.19 (16)	N4-C14-H14A	109.5
C3-C4-H4	119.9	N4-C14-H14B	109.5
C5-C4-H4	119.9	H14A-C14-H14B	109.5
C6-C5-C4	120.31 (15)	N4-C14-H14C	109.5
C6-C5-H5	119.8	H14A-C14-H14C	109.5
C4-C5-H5	119.8	H14B-C14-H14C	109.5
C5-C6-C1	119.09 (14)	N4-C15-H15A	109.5
C5-C6-C7	121.12 (13)	N4-C15-H15B	109.5
C1-C6-C7	119.77 (13)	H15A-C15-H15B	109.5
N2-C7-C6	115.17 (12)	N4-C15-H15C	109.5
N2-C7-C8	127.26 (13)	H15A-C15-H15C	109.5
C6-C7-C8	117.56 (12)	H15B-C15-H15C	109.5
N1-C8-C9	121.30 (14)		

$\mathrm{C} 7-\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 13$	$178.44(14)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.5(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.2(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.8(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.7(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$0.0(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$178.48(14)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$0.6(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	$-177.91(14)$
$\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 6$	$-175.96(12)$
$\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8$	$4.8(2)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 2$	$-50.15(19)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 2$	$128.32(15)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$129.21(15)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-52.32(19)$
$\mathrm{C} 12-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	$1.5(2)$
$\mathrm{C} 12-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 7$	$177.81(14)$

$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 1$	$-23.7(2)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 1$	$157.05(13)$
$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$152.63(15)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-26.6(2)$
$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-0.4(2)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-176.54(16)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$-0.9(3)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$1.0(3)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 11$	$-1.5(3)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{N} 1$	$0.2(3)$
$\mathrm{C} 14-\mathrm{N} 4-\mathrm{C} 13-\mathrm{N} 3$	$179.72(16)$
$\mathrm{C} 15-\mathrm{N} 4-\mathrm{C} 13-\mathrm{N} 3$	$2.5(2)$
$\mathrm{C} 14-\mathrm{N} 4-\mathrm{C} 13-\mathrm{S} 1$	$-1.7(2)$
$\mathrm{C} 15-\mathrm{N} 4-\mathrm{C} 13-\mathrm{S} 1$	$-178.84(15)$
$\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 13-\mathrm{N} 4$	$-166.98(14)$
$\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 13-\mathrm{S} 1$	$14.4(2)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)
Cg is the centroid of the $\mathrm{N} 1 / \mathrm{C} 8-\mathrm{C} 12$ ring.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{~N} 3 — \mathrm{H} 3^{\prime} \cdots \mathrm{N} 1$	$0.837(17)$	$1.869(17)$	$2.602(2)$	$145.4(15)$
$\mathrm{C} 14 — \mathrm{H} 14 C \cdots \mathrm{~S} 1$	0.96	2.57	$3.030(2)$	109
$\mathrm{C} 5 — \mathrm{H} 5 \cdots C g^{\mathrm{i}}$	0.93	2.66	$3.536(2)$	157

Symmetry code: (i) $-x+2,-y+1,-z+1$.

